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Outline

• Review

¦ Regularlizing

¦ Bunching

• Introduction to Parallel Computing

• Using parallel computers to solve stochastic programs
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Review

• Why is the LShaped Method Bad?

• What is‖ · ‖∞?

• What is the basic idea behind “bunching”?
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Bundle-Trust

• Bundle— Build up a bundle of subgradients to better approximate

your function

• Trust region— Stay close (in a region you trust), until you build up a

good enough bundle to model your function accurately

¦ Accept new iterate if it improves the objective by a “sufficient”

amount. Potentially increase∆k. (Serious Step)

¦ Otherwise, improve the estimation ofQ(xk), resolve master

problem, and potentially reduce∆k (Null Step)

? These methods can be shown to converge,EVEN IF YOU DELETE

CUTS.
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Simple Bunching

• Denote byT ⊆ R the set of right hand sides that you must solve

• Denote byUk thekth “bunch” of right hand sides.

1. LetT = R. Let k = 0

2. Choose a “representative”r ∈ T . If T = ∅, let b = k, be the total

number of bunches.Stop.

3. Solvemaxλ{λT r|λT W ≤ q}, obtaining a basisBr, and optimal dual

solutionλk.

4. Forallt ∈ T , check ifB−1
r t ≥ 0. If so,Uk = Uk ∪ t. Let

T = T \ Uk.

5. Go To 2.
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High Performance Computing

• Bringing together many CPUs to

¦ Solve a problemfaster

¦ Solve abigger problem
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High Performance Computing Uses

• Computational Fluid Dynamics

¦ Climate Modeling

• Finite element and structure analysis

• Numerical solution of (O/P)DE’s

• Computational chemistry — chemical kinetics

• Computational biology — protein folding

• Nuclear physics

• Simulations and Monte Carlo Methods

• Optimization!
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Types of Parallel Computers — Shared Memory

• Shared Memory

Memory

• All processors share a common memory (connected by a bus).

• Processes share information by writing and retrieving items from

memory.

• Buzzwords:Multi-Threading, openMP
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Types of Parallel Computers — Message Passing

• Message Passing

Memory Memory

M
essages

Memory

Memory

• Processors connected by a “network”

• They pass messages by sending messages over the network

• Buzzwords:Sockets, MPI, PVM
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Message Passing Parallel Computers

• Simple “network of workstations” is a message passing parallel

computer

¦ Buzzword:COTS

• Can use more advanced/dedicated hardware to network the computer

together

¦ Buzzword:Beowolf Cluster

February 26, 2003 Stochastic Programming – Lecture 13 Slide 10



A Combination of the Two

• The fastest computers in the world are combinations of these ideas

(as well as some other ideas likevector processors)

• What is the fastest computer in the world?

http:www.top500.org
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A New Paradigm—The Grid

• People envision a “Computational Grid” much like the national

power grid

¦ Users can seamlessly draw computational power whenever they

need it

¦ Many resources can be brought together to solve very large

problems

¦ Gives application experts ths ability to solve problems of

unprecedented scope and complexity, or to study problems which

they otherwise would not.

• Grid computingused to be calledMetacomputing

¦ But now there is a “new” initiative that can be funded!
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Separated at Birth?

6=

• There are many ways in which the “Grid” computing I am talking

about today is different that the type of parallel (high performance)

computing Ted does
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Grid Computing 6= Parallel Computing

• Dynamic

¦ Resources may come and go during the course of the computation

⇒ Fault-Tolerance isvery important!

• Communicationally challenged

¦ Machines may be very far apart

⇒ Slow communication channels between them

⇒ We prefer CPU-intensive algorithms to data-intensive ones
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Grid Computing 6= Parallel Computing

• Larger scale

¦ More resources are potentially available

• Heterogenous

¦ Different hardware, operating systems, and software.

• User access and security

¦ Who (and what) should be allowed to draw from the Grid

? Greed!

¦ Most people don’t want to contribute “their” machine to the

computational pool
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What is Condor?

• Manages collections of “distributively owned” workstations

¦ User need not have an account or access to the machine

¦ Workstation owner specifies conditions under which jobs are

allowed to run

¦ All jobs are scheduled and “fairly” allocated among the pool

• How does it do this?

¦ Scheduling/Matchmaking

¦ Jobs can be checkpointed and migrated

¦ Remote system calls provide the originating machines

environment
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Matchmaking

MyType = Job

TargetType = Machine

Owner = ferris

Cmd = cplex

Args = seymour.d10.mps

HasCplex = TRUE

Memory≥ 64

Rank = KFlops

Arch = SUN4u

OpSys = SOLARIS26||

SOLARIS27

MyType = Machine

TargetType = Job

Name = nova9

HasCplex = TRUE

Arch = SUN4u

OpSys = SOLARIS27

Memory = 256

KFlops = 53997

RebootedDaily = TRUE
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Checkpointing/Migration

Professor’s
Machine

Grad Student’s
Machine

Checkpoint
Server

Grad Student
Leaves

}

5am 8am

5 min

Professor Arrives
}

12pm 5 min8:10am

Arrives
Grad Student
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Remote System Calls

Executing Machine

fopen()

C library

OS Kernel

User Process

C library

OS Kernel

Executing Machine

fopen()

OS Kernel

User Process

Submitting Machine

Shadow Process

Condor
library

RSC
Code
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Other Condor Features

• Pecking Order

¦ Users are assigned priorities based on the number of CPU cycles

they have recently used

• Flocking

¦ Condor jobs can negotiate to run in other Condor pools.

• Glide-in

¦ Globus (Grid computing toolkit from Argonne) provides a

“front-end” to many traditional supercomputing sites.

¦ Submit a Globus job which creates a temporary Condor pool on

the supercomputer, on which users jobs may run.
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Sold!

• I know you all want want to use High-Performance and Grid

computing to solve your research problems

? There are resourceson campus!

¦ A small, but ever growing, Condor pool in the ISE Dept

¦ A 32 processor SMP machine (Origin 2000) on Campus

¦ A campus-wide Condor pool (containing the Origin 2000)

? A 128 processor Beowolf Clusterfire

• If you think that your research could benefit from more computing

resources,PLEASE LET ME KNOW.
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Parallel Stochastic Optimization

• LOTS of people have done some parallelization of SP

¦ It is an important problem — especially for financial applications

¦ It is relatively easy to parallelize stochastic programming

algorithms.

+ Decomposition-Based

+ Monte-Carlo (Simulation) Based
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Parallelizing LShaped

• The evaluation ofQ(x) — solving the different LP’s, can be done

independently.

¦ If you haveK computers, send them each one ofK chunks, and

your evaluation ofQ(x) will be completedK times faster.

• Work

¦ One or more scenario chunksSj1 , . . .SjC and point(x̂)

• Result

¦ A subgradient of each of theQ[Sk](x̂).

• How many chunks to send in each task?
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Contention
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Send me a Task

Here is a Task

• If task size is too small, the master is overwhelmed with requests,

reducing overall efficiency
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Other Inefficiencies

• What if solving the master problem takes a long time?

¦ Important to delete cuts

• The “Weakest Link” syndrome
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Worker Usage
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Stamp Out Synchronicity!

• We start a new iteration only after all “chunks” have been evaluated

¦ On a Grid, different processors act at different speeds, so many

may wait idle for the “slowpoke”

¦ Even worse, Grid computing toolkits can fail to inform the user

that their worker has failed!

¦ We can never efficiently use more thanC−1 machines

? Asynchronous methods are preferred for traditional parallel computing

environments. They are nearlyrequired for Grid computing environ-

ments!
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ATR – An Asynchronous Trust Region Method

• Keep a “basket”B of trial points for which we are evaluating the

objective function

• Make decision on whether or accept new iteratexk+1 after entire

Q(xk) is computed

• Convergence theory and cut deletion theory is similar to the

synchronous algorithm

• Cuts can be deleted if they are no longer relevant to any points in the

current basket

• Populate the basket quickly by initially solving the master problem

after onlyα% of the scenario LPs have been solved
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ATR

+ Greatlyreduces the synchronicity requirements

– Might be doing some “unnecessary” work – the candidiate points

might be better if you waited for complete information from the

preceeding iterations

• ALS — Asynchronous LShaped

• TR — Synchronous Trust Region

• ATR — Asynchronous Trust Region

February 26, 2003 Stochastic Programming – Lecture 13 Slide 30



|S| = 10000

ru
n

po
int

s ev
alu

at
ed

|B| #
ta

sk
s

cu
ts/

ite
r (

#
clu

ste
rs

)

m
ax

. p
ro

ce
ss

or
s all

ow
ed

av
. p

ro
ce

ss
or

s

pa
ra

lle
l e

ffic
ien

cy

m
ax

. #
cu

ts
in

m
od

el

m
as

te
r p

ro
ble

m
so

lve
tim

e
(m

in)

wall
clo

ck
tim

e
(m

in)

ALS 277 - 10 50 40 32 .31 3089 13.0 453

TR 46 - 10 50 20 19 .35 2301 1.5 119

ATR 117 4 10 50 80 70 .23 3503 3.0 83

ATR 172 9 10 50 80 70 .59 4118 6.5 55

ATR 140 9 20 100 80 68 .80 7048 10.5 43
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The World’s Largest LP

• Storm – A cargo flight scheduling problem (Mulvey and
Ruszczýnski)

• We aim to solve an instance with 10,000,000 scenarios

• x ∈ <121, y(ωi) ∈ <1259

• The deterministic equivalent is of size

A ∈ <985,032,889×12,590,000,121

• # Chunks 1024,|B| = 4

• Started from anN = 20000 solution. (This is what people do in

practice, which is why trust region is important

• ∆0 = 1
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The Super Storm Metacomputer

Number Type Location

184 Intel/Linux Argonne

254 Intel/Linux New Mexico

36 Intel/Linux NCSA

265 Intel/Linux Wisconsin

88 Intel/Solaris Wisconsin

239 Sun/Solaris Wisconsin

124 Intel/Linux Georgia Tech

90 Intel/Solaris Georgia Tech

13 Sun/Solaris Georgia Tech

9 Intel/Linux Columbia U.

10 Sun/Solaris Columbia U.

33 Intel/Linux Italy (INFN)

1345
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TA-DA!!!!!

Wall clock time 31:53:37

CPU time 1.03 Years

Avg. # machines 433

Max # machines 556

Parallel Efficiency 67%

Master iterations 199

CPU Time solving the master problem 1:54:37

Maximum number of rows in master problem 39647
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Number of Workers
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Next Time

• Bounds

• Algorithms Based on Bounds

• HW#2 due

• Will hand out HW#3.

• Project description—due on Wed 3/5.

February 26, 2003 Stochastic Programming – Lecture 13 Slide 36


