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Before We Begin

• HW#2

• $300 → $0

¦ http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Kall/bib/ka-wal-94.pdf

• Great source of recent papers in stochastic programming.

¦ http://www.speps.info

¦ Login: Password:
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Outline

• Small amount of review

• The LShaped algorithm

¦ Feasibility cuts

¦ Formal description

¦ Programming in AMPL

¦ “Proof” of correctness

¦ Multicut-method
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LShaped Method

min
x∈<n

+

{cT x +Q(x)|Ax = b}

• We know that a subgradient of Q(x) x̂ looks like...

u = −
∑

s∈S

psT
T
s λ∗s ∈ ∂Q(x̂),

• where λ∗ is an optimal dual solution to the recourse problem in
scenario s:

λ∗s = arg max
λ
{λT (hs − Tsx̂) : λT W ≤ q}.
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LShaped Method

• So that by the subgradient inequality...

Q(x) ≥ Q(x̂) + uT (x− x̂)

• In other words Q(x̂) + uT (x− x̂) is a supporting hyperplane of
Q at x̂.

• This insight is used to build up an (increasingly better)
approximation of Q(x).
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LShaped Method

• Imagine that we had L subgradients of Q(x)

• u1 ∈ ∂Q(x1), u2 ∈ ∂Q(x2), . . . ul ∈ ∂Q(xl)

• Then...

minimize
cT x + θ

subject to

Ax = b

θ ≥ Q(xl) + uT
l (x− xl) ∀l = 1, 2, . . . L
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Good Ol’ Farkas

• What if for some realization ω̂, we cannot solve the LP
necessary to evaluate Q(x̂)?

¦ Then our problem does not have complete recourse or
relatively complete recourse

Q(x̂, ω̂) = min
y∈<p

+

{qT y : Wy = h(ω̂)− T (ω̂)x̂} = ∞

• By our favorite Theorem of the Alternative...

• {y ∈ <p
+|Wy = h− T x̂} = ∅

⇒ ∃σ ∈ <m such that WT σ ≤ 0 and (h− T x̂)T σ > 0.
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Feasibility Cuts

• But for any feasible x, we know that there is at least one y ≥ 0
such that Wy = h− Tx.

• Combining this with our Farkas knowledge gives...

¦ σT (h− Tx) = σT Wy ≤ 0

– (σT W ≤ 0, y ≥ 0).

• This inequality σT h ≤ σT Tx must hold for all feasible x.

• It doesn’t hold for our current iterate x̂.

¦ Remember Farkas: (h− T x̂)T σ > 0
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Feasibility Cuts

• So if we just knew the values for σ, we would be able to add the
inequality σT (h(ω̂)− T (ω̂)x) ≤ 0 to our “master problem”, and
we would be assured of never getting this infeasible x̂ again.

• Where do we get σ?

¦ When the (primal) simplex method tells you that the
problem is infeasible, then (if the dual is feasible), the dual
is unbounded.

¦ An LP is unbounded if there is some feasible direction (or
“ray”) that is improving. This “improving” ray is the σ we
are looking for.

¦ Most LP solvers will return this ray if asked.
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Don’t Believe Me

LP’s (to justify previous)
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LShaped Method – Step 0

• With θ0 a lower bound for Q(x) =
∑

s∈S psQ(x, ω),

• Let B0 = {<+
n × {θ}|Ax = b}

• Let B1 = {<+
n × {θ}|θ ≥ θ0}

February 19, 2003 Stochastic Programming – Lecture 11 Slide 11



LShaped Method – Step 1

• Solve the master problem:

min{cT x + θ|(x, θ) ∈ B0 ∩ B1}

• yielding a solution (x̂, θ̂).
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Lshaped Method – Step 2

• Evaluate Q(x̂) =
∑

s∈S psQ(x̂, ωs).

• If Q(x̂) = ∞,

¦ There is some ω̂ such that Q(x̂, ω̂) = ∞
• Add a feasibility cut:

¦ B1 = B1 ∩ {(x, θ)|σT (h(ω̂)− T (ω̂)x) ≤ 0}
• Go to 1.
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Step 2 (cont.)

• If Q(x̂) < ∞, then you were able to solve all s scenario LP’s
(with corresponding dual optimal solutions λ∗s), and you get a
subgradient:

u = −
∑

s∈S

psλ
∗
sTs ∈ ∂Q(x̂)

• If Q(x̂) ≤ θ̂.

¦ Stop, x̂ is an optimal solution.

¦ (Our approximation is exact and minimized).

• Otherwise,

¦ B1 = B1 ∩ {(x, θ) : θ ≥ Q(x̂) + uT (x− x̂)}.
• Go to 1.
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Programming in AMPL

minimize
x1 + x2

subject to

ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1 ≥ 0

x2 ≥ 0
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Why One θ?

• A key idea in the LShaped method is to underestimate Q(x) by
an auxiliary variable θ.

• We get the underestimate by the subgradient inequality.

• Q(x) =
∑

s∈S psQ(x, ωs)

• For any scenario s ∈ S, −TT
s λ∗s ∈ ∂Q(x, ωs), and some “fancy”

convex analysis can show that

−
∑

s∈S

psT
T
s λ∗s ∈ ∂Q(x)

⇒ We can equally well approximate (or underestimate) each
Q(x, ωs) by the auxilary variable(s) θs, s ∈ S.
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Multicut-LShaped Method – Step 0

• With θ0
s a lower bound for Q(x, ωs),

• Let B0 = {<+
n × {θ1, θ2, . . . , θ|S|}|Ax = b}

• Let B1 = {<+
n × {θ1, θ2, . . . , θ|S|}|θs ≥ θ0

s ∀s ∈ S}
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Multicut-LShaped Method – Step 1

• Solve the master problem:

min{cT x +
∑

s∈S

psθs|(x, θ1, θ2, . . . θ|S|) ∈ B0 ∩ B1}

• yielding a solution (x̂, θ̂1, θ̂2, . . . , θ̂|S|).
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Lshaped Method – Step 2

• Evaluate Q(x̂) =
∑

s∈S psQ(x̂, ωs).

• If Q(x̂) = ∞, which means that there is some ω̂ such that
Q(x̂, ω̂) = ∞, we add a feasibility cut:

¦ B1 = B1 ∩ {(x, θ)|σT (h(ω̂)− T (ω̂)x) ≤ 0}
¦ (Note that the inequality has no terms in θs – it is the same

inequality as the LShaped method

• Go to 1.
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Step 2 (cont.)

• If Q(x̂) < ∞, then you were able to solve all s scenario LP’s
(with corresponding dual optimal solution λ∗s), and you get
subgradients:

u = −TT
s λ∗s ∈ ∂Q(x̂, ω)

• If Q(x̂, ωs) ≤ θs∀s ∈ S, Stop. x̂ is optimal.

• If Q(x̂, ωs) > θs

¦ B1 = B1 ∩ {(x, θ1, θ2, . . . θ|S|) : θs ≥ Q(x̂, ωs) + uT (x− x̂).

• Go to 1.
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A Whole Spectrum

• So far we have given an algorithms that give one cut per
master iteration and |S| cuts (potentially) per master iteration.
We can do anything inbetween...

• Partition the scenarios into C “clusters” S1, S2, . . .SC .

Q[Sk](x) =
∑

s∈Sk

psQ(x, ωs)
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The “Chunked” multicut method

Q(x) =
C∑

k=1

Q[Sk](x).

η =
∑

s∈Sk

psT
T
s λ∗s ∈ ∂Q[Sk](x)

• We can do the same thing, just approximating Q[Sk](x) by the
subgradient inequalities.
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Next time

• More LShaped...

¦ Correctness/Convergence

¦ Bunching

• Regularizing the LShaped method

• Parallelizing the LShaped method

• Hand out a couple papers, and then that’s it on LShaped
for now.
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