
IE 495 – Lecture 12

Advanced Features in The LShaped Method
“izing” the LShaped Method

Prof. Jeff Linderoth

February 24, 2003

February 24, 2003 Stochastic Programming – Lecture 12 Slide 1

Outline

• Review

• The LShaped algorithm

¦ Regular—izing

¦ Bunching and Trickling Down. Similar—izing

¦ Parallel—izing

February 24, 2003 Stochastic Programming – Lecture 12 Slide 2

Please Don’t Call On Me!

• True or False: The LShaped method works only on problems
with complete or relatively complete recourse.

• How many cuts might be added during a “major” iteration of
the LShaped method

• How many cuts might be added during a “major” iteration of
the multicut-LShaped method

February 24, 2003 Stochastic Programming – Lecture 12 Slide 3

Multicut Review

• A key idea in the LShaped method is to underestimate Q(x) by
an auxiliary variable θ.

• We get the underestimate by the subgradient inequality.

• Q(x) =
∑

s∈S psQ(x, ωs)

• For any scenario s ∈ S, −TT
s λ∗s ∈ ∂Q(x, ωs), and some “fancy”

convex analysis can show that

−
∑

s∈S

psT
T
s λ∗s ∈ ∂Q(x)

⇒ We can equally well approximate (or underestimate) each
Q(x, ωs) by the auxilary variable(s) θs, s ∈ S.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 4

A Whole Spectrum

• LShaped—One cut per master iteration

• Multicut—|S| cuts per master iteration

• We can do anything in between...

• Partition the scenarios into C “clusters” S1, S2, . . .SC .

Q[Sk](x) =
∑

s∈Sk

psQ(x, ωs)

February 24, 2003 Stochastic Programming – Lecture 12 Slide 5

The “Chunked” multicut method

Q(x) =
C∑

k=1

Q[Sk](x).

η =
∑

s∈Sk

psT
T
s λ∗s ∈ ∂Q[Sk](x)

• We can do the same thing, just approximating Q[Sk](x) by the
subgradient inequalities.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 6

Chunked-Multicut-LShaped Method – Step 0

• With θ0
k a lower bound for Q[Sk](x).

• Let B0 = {<+
n × {θ1, θ2, . . . , θC}|Ax = b}

• Let B1 = {<+
n × {θ1, θ2, . . . , θC}|θk ≥ θ0

k ∀k = 1, 2, . . . C}

February 24, 2003 Stochastic Programming – Lecture 12 Slide 7

Multicut-LShaped Method – Step 1

• Solve the master problem:

min{cT x +
C∑

k=1

θk|(x, θ1, θ2, . . . θC) ∈ B0 ∩ B1}

• yielding a solution (x̂, θ̂1, θ̂2, . . . , θ̂C).

February 24, 2003 Stochastic Programming – Lecture 12 Slide 8

Lshaped Method – Step 2

• Evaluate Q(x̂) =
∑

s∈S psQ(x̂, ωs).

• If Q(x̂) = ∞, which means that there is some ω̂ such that
Q(x̂, ω̂) = ∞, we add a feasibility cut:

¦ B1 = B1 ∩ {(x, θ)|σT (h(ω̂)− T (ω̂)x) ≤ 0}
¦ (Note that the inequality has no terms in θs – it is the same

inequality as the LShaped method

• Go to 1.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 9

Step 2 (cont.)

• If Q(x̂) < ∞, then you were able to solve all s scenario LP’s
(with corresponding dual optimal solution λ∗s), and you get
subgradients for each of the chunks...

uk =
∑

s∈Sk

psT
T
s λ∗s ∈ ∂Q[Sk](x)

• If Q[Sk](x̂) ≤ θk∀k = 1, 2, . . . C, Stop. x̂ is optimal.

• If Q[Sk](x̂) > θk

¦ B1 = B1 ∩ {(x, θ1, θ2, . . . θC) : θk ≥ Q[Sk](x̂) + uT
k (x− x̂)}.

• Go to 1.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 10

A Dumb Algorithm?

min
x∈<n

+

{cT x +Q(x)|Ax = b}

• What happens if you start the (multi-cut) LShaped procedure
with the optimal solution x∗?

? Are you done?

February 24, 2003 Stochastic Programming – Lecture 12 Slide 11

A Trust Region Method

• The LShaped method suffers from “stability” problems,

¦ Especially in early iterations when a “good enough” model
of Q(x) is not known

¦ Especially bad if started from a good guess at the solution

• Borrow the trust region concept from NLP

¦ At iteration k, impose constraints ‖x− xk‖∞ ≤ ∆k

• ∆k large ⇒ like LShaped

• ∆k small ⇒ “stay very close”.

• This is often called Regularizing the method.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 12

Another Idea

• Alternatively (dual-ly) “penalize” the length of the step you
will take.

¦ min cT x +
∑

j∈C θj + 1/(2ρ)‖x− xk‖2
¦ ρ large ⇒ like LShaped

¦ ρ small ⇒ “stay very close”.

• This is known as the regularized decomposition method.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 13

Trust Region Effect

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25

S
te

p
S

iz
e

Iteration

February 24, 2003 Stochastic Programming – Lecture 12 Slide 14

Trust Region Effect

1.2e+07

1.3e+07

1.4e+07

1.5e+07

1.6e+07

1.7e+07

1.8e+07

1.9e+07

2e+07

0 5 10 15 20 25

V
al

ue

Iteration

LShaped function value
LShaped master value

Trust region function value
Trust region master value

February 24, 2003 Stochastic Programming – Lecture 12 Slide 15

Regularizing

• Penalized Step Length Approach:

¦ A. Ruszczyński, “A Regularized Decomposition for
Minimizing a Sum of Polyhedral Functions”, Mathematical
Programming, 35, pp. 309-333, 1986.

• ‖ · ‖∞ Approach:

¦ J. T. Linderoth and S. J. Wright, “Implementing a
Decomposition Algorithm for Stochastic Programming on a
Computational Grid,” Computational Optimization and
Applications, special issue on Stochastic Programming,
24:207-250, 2003.

• This “seminal” :-) paper is available on my web site.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 16

Stop Thief!

“Lesser artists borrow, great artists steal.”

– Igor Stravinsky

• Stabilizing Bender’s decomposition is hardly a new idea

¦ Marsten, Hogan, Blankenship (’75)

¦ Lemaréchal (’75, . . .)

¦ Kiwiel (’83, . . .)

¦ Ruszczyński (’86)

¦ Neame, Boland, and Ralph (’98)

February 24, 2003 Stochastic Programming – Lecture 12 Slide 17

A Little More Detail...

• Let m(x) be the “model” function that you get my solving the
master problem.

• Let a be your current “incumbent” solution

• Multicut-LShaped

¦ m(x) = min{cT x +
∑C

k=1 θk|(x, θ1, θ2, . . . θC) ∈ B0 ∩ B1}
• Trust-region

¦ m(x) = min{cT x +
∑C

k=1 θk|(x, θ1, θ2, . . . θC) ∈
B0 ∩ B1, ‖x− a‖∞ ≤ ∆l}

• Regularized-Decomposition.

¦ m(x) = min{cT x +
∑C

k=1 θk + 1/(2ρl)‖x−
a‖22|(x, θ1, θ2, . . . θC) ∈ B0 ∩ B1}

February 24, 2003 Stochastic Programming – Lecture 12 Slide 18

What Can Happen?— Great Model

• Suppose you solve the master problem, getting a solution x.
What can happen?

• Q[Sk](x) = m(k)

• In this case, if x = a, you are done.

• Otherwise, Let a = x and do another iteration.

¦ Maybe increase ∆ or ρ

February 24, 2003 Stochastic Programming – Lecture 12 Slide 19

What Can Happen?— Good Enough Model

• Q[Sk](x) > m(k). (Your “model” of the function was not
entirely accurate).

• How good was it? Compare the true decrease to the predicted
decrease.

σ =
Q[Sk](a)−Q[Sk](x)
Q[Sk](a)−m(x)

• If σ > µ (Say µ = 0.8). Our model was “good enough”. Let
a = x. Also add the cuts.

¦ Maybe decrease ∆ or ρ — Probably leave alone.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 20

What Can Happen—Bad Model

• If σ < µ,

¦ Our model was not good enough

¦ σ can even be < 0

• Just stay put a = a

• Add the “improved” model information gained from the
subgradient ineequalities, and continue.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 21

Bundle-Trust

• These ideas are known in the nondifferntiable optimization
community as “Bundle-Trust-Region” methods.

¦ Bundle — Build up a bundle of subgradients to better
approximate your function

¦ Trust region — Stay close (in a region you trust), until you
build up a good enough bundle to model your function
accurately

• Accept new iterate if it improves the objective by a “sufficient”
amount. Potentially increase ∆k. (Serious Step)

• Otherwise, improve the estimation of Q(xk), resolve master
problem, and potentially reduce ∆k (Null Step)

? These methods can be shown to converge, EVEN IF YOU
DELETE CUTS.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 22

Bunching

• A (if not the) major component of the work that must be done
in any of the methods we have learned is evaluating Q(x).

¦ We must solve |S| linear programs that differ only in their
right hand side.

¦ The dual LPs differ only the objective function.

¦ (Assuming – like we usually have – that the objective
function coefficients are deterministic).

λ∗s = arg max
λ
{λT (hs − Tsx̂) : λT W ≤ q}.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 23

Bunching

• Just to simplify notation a bit, let’s assume that we have a
collection of right hand sides R for which we must solve
∀r ∈ R:

max
λ
{λT r|λT W ≤ q}

? If λ is feasible for one r (one hs − Tsx̂), then it is feasible for all
hs − Tsx̂.

¦ (r only appears in the objective function)

February 24, 2003 Stochastic Programming – Lecture 12 Slide 24

Basic Bunching Idea

• Choose a RHS r̂ ∈ R.

• Solve the scenario subproblem, getting a basis Br̂.

• (Again) Br̂ is a dual feasible basis for all r ∈ R.

• If ∀ r ∈ R, B−1
r̂ r ≥ 0, then Br̂ is also an optimal basis for r

¦ λ∗r = qBr̂
B−1

r̂

• You don’t need to solve the LP.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 25

Simple Bunching

• Denote by T ⊆ R the set of right hand sides that you must
solve

• Denote by Uk the kth “bunch” of right hand sides.

1. Let T = R. Let k = 0

2. Choose a “representative” r ∈ T . If T = ∅, let b = k, be the
total number of bunches. Stop.

3. Solve maxλ{λT r|λT W ≤ q}, obtaining a basis Br, and optimal
dual solution λk.

4. Forall t ∈ T , check if B−1
r t ≥ 0. If so, Uk = Uk ∪ t. Let

T = T \ Uk.

5. Go To 2.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 26

Simple Bunching

• Let Uk be the scenario indices of the right-hand-sides in bunch
Uk.

• Subgradients:

η = (
b∑

k=1

λk)T
∑

s∈Uk

psTs

• Main idea to just exploit similarity to solve the LP’s faster (or
not at all). Use as appropriate for the particular algorithm.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 27

Trickling Down

• Key idea: Keep a tree of pivot elements, starting from a
“representative” basis B̂

Picture

• I don’t know if it’s worth it

• Definitely should use dual simplex to solve scenario LP’s.
Intelligent ordering of scenarios can help.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 28

Parallelizing

• The evaluation of Q(x) — solving the different LP’s, can be
done independently.

¦ If you have K computers, send them each one of K chunks,
and your evaluation of Q(x) will be completed K times
faster.

• Work

¦ One or more scenario chunks Sj1 , . . .SjC and point (x̂)

• Result

¦ A subgradient of each of the Q[Sk](x̂).

• How many chunks to send?

February 24, 2003 Stochastic Programming – Lecture 12 Slide 29

Contention

�� ������ ������ 	�	
 ���� � ����

�� �� ������ �� �� ���� �� � !" #$

Send me a Task

Here is a Task

• If task size is too small, the master is overwhelmed with
requests, reducing overall efficiency

• What else can impact the parallel efficiency?

– Solving the master problem. (This is why we should be able
to delete cuts).

February 24, 2003 Stochastic Programming – Lecture 12 Slide 30

Worker Usage

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 Id

le
 W

or
ke

rs

t (sec.)

February 24, 2003 Stochastic Programming – Lecture 12 Slide 31

Stamp Out Synchronicity!

• We start a new iteration only after all “chunks” have been
evaluated

¦ In a metacomputer, different processors act at different
speeds, so many may wait idle for the “slowpoke”

¦ Even worse, metacomputing tools can fail to inform the user
that their worker has failed!

¦ We can never efficiently use more than C−1 machines

? Asynchronous methods are preferred for traditional parallel com-
puting environments. They are nearly required for metacomput-
ing environments!

February 24, 2003 Stochastic Programming – Lecture 12 Slide 32

ATR – An Asynchronous Trust Region Method

• Keep a “basket” B of trial points for which we are
evaluating the objective function

• Make decision on whether or accept new iterate xk+1 after
entire Q(xk) is computed

• Convergence theory and cut deletion theory is similar to the
synchronous algorithm

• Populate the basket quickly by initially solving the master
problem after only α% of the scenario LPs have been solved

+ Greatly reduces the synchronicity requirements

– Might be doing some “unnecessary” work – the candidiate
points might be better if you waited for complete information
from the preceeding iterations

February 24, 2003 Stochastic Programming – Lecture 12 Slide 33

The World’s Largest LP

• Storm – A cargo flight scheduling problem (Mulvey and
Ruszczyński)

• We aim to solve an instance with 10,000,000 scenarios

• x ∈ <121, y(ωi) ∈ <1259

• The deterministic equivalent is of size

A ∈ <985,032,889×12,590,000,121

• Cuts/iteration 1024, # Chunks 1024, |B| = 4

• Started from an N = 20000 solution, ∆0 = 1

• CPLEX used to solve the master LP. Soplex used to solve
(most of) the worker LPs.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 34

The Super Storm Metacomputer

Number Type Location

184 Intel/Linux Argonne

254 Intel/Linux New Mexico

36 Intel/Linux NCSA

265 Intel/Linux Wisconsin

88 Intel/Solaris Wisconsin

239 Sun/Solaris Wisconsin

124 Intel/Linux Georgia Tech

90 Intel/Solaris Georgia Tech

13 Sun/Solaris Georgia Tech

9 Intel/Linux Columbia U.

10 Sun/Solaris Columbia U.

33 Intel/Linux Italy (INFN)

1345

February 24, 2003 Stochastic Programming – Lecture 12 Slide 35

TA-DA!!!!!

Wall clock time 31:53:37

CPU time 1.03 Years

Avg. # machines 433

Max # machines 556

Parallel Efficiency 67%

Master iterations 199

CPU Time solving the master problem 1:54:37

Maximum number of rows in master problem 39647

February 24, 2003 Stochastic Programming – Lecture 12 Slide 36

Number of Workers

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000 120000 140000

#w
or

ke
rs

Sec.

February 24, 2003 Stochastic Programming – Lecture 12 Slide 37

Next Time

• Bounds

• Algorithms Based on Bounds

? New Assignment. Due Monday.

• Prepare a one or two page description of their project.

¦ Background

¦ Technique

¦ Tools they will use

¦ Any assistance or additional background they need to
succesfully complete their project

¦ Desired Conclusion of the project

February 24, 2003 Stochastic Programming – Lecture 12 Slide 38

