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Outline I

e Review
¢ Regularlizing

¢ Bunching
e Introduction to Parallel Computing

e Using parallel computers to solve stochastic programs
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Review.

e Why is the LShaped Method Bad?
e Whatis|| - ||s?

e What is the basic idea behind “bunching™?
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Bundle-Trust .

e Bundle— Build up a bundle of subgradients to better approximate
your function

e Trust region— Stay close (in a region you trust), until you build up a
good enough bundle to model your function accurately

o Accept new iterate if it improves the objective by a “sufficient”
amount. Potentially increask,,. (Serious Step

o Otherwise, improve the estimation 6z"), resolve master
problem, and potentially reduc®;, (Null Step

* These methods can be shown to conveE)¢:-N IF YOU DELETE
CUTS
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Simple Bunching'

e Denote byZ C R the set of right hand sides that you must solve
e Denote byi/, the kth “bunch” of right hand sides.
1. Let7 =R. Letk =0

2. Choose a “representative™c 7. If 7 = (), letb = k, be the total
number of bunchesstop.

3. Solvemax,{\1r|\TW < ¢}, obtaining a basi®,, and optimal dual
solution ;.

4. Forallt € T, checkif Bt > 0. If so,U), = U, Ut. Let
T =T\ U,

5. GoTo?2.
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High Performance Computing'

e Bringing together many CPUs to
¢ Solve a problenfaster

o Solve abigger problem
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High Performance Computing Usej

e Computational Fluid Dynamics

¢ Climate Modeling
e Finite element and structure analysis
e Numerical solution of (O/P)DE’s
e Computational chemistry — chemical kinetics
e Computational biology — protein folding
e Nuclear physics
e Simulations and Monte Carlo Methods

e Optimization!
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Types of Parallel Computers — Shared I\/Iemora

e Shared Memory

Memory

e All processors share a common memory (connected by a bus).

e Processes share information by writing and retrieving items from
memory.

e Buzzwords:Multi-Threading openMP
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Types of Parallel Computers — Message PassiT

e Message Passing

e Processors connected by a “network”
e They pass messages by sending messages over the network

e Buzzwords:Sockets, MPI, PVM
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Message Passing Parallel Compute:'s

e Simple “network of workstations” is a message passing parallel
computer

o Buzzword:COTS
e Can use more advanced/dedicated hardware to network the computer
together

o Buzzword:Beowolf Cluster
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A Combination of the Two .

e The fastest computers in the world are combinations of these ideas
(as well as some other ideas likector processols

e What is the fastest computer in the world?

http:www.top500.0rg
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A New Paradigm—The Grid I

e People envision a “Computational Grid” much like the national
power grid
o Users can seamlessly draw computational power whenever they
need it

¢ Many resources can be brought together to solve very large
problems

o Gives application experts ths ability to solve problems of
unprecedented scope and complexity, or to study problems which
they otherwise would not.

e Grid computingused to be calleMetacomputing

o But now there is a “new” initiative that can be funded!
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Separated at Birth?'

e There are many ways in which the “Grid” computing | am talking
about today is different that the type of parallel (high performance)
computing Ted does
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Grid Computing # Parallel Computing I

e Dynamic
¢ Resources may come and go during the course of the computation

= Fault-Tolerance iseryimportant!

e Communicationally challenged
o Machines may be very far apart
= Slow communication channels between them

= We prefer CPU-intensive algorithms to data-intensive ones
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Grid Computing # Parallel Computing I

e Larger scale

o More resources are potentially available

e Heterogenous

o Different hardware, operating systems, and software.

e User access and security

¢ Who (and what) should be allowed to draw from the Grid

* Greed!

¢ Most people don’t want to contribute “their” machine to the
computational pool
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What is Condor? % g
B

e Manages collections of “distributively owned” workstations

o User need not have an account or access to the machine

¢ Workstation owner specifies conditions under which jobs are
allowed to run
o All jobs are scheduled and “fairly” allocated among the pool

e How does it do this?
¢ Scheduling/Matchmaking
¢ Jobs can be checkpointed and migrated

¢ Remote system calls provide the originating machines
environment
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Matchmaking I

MyType = Job

Owner = ferris

Cmd = cplex

HasCplex = TRUE
Memory > 64
Rank = KFlops
Arch = SUN4u

SOLARIS27

TargetType = Machine

Args = seymour.d10.mps

OpSys = SOLARIS26|

-»

MyType = Machine
TargetType = Job
Name = nova9
HasCplex = TRUE
Arch = SUN4u

OpSys = SOLARIS27

Memory = 256
KFlops = 53997

RebootedDaily = TRUE
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Checkpointing/Migration I

Professor’s :
- Professor Arrives

Machine
5min
.
5am 8am
Checkpoint
Server
Grad Student
Grad Student’s Arrives Grad Student
) Leaves
Machine l /
8:10am 12pm 5 min
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Remote System Callj % N
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Other Condor Features. &

e Pecking Order

o Users are assigned priorities based on the number of CPU cycles
they have recently used

e Flocking
¢ Condor jobs can negotiate to run in other Condor pools.

e Glide-in
¢ Globus (Grid computing toolkit from Argonne) provides a
“front-end” to many traditional supercomputing sites.

< Submit a Globus job which creates a temporary Condor pool on
the supercomputer, on which users jobs may run.
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e | know you all want want to use High-Performance and Grid
computing to solve your research problems
x There are resources campus!
o A small, but ever growing, Condor pool in the ISE Dept
o A 32 processor SMP machine (Origin 2000) on Campus
o A campus-wide Condor pool (containing the Origin 2000)

* A 128 processor Beowolf Clustére

e If you think that your research could benefit from more computing
resourcesPLEASE LET ME KNOW
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Parallel Stochastic Optimization'

e LOTS of people have done some parallelization of SP
o Itis an important problem — especially for financial applications
o Itis relatively easy to parallelize stochastic programming

algorithms.

+ Decomposition-Based
+ Monte-Carlo (Simulation) Based
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Parallelizing LShapedI

e The evaluation oD (x) — solving the different LP’s, can be done
iIndependently.

o If you have K computers, send them each ondothunks, and
your evaluation o (x) will be completedK times faster.

e Work

o One or more scenario chunks, , ... S, and point(z)

e Result

o A subgradient of each of th@ g, ;(Z).

e How many chunks to send in each task?
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Contention .

HereisaTask

e |ftask size is too small, the master is overwhelmed with requests,
reducing overall efficiency

February 26, 2003 Stochastic Programming — Lecture 13 Slide 25



Other Inefficiencies.

e What if solving the master problem takes a long time?

o Important to delete cuts

e The “Weakest Link” syndrome
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Stamp Out Synchronicity! I

e \We start a new iteration only after all “chunks” have been evaluated

¢ On a Grid, different processors act at different speeds, so many
may wait idle for the “slowpoke”

o Even worse, Grid computing toolkits can fail to inform the user
that their worker has failed!

o We can never efficiently use more th@r! machines

* Asynchronous methods are preferred for traditional parallel computing
environments. They are neangquiredfor Grid computing environ
ments!
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ATR — An Asynchronous Trust Region Method'

o & Keep a “basket’5 of trial points for which we are evaluating the
objective functior’s.

o Make decision on whether or accept new iterdte! after entire
Q (") is computed

e Convergence theory and cut deletion theory is similar to the
synchronous algorithm

e Cuts can be deleted if they are no longer relevant to any points in the
current basket

e Populate the basket quickly by initially solving the master problem
after onlya% of the scenario LPs have been solved
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ATR

+ Greatlyreduces the synchronicity requirements

— Might be doing some “unnecessary” work — the candidiate points
might be better if you waited for complete information from the
preceeding iterations

e ALS — Asynchronous LShaped
e TR — Synchronous Trust Region

e ATR — Asynchronous Trust Region
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The World’s Largest LP I

e Storm — A cargo flight scheduling problem (Mulvey and
Ruszczyski)

e We aim to solve an instance with 10,000,000 scenarios
o r € %12179(007;) c %1259

e The deterministic equivalent is of size
A € J985,032,889x12,590,000,121

e # Chunks 1024,8| = 4

e Started from anV = 20000 solution. {This is what people do In
practice, which is why trust region is important

.A():l

February 26, 2003 Stochastic Programming — Lecture 13 Slide 32



The Super Storm I\/Ietacomputer'

Number Type Location
184 Intel/Linux Argonne
254 Intel/Linux New Mexico
36 Intel/Linux NCSA
265 Intel/Linux Wisconsin
88 Intel/Solaris Wisconsin
239 Sun/Solaris | Wisconsin
124 Intel/Linux | Georgia Tech
90 Intel/Solaris | Georgia Tech
13 Sun/Solaris | Georgia Tech

9 Intel/Linux | Columbia U.

10 Sun/Solaris | Columbia U.

33 Intel/Linux Italy (INFN)
1345
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Wall clock time 31:53:37
CPU time 1.03 Years

Avg. # machines 433
Max # machines 556
Parallel Efficiency 67%
Master iterations 199

CPU Time solving the master problem 1:54.37

Maximum number of rows in master problem 39647
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Number of Workers .
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Next Time.

e Bounds

e Algorithms Based on Bounds
e HW#2 due

e Will hand out HW#3.

e Project description—due on Wed 3/5.
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