IE 495 — Lecture 10'

Properties of the Recourse Function

Prof. Jeff Linderoth

February 12, 2003
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Outline I

e Small amount of review

e KKT/Optimality conditions for two-stage stochastic LP

w /recourse

e The LShaped algorithm

o Example
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Is That Your Final Answer.

e What is the subgradient inequality?
e What are the KKT conditions?

e Qx,w) = min, cpr {q"y: Wy = h(w) — T(w)z}.

o Name a vector s € 0Q(z,w).

e O(z) =E,Q(z,w) = ) g PsQ(z,w).

o Name a vector s € Q(x).

e What is the Deterministic Equivalent of a stochastic program?
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Our Favorite Problem.

: T : T
E Wy =~h — T
ey | B | i (6T Wy = )~ Te)

. T
K, Q(x,
:Béé)%%_l}gx:b {C z+ Q(CE w)}

min {c¢'x + Q(z) : Az = b}

:BG?)‘E:L_
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Highlights from Chapter 9'

e Q(r,w) =v(h(w) —T(w)z) is convex.
e O(z) =E,Q(x,w) is convex
e Q(x) is Lipschitz-continuous.

o If min cpr {gty : Wy = h(w) — T(w)x} has unique dual
solution \*, then VQ(x,w) = —\*I'T

o 1 Q(z) = 3,06 psQw,w,), then

n= - ZPSA:TT(WS) € 09(x)

seS
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Continuous Discussion '

e Computing Q(x fQ x,t)dF(t) in general requires

numerical mtegratlon for a given value of x
e Computing VQ(x) also would require numerical integration.

* This is only possible when w is a vector of very small

dimensionality.

e Typically people (and we will too) discretize the continuous

distribution.

o We'll talk about this later (soon, actually)...
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KKT Conditions '

Here, again for your convenience are the KKT conditions (in their
non-differentiable extension).

e Thm: For a convex function f : R"™ — R, and convex functions
g;i - Re" — R,1=1,2,...m, if we have some nice “regularity
conditions” (which we have in this case), & is an optimal
solution to mingepn {f(z) : gi(z) =0 Vi=1,2,...m} if and
only if the following conditions hold:

o gilr)=0 Vi=1,2,...m

o I, Aa, A € R, e, po, - . by € Ry such that
° 0€0f(2)+ 30 Mi0gi(®) — 25— py-
o n; >0Vy=1,2,...n
® ,LLJZ?L‘J:OV]:LZ,TL
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Apply to Our Problem'

min {c'z + Q(z) : Az = b}

xE%i

Thm: 2 € K is optimal if and only if
o dA e ™, pu € RN such that
o 0€c+09(z)+ AN —p
o uts =0
Or
—c— AT\ + 11 €09(3)
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2-Stage SLP. Deterministic Equivalent'

e If the two stage SLP comes from a probability space with finite

support...

'+ md'y + pd’y2 + -+ psq’ys

S.t.

Ax = b
T + Wiy = hy
Thx + Wy = hy

+

Tsx + Wys = hs
reX y1 €Y Yo €Y Ys €Y
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About the DEI

ys = y(ws) is the recourse action to take if scenario w, occurs.

Pro: It’s a linear program.

Con: It’s a BIG linear program.

o n + pS variables

o mi +mS constraints.

Pro: The matrix of the linear program has a very special

(staircase) structure.

? Has anyone heard of Bender’s Decomposition?
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The L-Shaped Method'

e Bender’s decomposition applied to the DE.
e However, we're going to think of it as a subgradient-based
optimization method

o We spent lots of time showing Q(x) = ) . ¢ psQ(z,ws) was

convex (and nondifferentiable)

o Q(x) is piecewise linear, with lots of bumps.
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A Picture '
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LShaped Method I

e We know that a subgradient of Q(z)  looks like...

U= — Zps)\:Ts € 09(z),

seS

e where \* is an optimal dual solution to the recourse problem in

scenario S:

AL = arg m/\ax{)\T(hS —T,2) : N'W < ¢},
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LShaped Method I

e So that by the subgradient inequality...

Q(z) = Q&) +u' (z — )

e In other words Q(&) + ul(x — %) is a supportins hyperplane of
Q at .

e This insight is used to build up an (increasingly better)

approximation of Q(z).
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LShaped Method I

e Let the variable 6 be our approximation to the function Q(x)...
e For any (feasible) value of = 6 ~ Q(x).

? Now how do we go about building such an approximation 67

* Use the subgradient inequality!
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LShaped Method I

e Imagine that we had L subgradients of Q(x)
o uy € 09(x1),us € 0Q(x2),...u; € 09(x;)

e Then...
minimize
cle+6
subject to
Ar = b
0 > >09O(x) +ui (z— 1) Vi=1,2,...L
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Example: Our Favorite Random Linear Program'

minimize
r1 + To
subject to
wiry +x2 = 7
WoX1 +x0 > 4
r1 > 0
ro > 0

o w=(w,w) €N =1{(1,1/3),(5/2,2/3), (4,1)}
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Example Worked out...I
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Next time '

e More LShaped...
¢ Formal algorithm specification
o Correctness/Convergence
¢ Implementing in AMPL
¢ Infeasibility cuts

o Multicut methods

e Homework #2. And this time I MFEAN it!

¢ Homework will be on the website Friday if you want to get
started over the weekend.
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