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Outline

• Review
¦ Jensen's Lower Bound
¦ What the @�!&*�!*! went wrong last time

• Upper Bounds
¦ Edmundson-Madansky

• Using bounds in the LShaped Algorithm
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Review

• Why do we care about bounds in stochastic programming?

• What's �wrong� with numerical integration for evaluating
Q(x)?

• What is Jensen's inequality?

• How is Jensen's Inequality used in stochastic programming?
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Jensen's Inequality in Stochastic Programming

Eω[Q(x̂, ω)] ≥ Q(x̂,Eω[ω])

• We get a tight lower bound on Q(x̂) by evauating Q(x̂, ω̄).

• In our proof, we only used the fact that Q(x̂, ω) was convex on
Ω.

• So, in general, if φ is a convex function ω of a random variable
over its support Ω, then

Eωφ(ω) ≥ φ(Eω(ω))
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A Recourse Formulation

minimize

Q(x1, x2) = x1 + x2 + 5
∫ 4

ω1=1

∫ 2/3

ω2=1/3

y1(ω1, ω2) + y2(ω1, ω2)dω1dω2

subject to

ω1x1 + x2 + y1(ω1, ω2) ≥ 7

ω2x1 + x2 + y2(ω1, ω2) ≥ 4

x1 ≥ 0

x2 ≥ 0

y1(ω1, ω2) ≥ 0

y2(ω1, ω2) ≥ 0
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What Good Is This Stuff

• The real trick is that you recursively partitioning the region Ω
and the bounds become tighter and tighter.

Let S = {Ωl, l = 1, 2, . . . v} be some partition of Ω. Do you believe
me that

Eω[Q(x̂, ω)] ≥
v∑

l=1

P (ω ∈ Ωl)Q(x̂,Eω(ω|ω ∈ Ωl))
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Where We Left Off

• Let's (lower) bound Q(2, 2).

• $1 Prize! First person who can tell me what was wrong about
what we did last time...

• We'll set it right...
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Edmundson-Madansky Inequality

• The Edmundson-Madansky Inequality is a way in which to get
an upper bound of Q(x̂, ω).

• Consider now the 1−D case, where ω ∈ Ω

Your picture here
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Edmundson-Madansky Inequality

• Since Q(x̂, ω) is convex in ω, the line segment between
(a,Q(x̂, a)) and (b,Q(x̂, b)) is ≥ Q(x̂, ω) ∀ω ∈ Ω.

• Let U(x̂, ω) be the formula for this line segment.

U(x̂, ω) =
Q(x̂, b)−Q(x̂, a)

b− a
(ω − a) + Q(x̂, a).

With some algebra,

U(x̂, ω) =
Q(x̂, b)−Q(x̂, a)

b− a
ω +

b

b− a
Q(x̂, a)− a

b− a
Q(x̂, b)
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Edmundson-Madansky Inequality

EωU(x̂, ω) =
Q(x̂, b)−Q(x̂, a)

b− a
Eω[ω] +

b

b− a
Q(x̂, a)− a

b− a
Q(x̂, b)

= Q(x̂, a)
b− Eω[ω]

b− a
+ Q(x̂, b)

Eω[ω]− a

b− a
.

De�ne p =
ω̄ − a

b− a

• We get an upper bound (for an arbitrary distribution over Ω) by
replacing with a two-point discrete distribution, where
¦ P (ω = a) = 1− p

¦ P (ω = b) = p
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It's a Lid!

• If Ω has a (�nite) set of extreme points ext(Ω), then there is
some probability measure pi (convex multipliers) so that

∑

e∈ext(Ω)

peiQ(x̂, e) ≥ Q(x̂, ω).
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Extending E-M to Ω ⊆ <d

• Extending to multiple dimensions, if Ω is a �hyper-rectangle�,
¦ Ω = [a1, b1]× [a2, b2]× . . .× [ad, bd]

• and if the random variables in the d dimensions are
independent...

U(x̂, ω) =
∑

e∈ext(Ω)

d∏

i=1

( |ω̄i − ei|
bi − ai

)
Q(x̂, e) ≥ EωQ(w, ω) = Q(x)
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Let's try it!

(ω1, ω2) Value
(1, 1/3)
(1, 1)

(4, 1/3)
(4, 1)

0.25(v1 + v2 + v3 + v4) =???
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Partitioning

• Note that we still may need to evaluate Q(x) at 2d points�Just
to get an initial upper bound.

• The bound gets progressively tighter by doing the same
�conditioning� trick as we did for our lower bound.

• We just �throw in� the extra points/evaluations as necessary in
the algorithm.

• We'll do an example...
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Using Bounds in LShaped Method

• All this rigamarole was just to get bounds on ONE point Q(x̂).

• We really want to optimize over Q(x̂)

• Key idea of LShaped method is to underestimate Q(x) by one
(or more) auxiliary variables θ.

• To use bounds, use the θ to underestimate a lower bounding
function QL(x). (We called this EωL(x, ω) on Monday).
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Bounds in LShaped Method

• Use the LShaped method to optimize the problem using QL(x).
¦ Only include ω̄ �scenarios�.

• When optimized with respect to QL(x), compare to QU (x)
(what we called EωU(x, ω)).

• If QU (x)−QL(x) is �suf�ciently small�. Stop.

• Otherwise, re�ne the partition (which improves the bounds),
and repeat.
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Bounds in the LShaped Method

• An example here � time permitting.
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Next Time

Happy Spring Break!

• Monte Carlo Methods

• Stochastic Decomposition
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