
IE 495 – Stochastic Programming
Problem Sets #5—#7

Due Date: April 28, 2003

Do the following problems. If you work alone, you will receive a 10% bonus
on your score. These are the final homework sets for the semester. Problems 1–2
will be Problem Set #5, Problems 3–4 will be Problem Set #6, and Problems
5–6 will be Problem Set #7.

You are allowed to examine outside sources, but you must cite any references
that you use. Please don’t discuss the problems with other members of the class
(other than your partner, if you are working with one).

1 Feasibility Cuts

The second stage constraints of a two-stage problem look as follows:

[
1 3 −1 0
2 −1 2 1

]
y =

[ −6
−4

]
ω +

[
5 −1 0
0 2 4

]
x

y ≥ 0.

Here ω is a random variable with support Ω = [0, 1].

1.1 Problem
Write down the linear programs (both primal and dual formulation(s)) needed
to check whether or not there is a feasible second stage solution for a given x.

1.2 Problem
Describe how these formulations allow you to obtain an inequality that cuts of
x, if there is no feasible second stage solution y for that x.

1.3 Problem
Let x̂ = (1, 1, 1)T . Find the inequality explicitly for this first stage solution x̂.
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2 Bounds

Consider our favorite random linear program.
minimize

Q(x1, x2) = x1 + x2 + 5
∫ 4

ω1=1

∫ 1

ω2=1/3

y1(ω1, ω2) + y2(ω1, ω2)dω1dω2

subject to

ω1x1 + x2 + y1(ω1, ω2) ≥ 7 ∀ω1, ω2 ∈ Ω
ω2x1 + x2 + y2(ω1, ω2) ≥ 4 ∀ω1, ω2 ∈ Ω

x1 ≥ 0
x2 ≥ 0

y1(ω1, ω2) ≥ 0 ∀ω1, ω2 ∈ Ω
y2(ω1, ω2) ≥ 0 ∀ω1, ω2 ∈ Ω

• Ω = {ω1 × ω2}
• ω1 ∼ U [1, 4]

• ω2 ∼ U [1/3, 1]

2.1 Problem
Compute the Jensen Lower Bound forQ(1, 3) using the partition Ω = S1 = {Ω}.

2.2 Problem
Compute the Edmundson-Madansky Upper Bound for Q(1, 3) using the parti-
tion Ω = S1 = {Ω}.

Refining Bounds

Problems 2.3 and 2.4 depend on the following partition S2 of Ω. Let

• ΩI = {ω1 × ω2|1 ≤ ω1 ≤ 5/2, 1/3 ≤ ω2 ≤ 2/3},
• ΩII = {ω1 × ω2|5/2 ≤ ω1 ≤ 4, 1/3 ≤ ω2 ≤ 2/3},
• ΩIII = {ω1 × ω2|1 ≤ ω1 ≤ 5/2, 2/3 ≤ ω2 ≤ 1},
• ΩI = {ω1 × ω2|5/2 ≤ ω1 ≤ 4, 2/3 ≤ ω2 ≤ 1}.

S2 = {ΩI , ΩII , ΩIII ,ΩIV }

See Figure 2 for a pictorial representation of the partition S2.

2.3 Problem
Compute the Jensen Lower Bound for Q(1, 3) using the partition S2

2.4 Problem
Compute the Edmundson-Madansky Upper Bound for Q(1, 3) using the parti-
tion S2.
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Figure 1: Partition S2

I II

III IV

1 4
1/3

1

3 Monte Carlo/Variance Reduction

Consider the following Stochastic LP.
v∗ = minimize

10x1 + 7x2 + 16x3 + 6x4 + Eω [ 40y11 + 45y21 + 32y31 + 55y41 + 24y12 + 27y22 +
19.2y32 + 33y42 + 4y13 + 4.5y23 + 3.2y33 + 5.5y43]

subject to

4∑

i=1

yi1 = ω1

4∑

i=1

yi2 = ω2

4∑

i=1

yi3 = ω3

4∑

i=1

xi ≥ 12

3∑

j=1

y1j ≤ x1

3∑

j=1

y2j ≤ x2

3∑

j=1

y3j ≤ x3

3∑

j=1

y4j ≤ x4
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10x1 + 7x2 + 16x3 + 6x4 ≤ 120
x, y ≥ 0

Confidence Interval

Suppose the random variables ω1, ω2, ω3 are all independent with the following
distributions.

• ω1 ≈ U [3, 7]

• ω2 ≈ U [2, 3].

• ω3 ≈ U [1, 2]

3.1 Problem
Compute a (statistical) lower bound L on v∗.1

3.2 Problem
Compute (and provide justification) for a 97.5% confidence interval around the
value of L you gave in Problem 3.1.2

3.3 Problem
Compute a (statistical) upper bound U on v∗.3

3.4 Problem
Compute (and provide justification) for a 97.5% confidence interval around the
value of U you gave in Problem 3.3.4

1Bonus points given for a “tight” lower bound. (That is v∗ − L “small”).
2Bonus Points given for producing the confidence interval with a “small” number of prob-

lems solved.
3Bonus points given for a “tight” upper bound. (That is U − v∗ “small”).
4Bonus Points given for producing the confidence interval with a “small” number of prob-

lems solved.
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4 Random Objective Coefficients and VSS

Consider the following two-stage stochastic LP with recourse:

max
x∈<3

+

{3x1 + x2 + 4x3 + Eω[q1(ω)y1(ω) + q2(ω)y2(ω)]}

subject to

x1 + 2x2 + y1(ω)− y2(ω) ≤ 3 ∀ω ∈ Ω
−x1 − x2 + x3 + 2y1(ω) + 3y2(ω) ≤ 1 ∀ω ∈ Ω

x2 + 3x3 − y1(ω) + y2(ω) ≤ 3 ∀ω ∈ Ω
x1, x2, x3 ≥ 0

y1(ω), y2(ω) ≥ 0 ∀ω ∈ Ω

In this example, ω is a random variable with finite support Ω. Table 1 gives
the realizations of ω, the probabilities p(ω) of each realization, and the values
of q1(ω), q2(ω) in each realization.

ω p(ω) q1(ω) q2(ω)
1 0.125 -2 -2
2 0.5 2 1
3 0.375 8 6

Table 1: Probability Distribution for Problem 4.

4.1 Problem
Compute the EVPI for this problem.

4.2 Problem
Compute the VSS for this problem.

(Dis?)Proof Time

Let X ⊆ <n and Y ⊆ <p be polyhedral sets. Make the following definitions:

Q(x, ω) = min
y(ω)∈Y

{q(ω)T y(ω)|Wy(ω) = h− Tx},

z∗1 = min
x∈X

Eω[Q(x, ω)],

z∗2 = min
x∈X

Q(x,Eω[ω]).

Assume that the matrices T, W vectors h, x and random vectors y(ω), q(ω) all
have appropriate dimension. Consider the following statement:

1 Statement

z∗1 = z∗2 .

4.3 Problem
What (in words) does Statement 1 mean?
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4.4 Problem
Is Statement 1 true or false? If true, provide a proof. If false, provide a counter-
example.

5 Stochastic IP – Recourse Function

Let

v(z) = min
y∈Y

{2y1 + 5y2 + 6y3 + y4|2y1 + 5y2 + 7y3 − y4 = z}, Y = {Z3
+ ×<+}

Q(x) = Eω[v(h(ω)− x)], x ∈ <

5.1 Problem
Let h(ω) have the following density.

• P (h(ω) = 5) = 1/3

• P (h(ω) = 5.5) = 1/3

• P (h(ω) = 6) = 1/3

Draw the graph of Q(x) for x ∈ [−10, 15].

5.2 Problem
Let h(ω) have the following density.

• P (h(ω) = 5) = 0.2

• P (h(ω) = 5.25) = 0.2

• P (h(ω) = 5.5) = 0.2

• P (h(ω) = 5.75) = 0.2

• P (h(ω) = 6) = 0.2

Draw the graph of Q(x) for x ∈ [−10, 15].

5.3 Problem
Let h(ω) ≈ U [5, 6].

Draw the graph of Q(x) for x ∈ [−10, 15].
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6 Stochastic IP – Integer LShaped Method

In this problem, we will be performing the Integer L-Shaped method on the
following problem instance:

min{x +Q(x), x ∈ {0, 1}},

where
Q(x) = Eω[v(x, ω)],

v(x, ω) = min{3/2y|y ≥ ω − x, y ∈ Z+}

P(ω = 1.3) = 0.5
P(ω = 2.7) = 0.5

An obvious lower bound for Q(x) is L = 0. Use this lower bound in all of
the subsequent problems. Recall that an optimality cut at xk in the Integer
L-Shaped Method is given as

θ ≥ (Q(xk)− L)


 ∑

j∈Sk

xj −
∑

j 6∈Sk

xj − |Sk|+ 1


 + L.

6.1 Problem
Draw the graph of x +Q(x) for all x ∈ [0, 1].

6.2 Problem
Starting with iteration (k = 1) in which x1 = 0, compute Q(x1) and the opti-
mality cut associated with x1. Draw the graph of the optimality cut on your
graph from your answer to Problem 6.1.

6.3 Problem
Formulate and solve the master problem for iteration k = 2. Compute the
optimal solution (call it x2) to the master problem. Compute Q(x2) and the
optimality cut associated with x2. Draw the graph of the optimality cut on your
graph from your answer to Problem 6.2.

6.4 Problem
Formulate and solve the master problem for iteration k = 3. Compute the
optimal solution (call it x3) to the master problem. State what the next step of
the algorithm will be.

6.5 Problem
Based on the discussion in your answer to Problem 6.4 state the optimal solution
to the problem.
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