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Monte Carlo Methods

min
x∈S

{f(x) ≡ EP g(x; ξ) ≡
∫

Ω

g(x; ξ)dP (ξ)}

• Draw ξ1, ξ2, . . . ξN from P

• Sample Average Approximation:

f̂N (x) ≡ N−1
N∑

j=1

g(x, ξj)

• f̂N (x) is an unbiased estimator of f(x) (E[f̂N (x)] = f(x)).
• We instead minimize the Sample Average Approximation:

min
x∈S

{f̂N (x)}
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Lower Bound on the Optimal Objective Function Value

v∗ = min
x∈S

{f(x)}

v̂N = min
x∈S

{f̂N (x)}

Thm:

E[v̂N ] ≤ v∗

• The expected optimal solution value for a sampled problem of
size N is ≤ the optimal solution value.
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Estimating E[v̂N ]

• Generate M independent SAA problems of size N .

• Solve each to get v̂ j
N

LN,M ≡ 1
M

M∑

j=1

v̂ j
N

• The estimate LN,M is an unbiased estimate of E[v̂N ].

√
M [LN,M − E(v̂N )] → N (0, σ2

L)

• σ2
L ≡ Var(v̂N )

? This variance depends on the sample!
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Con�dence Interval

s2
L(M) ≡ 1

M − 1

M∑

j=1

(
v̂ j

N − LN,M

)2

[
LN,M − zαsL(M)√

M
,LN,M +

zαsL(M)√
M

]

• These only apply if the v̂ j
N are i.i.d. random variables.

• But somehow, if I could choose the samples such that they were
i.i.d, and the variance among the v̂ j

N was reduced, I would get
a tighter con�dence interval.
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Upper Bounds

f(x̂) ≥ v∗ ∀x̂ ∈ S

• Generate T independent batches of samples of size N̄

E


f̂ j

N̄
(x) := N̄−1

N̄∑

i=1

g(x, ξi,j)


 = f(x), for all x ∈ X.

UN̄,T (x̂) := T−1
T∑

j=1

f̂ j

N̄
(x̂)
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More Con�dence Intervals

√
T

[
UN̄,T (x̂)− f(x̂)

] ⇒ N(0, σ2
U (x̂)), as T →∞,

• σ2
U (x̂) ≡ Var

[
f̂N̄ (x̂)

]

• Estimate σ2
U (x̂) by the sample variance estimator s2

U (x̂, T )

s2
U (x̂, T ) ≡ 1

T − 1

T∑

j=1

[
f̂ j

N̄
(x̂)− UN̄,T (x̂)

]2

.

[
UN̄,T (x̂)− zαsU (x̂; T )√

T
,UN̄,T (x̂) +

zαsU (x̂; T )√
T

]
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Better Living Through Sampling

? Again, if I could reduce Var
[
f̂N̄ (x̂)

]
, while keeping f̂ j

N̄
i.i.d, I

would get a tighter con�dence interval.

? That is what Variance Reduction Techniques are all about.

? We can reduce the variance in our estimator by better sampling
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A Neopyhte's Guide to Sampling Techniques

• The main goal is to reduce Var(f̂N (x)) or (Var(v̂N )).

• Uniform (Monte Carlo) Sampling
¦ Sampling with replacement

• Latin Hypercube Sampling
¦ Sampling without replacement

• Importance Sampling (Dantzig and Infanger)

• Control Variates

• Common Random Number Generation
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Latin Hypercube Sampling � An example

• Suppose Ω = {ω × ω × ω}, where ω has the following
distribution:
¦ P (ω = A) = 0.5, P (ω = B) = 0.25, P (ω = C) = 0.25

• |Ω| = 27. We would like to draw a sample of size N = 4.

L.H. Sample
ω1 B C A A
ω2 A A B C
ω3 A C A B

M.C. Sample
ω1 A A A B
ω2 A A B C
ω3 A C A B

• The variance of f̂N (x) for the L.H. sample will likely be less
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Fancy AMPL Demonstration

Monte Carlo Latin Hypercube
N Q̂(2, 2) sU√

T
Q̂(2, 2) sU√

T
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Putting it all together

• f̂N (x) is the sample average function
¦ Draw ω1, . . . ωN from P

¦ f̂N (x) ≡ N−1
∑N

j=1 g(x, ωj)

¦ For Stochastic LP w/recourse ⇒ solve N LP's.

• v̂N is the optimal solution value for the sample average
function:
¦ v̂N ≡ minx∈S

{
f̂N (x) := N−1

∑N
j=1 g(x, ωj)

}

• Estimate E(v̂N ) as Ê(v̂N ) = LN,M = M−1
∑M

j=1 v̂j
N

¦ Solve M stochastic LP's, each of sampled size N .
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The Gap

f(x̂)
f̂N ′(x̂)

v∗

Êv̂N

Ev̂N

¦ Of most concern is the �bias� v∗ − Ev̂N .

¦ How fast can we make this go down in N?
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A Biased Discussion

• Some problems are �ill-conditioned�
¦ It takes a large sample to get an accurate estimate of the

solution

• Variance reduction can help reduce the bias
¦ You get the �right� small sample
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An experiment

• M times � Solve a stochastic sampled approximation of size N .
(Thus obtaining an estimate of E(v̂N )).

• For each of the M solutions x1, . . . xM , estimate f(x̂) by solving
N ′ LP's.

• Test Instances
Name Application |Ω| (m1, n1) (m2, n2)

LandS HydroPower Planning 106 (2,4) (7,12)
gbd ? 6.46× 105 (?,?) (?,?)

storm Cargo Flight Scheduling 6× 1081 (185, 121) (?,1291)
20term Vehicle Assignment 1.1× 1012 (1,5) (71,102)

ssn Telecom. Network Design 1070 (1,89) (175,706)
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Convergence of Optimal Solution Value

• 9 ≤ M ≤ 12, N ′ = 106

• Monte Carlo Sampling

Instance N = 50 N = 100 N = 500 N = 1000 N = 5000

20term 253361 254442 254025 254399 254324 254394 254307 254475 254341 254376
gbd 1678.6 1660.0 1595.2 1659.1 1649.7 1655.7 1653.5 1655.5 1653.1 1655.4

LandS 227.19 226.18 226.39 226.13 226.02 226.08 225.96 226.04 225.72 226.11
storm 1550627 1550321 1548255 1550255 1549814 1550228 1550087 1550236 1549812 1550239

ssn 4.108 14.704 7.657 12.570 8.543 10.705 9.311 10.285 9.982 10.079

• Latin Hypercube Sampling

Instance N = 50 N = 100 N = 500 N = 1000 N = 5000

20term 254308 254368 254387 254344 254296 254318 254294 254318 254299 254313
gbd 1644.2 1655.9 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6 1655.6

LandS 222.59 222.68 225.57 225.64 225.65 225.63 225.64 225.63 225.62 225.63
storm 1549768 1549879 1549925 1549875 1549866 1549873 1549859 1549874 1549865 1549873

ssn 10.100 12.046 8.904 11.126 9.866 10.175 9.834 10.030 9.842 9.925
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20term Convergence. Monte Carlo Sampling
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20term Convergence. Latin Hypercube Sampling
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ssn Convergence. Monte Carlo Sampling
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ssn Convergence. Latin Hypercube Sampling
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storm Convergence. Monte Carlo Sampling
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storm Convergence. Latin Hypercube Sampling
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gbd Convergence. Monte Carlo Sampling
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gbd Convergence. Latin Hypercube Sampling
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Convergence of Optimal Solutions

• A very interesting recent result of Shapiro and Homem-de-Mello
says the following:

• Suppose that x? is the unique optimal solution to the �true�
problem

• Let x̂N be the solution to the sampled approximating problem

• Under certain conditions (like 2-stage stochastic LP with
recourse with �nite support), the event (x̂N = x?) happens
with probability 1 for N large enough.

? The probability of this event approaches 1 exponentially fast as
N →∞!!
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Convergence of Optimal Solutions

• There exists a constant β such that

lim
N→∞

N−1 log[1− P (x̂ = x∗)] ≤ −β.

• This is a qualitative result indicating that it might not be
necessary to have a large sample size in order to solve the true
problem exactly.

• Determining a proper size N is of course dif�cult and problem
dependent
¦ Some problems are well conditioned � a small sample suf�ces
¦ Others are ill conditioned
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Problem Conditioning

• With the help of some heavy-duty analysis, Shapiro,
Homem-de-Mello, and Kim go on to give a quantitative
estimate of a stochastic program's condition.

• g′ω(x∗, d) is the directional derivative of g(·, ω) at x? in the
direction d

• f ′(x?, d) is the directional derivative of f(·) at x? in the
direction d

• The condition number κ of the true problem is

κ ≡ sup
d∈TS(x?)\{0}

Var [g′ω(x?, d)]
[f ′(x?, d)]2
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Properties of κ

κ ≡ sup
d∈TS(x?)\{0}

Var [g′ω(x?, d)]
[f ′(x?, d)]2

• κ is related to the exponential convergence rate β ≈ 1/(2κ).
? The sample size N required to achieve a given probability of

the event (x̂N = x?) is roughly proportional to κ

• If f ′(x?, d) is 0 (the optimal solution is not unique), then the
condition number is essentially in�nite.
¦ (This is not really true).

• If f ′(x?, d) is small (f is ��at� in the neighborhood of the
optimal solution), then κ is large

• You can also make similar statements about ε optimal solutions.
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Examples

• Shapiro and Homem-de-Mello give a simple example of a well
conditioned problem where the condition number can be
computed exactly.

? For a problem with 51000 scenarios a sample of size N ≈ 400 is
required in order to �nd the true optimal solution with
probability 95%!!!

? Some �real� problems...

Instance |Ω| κ̂ N≥ (95%)
CEP1 216 17.45 54
APL1P 1280 1105.6 3363
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Distance of ssn solutions

0.00 396.72 176.90 481.92 286.11 477.05
396.72 0.00 465.13 743.21 528.69 326.39
176.90 465.13 0.00 501.36 381.06 495.92
481.92 743.21 501.36 0.00 698.67 934.41
286.11 528.69 381.06 698.67 0.00 712.62
477.05 326.39 495.92 934.41 712.62 0.00

• For �large� sample size (N = 5000), L.H. Sampling, the
solutions x̂N are very far apart, even though the objective
functions are close to being the same.

• f(x?) is ��at� ⇒ This instance is ill-conditioned.

• We will require a large sample size to get an ε-optimal solution
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ssn Convergence. Latin Hypercube Sampling
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Distance of 20term solutions

0.00 259.36 700.39 87504.49 77043.47 68975.66
259.36 0.00 413.07 88080.16 77726.57 69723.88
700.39 413.07 0.00 84761.87 74631.07 67052.76

87504.49 88080.16 84761.87 0.00 2419.97 4485.82
77043.47 77726.57 74631.07 2419.97 0.00 1017.77
68975.66 69723.88 67052.76 4485.82 1017.77 0.00

• This instance is also ill-conditioned
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gbd solution distances

0.00e+00 2.49e-26 1.42e-27 6.68e-27 4.10e-28 1.47e-27
2.49e-26 0.00e+00 1.61e-26 6.72e-27 2.64e-26 3.22e-26
1.42e-27 1.61e-26 0.00e+00 3.17e-27 1.73e-27 2.96e-27
6.68e-27 6.72e-27 3.17e-27 0.00e+00 8.30e-27 1.19e-26
4.10e-28 2.64e-26 1.73e-27 8.30e-27 0.00e+00 8.17e-28
1.47e-27 3.22e-26 2.96e-27 1.19e-26 8.17e-28 0.00e+00

• This instance is extremely well conditioned
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gbd Convergence. Latin Hypercube Sampling
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Distance of storm solutions

0.00e+00 3.51e-04 1.34e-05 1.11e-04 4.79e-05 5.27e-05
3.51e-04 0.00e+00 2.35e-04 8.94e-05 1.54e-04 1.47e-04
1.34e-05 2.35e-04 0.00e+00 4.73e-05 1.07e-05 1.30e-05
1.11e-04 8.94e-05 4.73e-05 0.00e+00 1.31e-05 1.08e-05
4.79e-05 1.54e-04 1.07e-05 1.31e-05 0.00e+00 1.12e-07
5.27e-05 1.47e-04 1.30e-05 1.08e-05 1.12e-07 0.00e+00

• This instance is also well conditioned
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storm Convergence. Latin Hypercube Sampling
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Conclusions

• Sometimes theory and practice do actually coincide

• You don't need to solve the whole problem � or consider all
scenarios!
¦ Using sampled approximations, you can quickly get good

solutions (and bounds) to dif�cult stochastic programs
¦ Variance reduction techniques will be very helpful
¦ For �rare event� scenarios, likely importance sampling is the

way to go
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Next Time

• Interior Sampling Methods
¦ Stochastic Decomposition
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