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Review

• Why do we care about bounds in stochastic programming?

• What is Jensen's inequality?

• How is Jensen's Inequality used in stochastic programming?

• What is the Edmundson-Madansky Inequality?

• How is the Edmundson-Madansky Inequality used in stochastic
programming?
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Jensen's Inequality in Stochastic Programming

• If φ is a convex function ω of a random variable over its support
Ω, then

Eωφ(ω) ≥ φ(Eω(ω))

Eω[Q(x̂, ω)] ≥ Q(x̂,Eω[ω])

• Let S = {Ωl, l = 1, 2, . . . v} be some partition of Ω:

Eω[Q(x̂, ω)] ≥
v∑

l=1

P (ω ∈ Ωl)Q(x̂,Eω(ω|ω ∈ Ωl))
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Edmundson-Madansky Inequality

• If Ω has a (�nite) set of extreme points ext(Ω), then there is
some probability measure pi (convex multipliers) so that

∑

e∈ext(Ω)

peiQ(x̂, e) ≥ Q(x̂, ω).

• If Ω = [a1, b1]× [a2, b2]× . . .× [ad, bd] and if the random
variables in the d dimensions are independent...

U(x̂, ω) =
∑

e∈ext(Ω)

d∏

i=1

( |ω̄i − ei|
bi − ai

)
Q(x̂, e) ≥ EωQ(w, ω) = Q(x)
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Bounds in LShaped Method

• To use bounds, use the θ to underestimate a lower bounding
function QL(x). (We called this EωL(x, ω) on Monday).

• Use the LShaped method to optimize the problem using QL(x).
¦ Only include ω̄ �scenarios�.

• When optimized with respect to QL(x), compare to QU (x)
(what we called EωU(x, ω)).

• If QU (x)−QL(x) is �suf�ciently small�. Stop.

• Otherwise, re�ne the partition (which improves the bounds),
and repeat.
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Monte Carlo Methods

(∗) min
x∈S

{f(x) ≡ EP g(x; ξ) ≡
∫

Ω

g(x; ξ)dP (ξ)}

• Most of the theory presented holds for (*)�A very general SP
problem

• Naturally it holds for our favorite SP problem:
¦ S ≡ {x |Ax = b, x ≥ 0}
¦ f(x) ≡ cT x +Q(x)

¦ Q(x) ≡ E{Q(x, ω)}
¦ Q(x, ω) ≡ miny≥0{q(ω)T y|Wy = h(ω)− T (ω)x}
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Sampling

• Instead of solving (*), we solve an approximating problem.

• Let ξ1, . . . , ξN be N realizations of the random variable ξ:

min
x∈S

{f̂N (x) ≡ N−1
N∑

j=1

g(x, ξj)}.

• f̂N (x) is just the sample average function

• Since ξj drawn from P , f̂N (x) is an unbiased estimator of f(x)

¦ E[f̂N (x)] = f(x)
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Sample Variance

• Since ξj are independent, we can estimate Var(f̂N (x)) :

• This is known as the sample variance:

σ̂2(x) =
1

N(N − 1)

N∑

j=1

[(g(x, ξj)− f̂N (x)]2
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Statistics Break

• Let χ1, χ2, . . . , χn be independent, identically distributed (iid)
random variables.

• Let Sn =
∑n

i=1 χi

• Assume µ ≡ E|χi| < ∞.

Weak Law of Large Numbers

lim
n→∞

P (
(∣∣∣∣

Sn

n
− µ

∣∣∣∣ ≥ δ

)
= 0 ∀δ > 0
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Strong Law of Large Numbers

lim
n→∞

Sn

n
→ µ Almost surely

• Almost surely.
¦ Equivalent to �with probability 1�, or..

P ( lim
n→∞

Sn

n
6= µ) = 0
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Central Limit Theorem

• Further assume that χ1, χ2, . . . , χn have �nite nonzero variance
σ2:

lim
n→∞

P

(
Sn − nµ

σ
√

n
≤ x

)
= N (0, 1)

• N (µ, σ2) : Normally distributed random variable with mean µ,
variance σ2.

? This is an amazing theorem.
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A More Convenient Form of the CLT

Sn − nµ

σ
√

n
≈ N (0, 1)

√
n

(
χ̄− µ

σ

)
≈ N (0, 1)

√
n(χ̄− µ) ≈ N (0, σ2)
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Sampling Methods

• �Interior� sampling methods.

• Sample during the course of the algorithm
¦ LShaped Method (Dantzig and Infanger)
¦ Stochastic Decomposition (Higle and Sen)
¦ Stochastic Quasi-gradient methods (Ermoliev)

• �Exterior� sampling methods
¦ Sample. Then solve problem approximating problem.
¦ Can we get (statistical) bounds on key solution quantities?
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Lower Bound on the Optimal Objective Function Value

v∗ = min
x∈S

{f(x) ≡ EP g(x, ξ) ≡
∫

Ω

g(x; ξ)p(ξ)dξ}

For some sample ξ1, . . . , ξN , let

v̂N = min
x∈S

{f̂N (x) ≡ N−1
N∑

j=1

g(x, ξj)}.

Thm:

Ev̂N ≤ v∗
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Proof

v∗ = min
x∈X

EP g(x; ξ) = min
x∈X

E
"
N−1

NX
j=1

g(x, ξj)

#

min
x∈X

N−1
NX

j=1

g(x, ξj) ≤ N−1
NX

j=1

g(x, ξj) ∀x ∈ X ⇔

E
"
min
x∈X

N−1
NX

j=1

g(x, ξj)

#
≤ E

"
N−1

NX
j=1

g(x, ξj)

#
∀x ∈ X ⇔

E [v̂N ] ≤ E
"
N−1

NX
j=1

g(x, ξj)

#
∀x ∈ X

≤ min
x∈X

E
"
N−1

NX
j=1

g(x, ξj)

#
= v∗
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Next?

• Now we need to somehow estimate E[v̂n]

• The expected value E[v̂N ] can be estimated as follows.
• Generate M independent samples, ξ1,j , . . . , ξN,j , j = 1, . . . , M ,

each of size N , and solve the corresponding SAA problems

min
x∈X

{
f̂ j

N (x) := N−1
N∑

i=1

g(x, ξi,j)

}
, (1)

• for each j = 1, . . . , M . Let v̂ j
N be the optimal value of problem

(1), and compute

LN,M ≡ 1
M

M∑

j=1

v̂ j
N
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Lower Bounds

• The estimate LN,M is an unbiased estimate of E[v̂N ].

• By our last theorem, it provides a statistical lower bound for the
true optimal value v∗.

• When the M batches ξ1,j , ξ2,j , . . . , ξN,j , j = 1, . . . ,M , are i.i.d.
(although the elements within each batch do not need to be
i.i.d.) have by the Central Limit Theorem that

√
M [LN,M − E(v̂N )] → N (0, σ2

L)
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Con�dence Intervals

• The sample variance estimator of σ2
L is

s2
L(M) ≡ 1

M − 1

M∑

j=1

(
v̂ j

N − LN,M

)2

.

De�ning zα to satisfy P{N(0, 1) ≤ zα} = 1− α, and replacing σL by
sL(M), we can obtain an approximate (1− α)-con�dence interval
for E[v̂N ] to be

[
LN,M − zαsL(M)√

M
,LN,M +

zαsL(M)√
M

]
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Let's do an example � Time Permitting

minimize

Q(x1, x2) = x1 + x2 + 5
∫ 4

ω1=1

∫ 2/3

ω2=1/3

y1(ω1, ω2) + y2(ω1, ω2)dω1dω2

subject to

ω1x1 + x2 + y1(ω1, ω2) ≥ 7

ω2x1 + x2 + y2(ω1, ω2) ≥ 4

x1 ≥ 0

x2 ≥ 0

y1(ω1, ω2) ≥ 0

y2(ω1, ω2) ≥ 0
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Upper Bounds

v∗ = min
x∈S

{f(x) ≡ EP g(x; ξ) ≡
∫

Ω

g(x; ξ)p(ξ)dξ}

• Quick, Someone prove...

f(x̂) ≥ v∗ ∀x ∈ X

• How can we estimate f(x̂)?
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Estimating f(x̂)

• Generate T independent batches of samples of size N̄ , denoted
by ξ1,j , ξ2,j , . . . , ξN̄,j , j = 1, 2, . . . , T , where each batch has the
unbiased property, namely

E


f̂ j

N̄
(x) := N̄−1

N̄∑

i=1

F (x, ξi,j)


 = f(x), for all x ∈ X.

We can then use the average value de�ned by

UN̄,T (x̂) := T−1
T∑

j=1

f̂ j
N̄

(x̂)

as an estimate of f(x̂).
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More Con�dence Intervals

By applying the Central Limit Theorem again, we have that
√

T
[
UN̄,T (x̂)− f(x̂)

] ⇒ N(0, σ2
U (x̂)), as T →∞,

where σ2
U (x̂) := Var

[
f̂N̄ (x̂)

]
. We can estimate σ2

U (x̂) by the sample
variance estimator s2

U (x̂;T ) de�ned by

s2
U (x̂; T ) :=

1
T − 1

T∑

j=1

[
f̂ j

N̄
(x̂)− UN̄,T (x̂)

]2

.

By replacing σ2
U (x̂) with s2

U (x̂; T ), we can proceed as above to
obtain a (1− α)-con�dence interval for f(x̂):

[
UN̄,T (x̂)− zαsU (x̂;T )√

T
,UN̄,T (x̂) +

zαsU (x̂; T )√
T

]
.
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Putting it all together

• f̂N (x) is the sample average function
¦ Draw ω1, . . . ωN from P

¦ f̂N (x) ≡ N−1
∑N

j=1 g(x, ωj)

¦ For Stochastic LP w/recourse ⇒ solve N LP's.

• v̂N is the optimal solution value for the sample average
function:
¦ v̂N ≡ minx∈S

{
f̂N (x) := N−1

∑N
j=1 g(x, ωj)

}

• Estimate E(v̂N ) as Ê(v̂N ) = LN,M = M−1
∑M

j=1 v̂j
N

¦ Solve M stochastic LP's, each of sampled size N .
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Recapping Theorems

Thm. E(v̂N ) ≤ v∗ ≤ f(x)∀x
Thm. f̂N ′(x̂)− E(v̂N ) → f(x̂)− v∗, as N,M,N ′ →∞

• We are mostly interested in estimating the quality of a given
solution x̂. This is f(x̂)− v∗.

• f̂N ′(x̂) computed by solving N ′ independent LPs.

• Ê(v̂N ) computed by solving M independent stochastic LPs.
• Independent ⇒ no synchronization ⇒ good for the Grid
• Independent ⇒ can construct con�dence intervals around the

estimates
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An experiment

• M times � Solve a stochastic sampled approximation of size N .
(Thus obtaining an estimate of E(v̂N )).

• For each of the M solutions x1, . . . xM , estimate f(x̂) by solving
N ′ LP's.

• Test Instances
Name Application |Ω| (m1, n1) (m2, n2)

LandS HydroPower Planning 106 (2,4) (7,12)
gbd ? 6.46× 105 (?,?) (?,?)

storm Cargo Flight Scheduling 6× 1081 (185, 121) (?,1291)
20term Vehicle Assignment 1.1× 1012 (1,5) (71,102)

ssn Telecom. Network Design 1070 (1,89) (175,706)
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Convergence of Optimal Solution Value

• 9 ≤ M ≤ 12, N ′ = 106

• Monte Carlo Sampling

Instance N = 50 N = 100 N = 500 N = 1000 N = 5000

20term 253361 254442 254025 254399 254324 254394 254307 254475 254341 254376
gbd 1678.6 1660.0 1595.2 1659.1 1649.7 1655.7 1653.5 1655.5 1653.1 1655.4

LandS 227.19 226.18 226.39 226.13 226.02 226.08 225.96 226.04 225.72 226.11
storm 1550627 1550321 1548255 1550255 1549814 1550228 1550087 1550236 1549812 1550239

ssn 4.108 14.704 7.657 12.570 8.543 10.705 9.311 10.285 9.982 10.079

• Latin Hypercube Sampling

Instance N = 50 N = 100 N = 500 N = 1000 N = 5000

20term 254308 254368 254387 254344 254296 254318 254294 254318 254299 254313
gbd 1644.2 1655.9 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6

LandS 222.59 222.68 225.57 225.64 225.65 225.63 225.64 225.63 225.62 225.63
storm 1549768 1549879 1549925 1549875 1549866 1549873 1549859 1549874 1549865 1549873

ssn 10.100 12.046 8.904 11.126 9.866 10.175 9.834 10.030 9.842 9.925
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20term Convergence. Monte Carlo Sampling
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20term Convergence. Latin Hypercube Sampling
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ssn Convergence. Monte Carlo Sampling

2

4

6

8

10

12

14

16

18

10 100 1000 10000

V
al

ue

N

Lower Bound
Upper Bound

March 17, 2003 Stochastic Programming � Lecture 16 Slide 30



ssn Convergence. Latin Hypercube Sampling
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storm Convergence. Monte Carlo Sampling
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storm Convergence. Latin Hypercube Sampling
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gbd Convergence. Monte Carlo Sampling
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gbd Convergence. Latin Hypercube Sampling
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The Gap

f(x̂)
f̂N ′(x̂)

v∗

Êv̂N

Ev̂N

¦ Of most concern is the �bias� v∗ − Ev̂N .

¦ How fast can we make this go down in N?
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A Biased Discussion

• Some problems are �ill-conditioned�
¦ It takes a large sample to get an accurate estimate of the

solution

• Variance reduction can help reduce the bias
¦ You get the �right� small sample
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Next Time

• Go over homeworks

• Convergence of Optimal Solution Values

• Stochastic Decomposition
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