IE 495 - Lecture 11

The LShaped Method

Prof. Jeff Linderoth

February 19, 2003

Before We Begin

- HW\#2
- $\$ 300 \rightarrow \$ 0$
\diamond http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Kall/bib/ka-wal-94.pdf
- Great source of recent papers in stochastic programming.
\diamond http://www.speps.info
\diamond Login:
Password:

Outline

- Small amount of review
- The LShaped algorithm
\diamond Feasibility cuts
\diamond Formal description
\diamond Programming in AMPL
\diamond "Proof" of correctness
\diamond Multicut-method

LShaped Method

$$
\min _{x \in \Re_{+}^{n}}\left\{c^{T} x+\mathcal{Q}(x) \mid A x=b\right\}
$$

- We know that a subgradient of $\mathcal{Q}(x) \hat{x}$ looks like...

$$
u=-\sum_{s \in S} p_{s} T_{s}^{T} \lambda_{s}^{*} \in \partial \mathcal{Q}(\hat{x}),
$$

- where λ^{*} is an optimal dual solution to the recourse problem in scenario s :

$$
\lambda_{s}^{*}=\arg \max _{\lambda}\left\{\lambda^{T}\left(h_{s}-T_{s} \hat{x}\right): \lambda^{T} W \leq q\right\} .
$$

LShaped Method

- So that by the subgradient inequality...

$$
\mathcal{Q}(x) \geq \mathcal{Q}(\hat{x})+u^{T}(x-\hat{x})
$$

- In other words $\mathcal{Q}(\hat{x})+u^{T}(x-\hat{x})$ is a supporting hyperplane of \mathcal{Q} at \hat{x}.
- This insight is used to build up an (increasingly better) approximation of $\mathcal{Q}(x)$.

LShaped Method

- Imagine that we had L subgradients of $Q(x)$
- $u_{1} \in \partial \mathcal{Q}\left(x_{1}\right), u_{2} \in \partial \mathcal{Q}\left(x_{2}\right), \ldots u_{l} \in \partial \mathcal{Q}\left(x_{l}\right)$
- Then...
minimize

$$
c^{T} x+\theta
$$

subject to

$$
\begin{aligned}
A x & =b \\
\theta & \geq \mathcal{Q}\left(x_{l}\right)+u_{l}^{T}\left(x-x_{l}\right) \quad \forall l=1,2, \ldots L
\end{aligned}
$$

Good Ol' Farkas

- What if for some realization $\hat{\omega}$, we cannot solve the LP necessary to evaluate $\mathcal{Q}(\hat{x})$?
\diamond Then our problem does not have complete recourse or relatively complete recourse

$$
Q(\hat{x}, \hat{\omega})=\min _{y \in \Re_{+}^{p}}\left\{q^{T} y: W y=h(\hat{\omega})-T(\hat{\omega}) \hat{x}\right\}=\infty
$$

- By our favorite Theorem of the Alternative...
- $\left\{y \in \Re_{+}^{p} \mid W y=h-T \hat{x}\right\}=\emptyset$
$\Rightarrow \exists \sigma \in \Re^{m}$ such that $W^{T} \sigma \leq 0$ and $(h-T \hat{x})^{T} \sigma>0$.

Feasibility Cuts

- But for any feasible x, we know that there is at least one $y \geq 0$ such that $W y=h-T x$.
- Combining this with our Farkas knowledge gives...

$$
\begin{aligned}
\diamond & \sigma^{T}(h-T x)=\sigma^{T} W y \leq 0 \\
& -\left(\sigma^{T} W \leq 0, y \geq 0\right) .
\end{aligned}
$$

- This inequality $\sigma^{T} h \leq \sigma^{T} T x$ must hold for all feasible x.
- It doesn't hold for our current iterate \hat{x}.
\diamond Remember Farkas: $(h-T \hat{x})^{T} \sigma>0$

Feasibility Cuts

- So if we just knew the values for σ, we would be able to add the inequality $\sigma^{T}(h(\hat{\omega})-T(\hat{\omega}) x) \leq 0$ to our "master problem", and we would be assured of never getting this infeasible \hat{x} again.
- Where do we get σ ?
\diamond When the (primal) simplex method tells you that the problem is infeasible, then (if the dual is feasible), the dual is unbounded.
\diamond An LP is unbounded if there is some feasible direction (or "ray") that is improving. This "improving" ray is the σ we are looking for.
\diamond Most LP solvers will return this ray if asked.

Don't Believe Me

LP's (to justify previous)

LShaped Method - Step 0

- With θ_{0} a lower bound for $\mathcal{Q}(x)=\sum_{s \in S} p_{s} Q(x, \omega)$,
- Let $\mathcal{B}_{0}=\left\{\Re_{n}^{+} \times\{\theta\} \mid A x=b\right\}$
- Let $\mathcal{B}_{1}=\left\{\Re_{n}^{+} \times\{\theta\} \mid \theta \geq \theta_{0}\right\}$

LShaped Method - Step 1

- Solve the master problem:

$$
\min \left\{c^{T} x+\theta \mid(x, \theta) \in \mathcal{B}_{0} \cap \mathcal{B}_{1}\right\}
$$

- yielding a solution $(\hat{x}, \hat{\theta})$.

Lshaped Method - Step 2

- Evaluate $\mathcal{Q}(\hat{x})=\sum_{s \in S} p_{s} Q\left(\hat{x}, \omega_{s}\right)$.
- If $\mathcal{Q}(\hat{x})=\infty$,
\diamond There is some $\hat{\omega}$ such that $Q(\hat{x}, \hat{\omega})=\infty$
- Add a feasibility cut:
$\diamond \mathcal{B}_{1}=\mathcal{B}_{1} \cap\left\{(x, \theta) \mid \sigma^{T}(h(\hat{\omega})-T(\hat{\omega}) x) \leq 0\right\}$
- Go to 1 .

Step 2 (cont.)

- If $\mathcal{Q}(\hat{x})<\infty$, then you were able to solve all s scenario LP's (with corresponding dual optimal solutions λ_{s}^{*}), and you get a subgradient:

$$
u=-\sum_{s \in S} p_{s} \lambda_{s}^{*} T_{s} \in \partial \mathcal{Q}(\hat{x})
$$

- If $\mathcal{Q}(\hat{x}) \leq \hat{\theta}$.
\diamond Stop, \hat{x} is an optimal solution.
\diamond (Our approximation is exact and minimized).
- Otherwise,
$\diamond \mathcal{B}_{1}=\mathcal{B}_{1} \cap\left\{(x, \theta): \theta \geq \mathcal{Q}(\hat{x})+u^{T}(x-\hat{x})\right\}$.
- Go to 1 .

Programming in AMPL

minimize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
\omega_{1} x_{1}+x_{2} & \geq 7 \\
\omega_{2} x_{1}+x_{2} & \geq 4 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Why One θ ?

- A key idea in the LShaped method is to underestimate $\mathcal{Q}(x)$ by an auxiliary variable θ.
- We get the underestimate by the subgradient inequality.
- $\mathcal{Q}(x)=\sum_{s \in S} p_{s} Q\left(x, \omega_{s}\right)$
- For any scenario $s \in S,-T_{s}^{T} \lambda_{s}^{*} \in \partial Q\left(x, \omega_{s}\right)$, and some "fancy" convex analysis can show that

$$
-\sum_{s \in S} p_{s} T_{s}^{T} \lambda_{s}^{*} \in \partial \mathcal{Q}(x)
$$

\Rightarrow We can equally well approximate (or underestimate) each $Q\left(x, \omega_{s}\right)$ by the auxilary variable(s) $\theta_{s}, s \in S$.

Multicut-LShaped Method - Step 0

- With θ_{s}^{0} a lower bound for $Q\left(x, \omega_{s}\right)$,
- Let $\mathcal{B}_{0}=\left\{\Re_{n}^{+} \times\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{|S|}\right\} \mid A x=b\right\}$
- Let $\mathcal{B}_{1}=\left\{\Re_{n}^{+} \times\left\{\theta 1, \theta_{2}, \ldots, \theta_{|S|}\right\} \mid \theta_{s} \geq \theta_{s}^{0} \quad \forall s \in S\right\}$

Multicut-LShaped Method - Step 1

- Solve the master problem:

$$
\min \left\{c^{T} x+\sum_{s \in S} p_{s} \theta_{s} \mid\left(x, \theta_{1}, \theta_{2}, \ldots \theta_{|S|}\right) \in \mathcal{B}_{0} \cap \mathcal{B}_{1}\right\}
$$

- yielding a solution $\left(\hat{x}, \hat{\theta}_{1}, \hat{\theta}_{2}, \ldots, \hat{\theta}_{|S|}\right)$.

Lshaped Method - Step 2

- Evaluate $\mathcal{Q}(\hat{x})=\sum_{s \in S} p_{s} Q\left(\hat{x}, \omega_{s}\right)$.
- If $\mathcal{Q}(\hat{x})=\infty$, which means that there is some $\hat{\omega}$ such that $Q(\hat{x}, \hat{\omega})=\infty$, we add a feasibility cut:
$\diamond \mathcal{B}_{1}=\mathcal{B}_{1} \cap\left\{(x, \theta) \mid \sigma^{T}(h(\hat{\omega})-T(\hat{\omega}) x) \leq 0\right\}$
\diamond (Note that the inequality has no terms in $\theta_{s}-$ it is the same inequality as the LShaped method
- Go to 1 .

Step 2 (cont.)

- If $\mathcal{Q}(\hat{x})<\infty$, then you were able to solve all s scenario LP's (with corresponding dual optimal solution λ_{s}^{*}), and you get subgradients:

$$
u=-T_{s}^{T} \lambda_{s}^{*} \in \partial Q(\hat{x}, \omega)
$$

- If $Q\left(\hat{x}, \omega_{s}\right) \leq \theta_{s} \forall s \in S$, Stop. \hat{x} is optimal.
- If $Q\left(\hat{x}, \omega_{s}\right)>\theta_{s}$
$\diamond \mathcal{B}_{1}=\mathcal{B}_{1} \cap\left\{\left(x, \theta_{1}, \theta_{2}, \ldots \theta_{|S|}\right): \theta_{s} \geq Q\left(\hat{x}, \omega_{s}\right)+u^{T}(x-\hat{x})\right.$.
- Go to 1 .

A Whole Spectrum

- So far we have given an algorithms that give one cut per master iteration and $|S|$ cuts (potentially) per master iteration. We can do anything inbetween...
- Partition the scenarios into C "clusters" $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots \mathcal{S}_{C}$.

$$
\mathcal{Q}_{\left[\mathcal{S}_{k}\right]}(x)=\sum_{s \in S_{k}} p_{s} Q\left(x, \omega_{s}\right)
$$

The "Chunked" multicut method

$$
\begin{gathered}
\mathcal{Q}(x)=\sum_{k=1}^{C} \mathcal{Q}_{\left[\mathcal{S}_{k}\right]}(x) . \\
\eta=\sum_{s \in S_{k}} p_{s} T_{s}^{T} \lambda_{s}^{*} \in \partial \mathcal{Q}_{\left[\mathcal{S}_{k}\right]}(x)
\end{gathered}
$$

- We can do the same thing, just approximating $\mathcal{Q}_{\left[\mathcal{S}_{k}\right]}(x)$ by the subgradient inequalities.

Next time

- More LShaped...
\diamond Correctness/Convergence
\diamond Bunching
- Regularizing the LShaped method
- Parallelizing the LShaped method
- Hand out a couple papers, and then that's it on LShaped for now.

