

Monte Carlo Methods for Stochastic Programming

Prof. Jeff Linderoth

March 17, 2003

• Review

- ◊ Jensen's Inequality
- ♦ Edmundson-Madansky Inequality
- ◊ Partititioning
- Using Bounds in Algorithms
- Monte Carlo Methods
 - ♦ Estimating the optimal objective function value
 - ◊ Lower Bounds
 - ◊ Upper Bounds
 - ◊ Examples

- *Why* do we care about bounds in stochastic programming?
- What is Jensen's inequality?
- How is Jensen's Inequality used in stochastic programming?
- What is the Edmundson-Madansky Inequality?
- How is the Edmundson-Madansky Inequality used in stochastic programming?

Jensen's Inequality in Stochastic Programming

• If ϕ is a convex function ω of a random variable over its support Ω , then

 $\mathbb{E}_{\omega}\phi(\omega) \ge \phi(\mathbb{E}_{\omega}(\omega))$ $\mathbb{E}_{\omega}[Q(\hat{x},\omega)] \ge Q(\hat{x},\mathbb{E}_{\omega}[\omega])$ • Let $\mathcal{S} = \{\Omega^{l}, l = 1, 2, \dots v\}$ be some partition of Ω :

$$\mathbb{E}_{\omega}[Q(\hat{x},\omega)] \ge \sum_{l=1}^{v} P(\omega \in \Omega^{l})Q(\hat{x}, \mathbb{E}_{\omega}(\omega | \omega \in \Omega^{l}))$$

Edmundson-Madansky Inequality

 If Ω has a (finite) set of extreme points ext(Ω), then there is some probability measure p_i (convex multipliers) so that

$$\sum_{e \in \mathsf{ext}(\Omega)} p_{e_i} Q(\hat{x}, e) \ge Q(\hat{x}, \omega).$$

If Ω = [a₁, b₁] × [a₂, b₂] × ... × [a_d, b_d] and if the random variables in the *d* dimensions are independent...

$$U(\hat{x},\omega) = \sum_{e \in \mathsf{ext}(\Omega)} \prod_{i=1}^d \left(\frac{|\bar{\omega}_i - e_i|}{b_i - a_i} \right) Q(\hat{x},e) \ge \mathbb{E}_{\omega} Q(w,\omega) = \mathcal{Q}(x)$$

Bounds in LShaped Method

- To use bounds, use the θ to underestimate a lower bounding function Q_L(x). (We called this E_ωL(x, ω) on Monday).
- Use the LShaped method to optimize the problem using Q_L(x).
 ◊ Only include ω̄ "scenarios".
- When optimized with respect to Q_L(x), compare to Q_U(x) (what we called E_ωU(x, ω)).
- If $Q_U(x) Q_L(x)$ is "sufficiently small". Stop.
- Otherwise, refine the partition (which improves the bounds), and repeat.

Monte Carlo Methods

(*)
$$\min_{x \in S} \{ f(x) \equiv \mathbb{E}_P g(x;\xi) \equiv \int_{\Omega} g(x;\xi) dP(\xi) \}$$

- Most of the theory presented holds for (*)—A very general SP problem
- Naturally it holds for our favorite SP problem:

Sampling

- Instead of solving (*), we solve an approximating problem.
- Let ξ^1, \ldots, ξ^N be N realizations of the random variable ξ :

$$\min_{x \in S} \{ \widehat{f}_N(x) \equiv N^{-1} \sum_{j=1}^N g(x, \xi^j) \}.$$

- $\widehat{f}_N(x)$ is just the sample average function
- Since ξ^j drawn from P, f̂_N(x) is an unbiased estimator of f(x)
 ▷ 𝔼[f̂_N(x)] = f(x)

Sample Variance

- Since ξ^j are independent, we can estimate $\operatorname{Var}(\widehat{f}_N(x))$:
- This is known as the *sample variance*:

$$\hat{\sigma}^2(x) = \frac{1}{N(N-1)} \sum_{j=1}^N [(g(x,\xi^j) - \hat{f}_N(x))]^2$$

Statistics Break

- Let χ₁, χ₂,..., χ_n be independent, identically distributed (iid) random variables.
- Let $S_n = \sum_{i=1}^n \chi_i$

• Assume
$$\mu \equiv \mathbb{E}|\chi_i| < \infty$$
.

Weak Law of Large Numbers

$$\lim_{n \to \infty} P(\left(\left| \frac{S_n}{n} - \mu \right| \ge \delta \right) = 0 \quad \forall \delta > 0$$

Strong Law of Large Numbers

$$\lim_{n \to \infty} \frac{S_n}{n} \to \mu \quad \text{Almost surely}$$

• Almost surely.

♦ Equivalent to "with probability 1", or..

$$P(\lim_{n \to \infty} \frac{S_n}{n} \neq \mu) = 0$$

Central Limit Theorem

• Further assume that $\chi_1, \chi_2, \ldots, \chi_n$ have finite nonzero variance σ^2 :

$$\lim_{n \to \infty} P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) = \mathcal{N}(0, 1)$$

- $\mathcal{N}(\mu, \sigma^2)$: Normally distributed random variable with mean μ , variance σ^2 .
- \star This is an *amazing* theorem.

A More Convenient Form of the CLT

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \approx \mathcal{N}(0,1)$$
$$\sqrt{n} \left(\frac{\bar{\chi} - \mu}{\sigma}\right) \approx \mathcal{N}(0,1)$$
$$\sqrt{n}(\bar{\chi} - \mu) \approx \mathcal{N}(0,\sigma^2)$$

Sampling Methods

- "Interior" sampling methods.
- Sample during the course of the algorithm
 - LShaped Method (Dantzig and Infanger)
 - Stochastic Decomposition (Higle and Sen)
 - Stochastic Quasi-gradient methods (Ermoliev)
- "Exterior" sampling methods
 - ◇ Sample. Then solve problem approximating problem.
 - ◇ Can we get (statistical) bounds on key solution quantities?

Lower Bound on the Optimal Objective Function Value

$$v^* = \min_{x \in S} \{ f(x) \equiv \mathbb{E}_P g(x,\xi) \equiv \int_{\Omega} g(x;\xi) p(\xi) d\xi \}$$

For some sample ξ^1, \ldots, ξ^N , let

$$\hat{v}_N = \min_{x \in S} \{ \hat{f}_N(x) \equiv N^{-1} \sum_{j=1}^N g(x, \xi^j) \}.$$

Thm:

$$\mathbb{E}\hat{v}_N \le v^*$$

Proof

$$v^* = \min_{x \in X} \mathbb{E}_P g(x; \xi) = \min_{x \in X} \mathbb{E} \left[N^{-1} \sum_{j=1}^N g(x, \xi_j) \right]$$

$$\min_{x \in X} N^{-1} \sum_{j=1}^{N} g(x, \xi_j) \leq N^{-1} \sum_{j=1}^{N} g(x, \xi_j) \quad \forall x \in X \Leftrightarrow$$
$$\mathbb{E} \left[\min_{x \in X} N^{-1} \sum_{j=1}^{N} g(x, \xi_j) \right] \leq \mathbb{E} \left[N^{-1} \sum_{j=1}^{N} g(x, \xi_j) \right] \quad \forall x \in X \Leftrightarrow$$
$$\mathbb{E} \left[\hat{v}_N \right] \leq \mathbb{E} \left[N^{-1} \sum_{j=1}^{N} g(x, \xi_j) \right] \quad \forall x \in X$$
$$\leq \min_{x \in X} \mathbb{E} \left[N^{-1} \sum_{j=1}^{N} g(x, \xi_j) \right] = v^*$$

Next?

- Now we need to somehow estimate $\mathbb{E}[\hat{v}_n]$
- The expected value $\mathbb{E}[\hat{v}_N]$ can be estimated as follows.
- Generate M independent samples, ξ^{1,j},...,ξ^{N,j}, j = 1,...,M, each of size N, and solve the corresponding SAA problems

$$\min_{x \in X} \left\{ \widehat{f}_N^j(x) := N^{-1} \sum_{i=1}^N g(x, \xi^{i,j}) \right\},\tag{1}$$

for each j = 1,..., M. Let v̂_N^j be the optimal value of problem
 (1), and compute

$$L_{N,M} \equiv \frac{1}{M} \sum_{j=1}^{M} \widehat{v}_N^j$$

Lower Bounds

- The estimate $L_{N,M}$ is an unbiased estimate of $\mathbb{E}[\hat{v}_N]$.
- By our last theorem, it provides a statistical lower bound for the true optimal value v^* .
- When the M batches ξ^{1,j}, ξ^{2,j},..., ξ^{N,j}, j = 1,..., M, are i.i.d. (although the elements *within* each batch do not need to be i.i.d.) have by the Central Limit Theorem that

$$\sqrt{M} \left[L_{N,M} - \mathbb{E}(\widehat{v}_N) \right] \to \mathcal{N}(0, \sigma_L^2)$$

Confidence Intervals

• The sample variance estimator of σ_L^2 is

$$s_L^2(M) \equiv \frac{1}{M-1} \sum_{j=1}^M \left(\hat{v}_N^j - L_{N,M} \right)^2.$$

Defining z_{α} to satisfy $P\{N(0,1) \leq z_{\alpha}\} = 1 - \alpha$, and replacing σ_L by $s_L(M)$, we can obtain an approximate $(1 - \alpha)$ -confidence interval for $\mathbb{E}[\hat{v}_N]$ to be

$$\left[L_{N,M} - \frac{z_{\alpha}s_L(M)}{\sqrt{M}}, L_{N,M} + \frac{z_{\alpha}s_L(M)}{\sqrt{M}}\right]$$

Let's do an example — Time Permitting

minimize

$$\mathcal{Q}(x_1, x_2) = x_1 + x_2 + 5 \int_{\omega_1 = 1}^{4} \int_{\omega_2 = 1/3}^{2/3} y_1(\omega_1, \omega_2) + y_2(\omega_1, \omega_2) d\omega_1 d\omega_2$$

subject to

$$\begin{aligned}
\omega_1 x_1 + x_2 + y_1(\omega_1, \omega_2) &\geq 7\\ \omega_2 x_1 + x_2 + y_2(\omega_1, \omega_2) &\geq 4\\ x_1 &\geq 0\\ x_2 &\geq 0\\ y_1(\omega_1, \omega_2) &\geq 0\\ y_2(\omega_1, \omega_2) &\geq 0\end{aligned}$$

Upper Bounds

$$v^* = \min_{x \in S} \{ f(x) \equiv \mathbb{E}_P g(x;\xi) \equiv \int_{\Omega} g(x;\xi) p(\xi) d\xi \}$$

• Quick, Someone prove...

$$f(\hat{x}) \ge v^* \quad \forall x \in X$$

• How can we estimate $f(\hat{x})$?

Estimating $f(\hat{x})$

• Generate *T* independent batches of samples of size \overline{N} , denoted by $\xi^{1,j}, \xi^{2,j}, \ldots, \xi^{\overline{N},j}$, $j = 1, 2, \ldots, T$, where each batch has the unbiased property, namely

$$\mathbb{E}\left[\widehat{f}_{\bar{N}}^{j}(x) := \bar{N}^{-1} \sum_{i=1}^{\bar{N}} F(x,\xi^{i,j})\right] = f(x), \text{ for all } x \in X.$$

We can then use the average value defined by

$$U_{\bar{N},T}(\hat{x}) := T^{-1} \sum_{j=1}^{T} \widehat{f}_{\bar{N}}^{j}(\hat{x})$$

as an estimate of $f(\hat{x})$.

More Confidence Intervals

By applying the Central Limit Theorem again, we have that

$$\sqrt{T}\left[U_{\bar{N},T}(\hat{x}) - f(\hat{x})\right] \Rightarrow N(0,\sigma_U^2(\hat{x})), \text{ as } T \to \infty,$$

where $\sigma_U^2(\hat{x}) := \text{Var} \left[\hat{f}_{\bar{N}}(\hat{x}) \right]$. We can estimate $\sigma_U^2(\hat{x})$ by the sample variance estimator $s_U^2(\hat{x};T)$ defined by

$$s_U^2(\hat{x};T) := \frac{1}{T-1} \sum_{j=1}^T \left[\widehat{f}_{\bar{N}}^j(\hat{x}) - U_{\bar{N},T}(\hat{x}) \right]^2.$$

By replacing $\sigma_U^2(\hat{x})$ with $s_U^2(\hat{x};T)$, we can proceed as above to obtain a $(1 - \alpha)$ -confidence interval for $f(\hat{x})$:

$$\left[U_{\bar{N},T}(\hat{x}) - \frac{z_{\alpha}s_{U}(\hat{x};T)}{\sqrt{T}}, U_{\bar{N},T}(\hat{x}) + \frac{z_{\alpha}s_{U}(\hat{x};T)}{\sqrt{T}}\right]$$

Putting it all together

- $\widehat{f}_N(x)$ is the sample average function
 - $\diamond \ \mathrm{Draw} \ \omega^1, \dots \omega^N \ \mathrm{from} \ P$

$$\diamond \ \widehat{f}_N(x) \equiv N^{-1} \sum_{j=1}^N g(x, \omega^j)$$

♦ For Stochastic LP w/recourse \Rightarrow solve N LP's.

• \hat{v}_N is the optimal solution value for the sample average function:

$$\diamond \ \widehat{v}_N \equiv \min_{x \in S} \left\{ \widehat{f}_N(x) := N^{-1} \sum_{j=1}^N g(x, \omega^j) \right\}$$

• Estimate $\mathbb{E}(\hat{v}_N)$ as $\widehat{\mathbb{E}(\hat{v}_N)} = L_{N,M} = M^{-1} \sum_{j=1}^M \hat{v}_N^j$

 $\diamond\,$ Solve M stochastic LP's, each of sampled size N.

Recapping Theorems

Thm.
$$\mathbb{E}(\hat{v}_N) \le v^* \le f(x) \forall x$$

Thm. $\hat{f}_{N'}(\hat{x}) - \mathbb{E}(\hat{v}_N) \to f(\hat{x}) - v^*, \text{ as } N, M, N' \to \infty$

- We are mostly interested in estimating the quality of a given solution \hat{x} . This is $f(\hat{x}) v^*$.
- $\widehat{f}_{N'}(\widehat{x})$ computed by solving N' independent LPs.
- $\widetilde{\mathbb{E}(\hat{v}_N)}$ computed by solving M independent stochastic LPs.
- Independent \Rightarrow no synchronization \Rightarrow good for the Grid
- Independent ⇒ can construct confidence intervals around the estimates

An experiment

- M times Solve a stochastic sampled approximation of size N.
 (Thus obtaining an estimate of E(v̂_N)).
- For each of the M solutions $x^1,\ldots x^M,$ estimate $f(\hat{x})$ by solving N' LP's.
- Test Instances

Name	Application	$ \Omega $	(m_1,n_1)	(m_2,n_2)
LandS	HydroPower Planning	10^{6}	(2,4)	(7,12)
gbd	?	6.46×10^{5}	(?,?)	(?,?)
storm	Cargo Flight Scheduling	6×10^{81}	(185, 121)	(?,1291)
20term	Vehicle Assignment	1.1×10^{12}	(1,5)	(71,102)
ssn	Telecom. Network Design	10^{70}	(1,89)	(175,706)

Convergence of Optimal Solution Value

- $9 \le M \le 12$, $N' = 10^6$
- Monte Carlo Sampling

Instance	N = 50	N = 100	N = 500	N = 1000	N = 5000
20term	253361 254442	254025 254399	254324 254394	254307 254475	254341 254376
gbd	1678.6 1660.0	1595.2 1659.1	1649.7 1655.7	1653.5 1655.5	1653.1 1655.4
LandS	227.19 226.18	226.39 226.13	226.02 226.08	225.96 226.04	225.72 226.11
storm	1550627 1550321	1548255 1550255	1549814 1550228	1550087 1550236	1549812 1550239
ssn	4.108 14.704	7.657 12.570	8.543 10.705	9.311 10.285	9.982 10.079

• Latin Hypercube Sampling

Instance	N = 50	N = 100	N = 500	N = 1000	N = 5000
20term	254308 254368	254387 254344	254296 254318	254294 254318	254299 254313
gbd	1644.2 1655.9	1655.6 1655.6	1655.6 1655.6	1655.6 1655.6	1655.6 1655.6
LandS	222.59 222.68	225.57 225.64	225.65 225.63	225.64 225.63	225.62 225.63
storm	1549768 1549879	1549925 1549875	1549866 1549873	1549859 1549874	1549865 1549873
ssn	10.100 12.046	8.904 11.126	9.866 10.175	9.834 10.030	9.842 9.925

20term Convergence. Monte Carlo Sampling

20term Convergence. Latin Hypercube Sampling

ssn Convergence. Monte Carlo Sampling

ssn Convergence. Latin Hypercube Sampling

storm Convergence. Monte Carlo Sampling

storm Convergence. Latin Hypercube Sampling

gbd Convergence. Monte Carlo Sampling

gbd Convergence. Latin Hypercube Sampling

• Of most concern is the "bias" $v^* - \mathbb{E}\hat{v}_N$.

 \diamond How fast can we make this go down in N?

A Biased Discussion

- Some problems are "ill-conditioned"
 - It takes a large sample to get an accurate estimate of the solution
- Variance reduction can help reduce the bias
 - ♦ You get the "right" small sample

- Go over homeworks
- Convergence of Optimal Solution Values
- Stochastic Decomposition