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Outline

• Small amount of review

• KKT/Optimality conditions for two-stage stochastic LP
w/recourse

• The LShaped algorithm

¦ Example
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Is That Your Final Answer

• What is the subgradient inequality?

• What are the KKT conditions?

• Q(x, ω) = miny∈<p
+
{qT y : Wy = h(ω)− T (ω)x}.

¦ Name a vector s ∈ ∂Q(x, ω).

• Q(x) = EωQ(x, ω) =
∑

s∈S psQ(x, ω).

¦ Name a vector s ∈ Q(x).

• What is the Deterministic Equivalent of a stochastic program?
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Our Favorite Problem

min
x∈<n

+:Ax=b

{
cT x + Eω

[
min
y∈<p

+

{qT y : Wy = h(ω)− T (ω)x}
]}

min
x∈<n

+:Ax=b

{
cT x + EωQ(x, ω)

}

min
x∈<n

+

{cT x +Q(x) : Ax = b}
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Highlights from Chapter 9

• Q(x, ω) ≡ v(h(ω)− T (ω)x) is convex.

• Q(x) ≡ EωQ(x, ω) is convex

• Q(x) is Lipschitz-continuous.

• If miny∈<p
+
{qT y : Wy = h(ω)− T (ω)x} has unique dual

solution λ∗, then ∇Q(x, ω) = −λ∗T T

• If Q(x) =
∑

s∈S psQ(x, ωs), then

η = −
∑

s∈S

psλ
∗T
s T (ωs) ∈ ∂Q(x)
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Continuous Discussion

• Computing Q(x) =
∫
Ω

Q(x, t)dF (t) in general requires
numerical integration for a given value of x

• Computing ∇Q(x) also would require numerical integration.

? This is only possible when ω is a vector of very small
dimensionality.

• Typically people (and we will too) discretize the continuous
distribution.

¦ We’ll talk about this later (soon, actually)...
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KKT Conditions

Here, again for your convenience are the KKT conditions (in their
non-differentiable extension).

• Thm: For a convex function f : <n 7→ <, and convex functions
gi : Ren 7→ <, i = 1, 2, . . . m, if we have some nice “regularity
conditions” (which we have in this case), x̂ is an optimal
solution to minx∈<n

+
{f(x) : gi(x) = 0 ∀i = 1, 2, . . . m} if and

only if the following conditions hold:

¦ gi(x) = 0 ∀i = 1, 2, . . . m

¦ ∃λ1, λ2, . . . λm ∈ <, µ1, µ2, . . . µn ∈ <+ such that
• 0 ∈ ∂f(x̂) +

∑m
i=1 λi∂gi(x̂)−∑n

j=1 µj .
• µj ≥ 0 ∀j = 1, 2, . . . n

• µj x̂j = 0 ∀j = 1, 2, . . . n
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Apply to Our Problem

min
x∈<n

+

{cT x +Q(x) : Ax = b}

Thm: x̂ ∈ K1 is optimal if and only if

• ∃λ ∈ <m, µ ∈ <n
+ such that

¦ 0 ∈ c + ∂Q(x̂) + AT λ− µ

¦ µT x̂ = 0

Or
−c−AT λ + µ ∈ ∂Q(x̂)
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2-Stage SLP. Deterministic Equivalent

• If the two stage SLP comes from a probability space with finite
support...

cT x + p1q
T y1 + p2q

T y2 + · · · + psq
T ys

s.t.

Ax = b

T1x + Wy1 = h1

T2x + Wy2 = h2

... +
. . .

TSx + Wys = hs

x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y
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About the DE

• ys ≡ y(ωs) is the recourse action to take if scenario ωs occurs.

• Pro: It’s a linear program.

• Con: It’s a BIG linear program.

¦ n + pS variables

¦ m1 + mS constraints.

• Pro: The matrix of the linear program has a very special
(staircase) structure.

? Has anyone heard of Bender’s Decomposition?
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The L-Shaped Method

• Bender’s decomposition applied to the DE.

• However, we’re going to think of it as a subgradient-based
optimization method

¦ We spent lots of time showing Q(x) =
∑

s∈S psQ(x, ωs) was
convex (and nondifferentiable)

¦ Q(x) is piecewise linear, with lots of bumps.

February 10, 2003 Stochastic Programming – Lecture 10 Slide 12



A Picture
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LShaped Method

• We know that a subgradient of Q(x) x̂ looks like...

u = −
∑

s∈S

psλ
∗
sTs ∈ ∂Q(x̂),

• where λ∗ is an optimal dual solution to the recourse problem in
scenario s:

λ∗s = arg max
λ
{λT (hs − Tsx̂) : λT W ≤ q}.
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LShaped Method

• So that by the subgradient inequality...

Q(x) ≥ Q(x̂) + uT (x− x̂)

• In other words Q(x̂) + uT (x− x̂) is a supportins hyperplane of
Q at x̂.

• This insight is used to build up an (increasingly better)
approximation of Q(x).
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LShaped Method

• Let the variable θ be our approximation to the function Q(x)...

• For any (feasible) value of x θ ≈ Q(x).

? Now how do we go about building such an approximation θ?

? Use the subgradient inequality!
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LShaped Method

• Imagine that we had L subgradients of Q(x)

• u1 ∈ ∂Q(x1), u2 ∈ ∂Q(x2), . . . ul ∈ ∂Q(xl)

• Then...

minimize
cT x + θ

subject to

Ax = b

θ ≥ ≥ Q(xl) + uT
l (x− xl) ∀l = 1, 2, . . . L
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Example: Our Favorite Random Linear Program

minimize
x1 + x2

subject to

ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1 ≥ 0

x2 ≥ 0

• ω = (ω1, ω2) ∈ Ω = {(1, 1/3), (5/2, 2/3), (4, 1)}
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Example Worked out...
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Next time

• More LShaped...

¦ Formal algorithm specification

¦ Correctness/Convergence

¦ Implementing in AMPL

¦ Infeasibility cuts

¦ Multicut methods

• Homework #2. And this time I MEAN it!

¦ Homework will be on the website Friday if you want to get
started over the weekend.
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