

The LShaped Method

Prof. Jeff Linderoth

February 19, 2003

- HW#2
- $\$300 \rightarrow \0

http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Kall/bib/ka-wal-94.pdf

- Great source of recent papers in stochastic programming.
 - http://www.speps.info
 - ♦ Login:

Password:

- Small amount of review
- The LShaped algorithm
 - $\diamond\,$ Feasibility cuts
 - \diamond Formal description
 - ♦ Programming in AMPL
 - ♦ "Proof" of correctness
 - \diamond Multicut-method

LShaped Method

$$\min_{x \in \Re^n_+} \{ c^T x + \mathcal{Q}(x) | Ax = b \}$$

• We know that a subgradient of $\mathcal{Q}(x)$ \hat{x} looks like...

$$u = -\sum_{s \in S} p_s T_s^T \lambda_s^* \in \partial \mathcal{Q}(\hat{x}),$$

• where λ^* is an optimal dual solution to the recourse problem in scenario s:

$$\lambda_s^* = \arg \max_{\lambda} \{ \lambda^T (h_s - T_s \hat{x}) : \lambda^T W \le q \}.$$

• So that by the subgradient inequality...

$$\mathcal{Q}(x) \ge \mathcal{Q}(\hat{x}) + u^T (x - \hat{x})$$

- In other words $\mathcal{Q}(\hat{x}) + u^T(x \hat{x})$ is a supporting hyperplane of \mathcal{Q} at \hat{x} .
- This insight is used to build up an (increasingly better) approximation of $\mathcal{Q}(x)$.

LShaped Method

- Imagine that we had L subgradients of Q(x)
- $u_1 \in \partial \mathcal{Q}(x_1), u_2 \in \partial \mathcal{Q}(x_2), \dots u_l \in \partial \mathcal{Q}(x_l)$
- Then...

minimize

$$c^T x + \theta$$

subject to

$$Ax = b$$

$$\theta \geq Q(x_l) + u_l^T (x - x_l) \qquad \forall l = 1, 2, \dots L$$

Good Ol' Farkas

- What if for some realization $\hat{\omega}$, we cannot solve the LP necessary to evaluate $\mathcal{Q}(\hat{x})$?
 - ♦ Then our problem does *not* have complete recourse or relatively complete recourse

$$Q(\hat{x},\hat{\omega}) = \min_{y \in \Re^p_+} \{q^T y : Wy = h(\hat{\omega}) - T(\hat{\omega})\hat{x}\} = \infty$$

• By our favorite Theorem of the Alternative...

•
$$\{y \in \Re^p_+ | Wy = h - T\hat{x}\} = \emptyset$$

 $\Rightarrow \exists \sigma \in \Re^m \text{ such that } W^T \sigma \leq 0 \text{ and } (h - T\hat{x})^T \sigma > 0.$

Feasibility Cuts

- But for any *feasible* x, we know that there is at least one $y \ge 0$ such that Wy = h - Tx.
- Combining this with our Farkas knowledge gives...

$$\circ \ \sigma^T (h - Tx) = \sigma^T Wy \le 0$$
$$- (\sigma^T W \le 0, y \ge 0).$$

- This inequality $\sigma^T h \leq \sigma^T T x$ must hold for all feasible x.
- It doesn't hold for our current iterate \hat{x} .
 - \diamond Remember Farkas: $(h-T\hat{x})^T\sigma>0$

Feasibility Cuts

- So if we just knew the values for σ , we would be able to add the inequality $\sigma^T(h(\hat{\omega}) T(\hat{\omega})x) \leq 0$ to our "master problem", and we would be assured of never getting this infeasible \hat{x} again.
- Where do we get σ ?
 - ♦ When the (primal) simplex method tells you that the problem is infeasible, then (if the dual is feasible), the dual is unbounded.
 - ♦ An LP is unbounded if there is some feasible direction (or "ray") that is improving. This "improving" ray is the σ we are looking for.
 - \diamond Most LP solvers will return this ray if asked.

LP's (to justify previous)

LShaped Method – Step 0

- With θ_0 a lower bound for $\mathcal{Q}(x) = \sum_{s \in S} p_s Q(x, \omega)$,
- Let $\mathcal{B}_0 = \{\Re_n^+ \times \{\theta\} | Ax = b\}$
- Let $\mathcal{B}_1 = \{\Re_n^+ \times \{\theta\} | \theta \ge \theta_0\}$

LShaped Method – Step 1

• Solve the *master problem*:

$$\min\{c^T x + \theta | (x, \theta) \in \mathcal{B}_0 \cap \mathcal{B}_1\}$$

• yielding a solution $(\hat{x}, \hat{\theta})$.

Lshaped Method – Step 2

- Evaluate $\mathcal{Q}(\hat{x}) = \sum_{s \in S} p_s Q(\hat{x}, \omega_s).$
- If $\mathcal{Q}(\hat{x}) = \infty$,

♦ There is some $\hat{\omega}$ such that $Q(\hat{x}, \hat{\omega}) = \infty$

- Add a *feasibility cut*:
 - $\diamond \ \mathcal{B}_1 = \mathcal{B}_1 \cap \{(x,\theta) | \sigma^T(h(\hat{\omega}) T(\hat{\omega})x) \le 0\}$
- Go to 1.

Step 2 (cont.)

If Q(x̂) < ∞, then you were able to solve all s scenario LP's (with corresponding dual optimal solutions λ^{*}_s), and you get a subgradient:

$$u = -\sum_{s \in S} p_s \lambda_s^* T_s \in \partial \mathcal{Q}(\hat{x})$$

- If $\mathcal{Q}(\hat{x}) \leq \hat{\theta}$.
 - ♦ Stop, \hat{x} is an optimal solution.

 \diamond (Our approximation is exact and minimized).

• Otherwise,

$$\diamond \ \mathcal{B}_1 = \mathcal{B}_1 \cap \{(x,\theta) : \theta \ge \mathcal{Q}(\hat{x}) + u^T (x - \hat{x})\}.$$

• Go to 1.

Programming in AMPL

minimize

$$x_1 + x_2$$

subject to

$$\begin{array}{rcl}
\omega_1 x_1 + x_2 &\geq & 7\\
\omega_2 x_1 + x_2 &\geq & 4\\
& x_1 &\geq & 0\\
& x_2 &\geq & 0
\end{array}$$

- A key idea in the LShaped method is to underestimate Q(x) by an auxiliary variable θ .
- We get the underestimate by the subgradient inequality.

•
$$\mathcal{Q}(x) = \sum_{s \in S} p_s Q(x, \omega_s)$$

• For any scenario $s \in S$, $-T_s^T \lambda_s^* \in \partial Q(x, \omega_s)$, and some "fancy" convex analysis can show that

$$-\sum_{s\in S} p_s T_s^T \lambda_s^* \in \partial \mathcal{Q}(x)$$

⇒ We can equally well approximate (or underestimate) each $Q(x, \omega_s)$ by the auxiliary variable(s) $\theta_s, s \in S$.

Multicut-LShaped Method-Step 0

- With θ_s^0 a lower bound for $Q(x, \omega_s)$,
- Let $\mathcal{B}_0 = \{\Re_n^+ \times \{\theta_1, \theta_2, \dots, \theta_{|S|}\} | Ax = b\}$
- Let $\mathcal{B}_1 = \{\Re_n^+ \times \{\theta_1, \theta_2, \dots, \theta_{|S|}\} | \theta_s \ge \theta_s^0 \quad \forall s \in S\}$

Multicut-LShaped Method – Step 1

• Solve the *master problem*:

$$\min\{c^T x + \sum_{s \in S} p_s \theta_s | (x, \theta_1, \theta_2, \dots, \theta_{|S|}) \in \mathcal{B}_0 \cap \mathcal{B}_1\}$$

• yielding a solution $(\hat{x}, \hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_{|S|}).$

Lshaped Method – Step 2

- Evaluate $\mathcal{Q}(\hat{x}) = \sum_{s \in S} p_s Q(\hat{x}, \omega_s).$
- If $\mathcal{Q}(\hat{x}) = \infty$, which means that there is some $\hat{\omega}$ such that $Q(\hat{x}, \hat{\omega}) = \infty$, we add a *feasibility cut*:

$$\diamond \ \mathcal{B}_1 = \mathcal{B}_1 \cap \{(x,\theta) | \sigma^T(h(\hat{\omega}) - T(\hat{\omega})x) \le 0\}$$

- ♦ (Note that the inequality has no terms in θ_s it is the same inequality as the LShaped method
- Go to 1.



• If $\mathcal{Q}(\hat{x}) < \infty$, then you were able to solve all *s* scenario LP's (with corresponding dual optimal solution λ_s^*), and you get subgradients:

$$u = -T_s^T \lambda_s^* \in \partial Q(\hat{x}, \omega)$$

- If $Q(\hat{x}, \omega_s) \leq \theta_s \forall s \in S$, Stop. \hat{x} is optimal.
- If Q(x̂, ω_s) > θ_s
 𝔅 𝔅₁ = 𝔅₁ ∩ {(x, θ₁, θ₂, ... θ_{|S|}) : θ_s ≥ Q(x̂, ω_s) + u^T(x − x̂).
 Go to 1.

A Whole Spectrum

- So far we have given an algorithms that give one cut per master iteration and |S| cuts (potentially) per master iteration.
 We can do anything inbetween...
- Partition the scenarios into C "clusters" $S_1, S_2, \ldots S_C$.

$$\mathcal{Q}_{[\mathcal{S}_k]}(x) = \sum_{s \in S_k} p_s Q(x, \omega_s)$$

The "Chunked" multicut method

$$\mathcal{Q}(x) = \sum_{k=1}^{C} \mathcal{Q}_{[\mathcal{S}_k]}(x).$$

$$\eta = \sum_{s \in S_k} p_s T_s^T \lambda_s^* \in \partial \mathcal{Q}_{[\mathcal{S}_k]}(x)$$

• We can do the same thing, just approximating $\mathcal{Q}_{[S_k]}(x)$ by the subgradient inequalities.

Next time

- More LShaped...
 - ♦ Correctness/Convergence
 - ♦ Bunching
 - Regularizing the LShaped method
 - Parallelizing the LShaped method
 - Hand out a couple papers, and then that's it on LShaped for now.