

Sampling Methods for Stochastic Programming

Prof. Jeff Linderoth

March 19, 2003

Outline

• Review—Monte Carlo Methods

- Estimating the optimal objective function value
- ◊ Lower Bounds
- ◊ Upper Bounds
- ♦ Examples
- Variance Reduction
 - ◊ Latin Hypercube Sampling
- Convergence of Optimal Solutions
 - ♦ Examples

Monte Carlo Methods

$$\min_{x \in S} \{ f(x) \equiv \mathbb{E}_P g(x;\xi) \equiv \int_{\Omega} g(x;\xi) dP(\xi) \}$$

• Draw
$$\xi^1, \xi^2, \dots \xi^N$$
 from P

• Sample Average Approximation:

$$\widehat{f}_N(x) \equiv N^{-1} \sum_{j=1}^N g(x, \xi^j)$$

- $\widehat{f}_N(x)$ is an unbiased estimator of f(x) ($\mathbb{E}[\widehat{f}_N(x)] = f(x)$).
- We instead minimize the Sample Average Approximation:

$$\min_{x \in S} \{ \widehat{f}_N(x) \}$$

Lower Bound on the Optimal Objective Function Value

$$v^* = \min_{x \in S} \{f(x)\}$$

$$\hat{v}_N = \min_{x \in S} \{ \widehat{f}_N(x) \}$$

Thm:

$$\mathbb{E}[\hat{v}_N] \le v^*$$

 The expected optimal solution value for a sampled problem of size N is ≤ the optimal solution value. Estimating $\mathbb{E}[\hat{v}_N]$

- Generate M independent SAA problems of size N.
- Solve each to get \hat{v}_N^j

$$L_{N,M} \equiv \frac{1}{M} \sum_{j=1}^{M} \widehat{v}_N^j$$

• The estimate $L_{N,M}$ is an unbiased estimate of $\mathbb{E}[\hat{v}_N]$.

$$\sqrt{M} \left[L_{N,M} - \mathbb{E}(\widehat{v}_N) \right] \to \mathcal{N}(0, \sigma_L^2)$$

- $\sigma_L^2 \equiv \operatorname{Var}(\widehat{v}_N)$
- ★ This variance depends on the sample!

Confidence Interval

$$s_L^2(M) \equiv \frac{1}{M-1} \sum_{j=1}^M \left(\hat{v}_N^j - L_{N,M} \right)^2$$

$$\left[L_{N,M} - \frac{z_{\alpha}s_L(M)}{\sqrt{M}}, L_{N,M} + \frac{z_{\alpha}s_L(M)}{\sqrt{M}}\right]$$

- These only apply if the \hat{v}_N^j are i.i.d. random variables.
- But somehow, if I could choose the samples such that they were i.i.d, and the variance among the
 ^j was reduced, I would get a tighter confidence interval.

Upper Bounds

$$f(\hat{x}) \ge v^* \quad \forall \hat{x} \in S$$

• Generate T independent batches of samples of size \bar{N}

$$\mathbb{E}\left[\widehat{f}_{\bar{N}}^{j}(x) := \bar{N}^{-1} \sum_{i=1}^{\bar{N}} g(x, \xi^{i,j})\right] = f(x), \text{ for all } x \in X.$$

$$U_{\bar{N},T}(\hat{x}) := T^{-1} \sum_{j=1}^{T} \widehat{f}_{\bar{N}}^{j}(\hat{x})$$

More Confidence Intervals

$$\begin{split} &\sqrt{T}\left[U_{\bar{N},T}(\hat{x}) - f(\hat{x})\right] \Rightarrow N(0,\sigma_U^2(\hat{x})), \ \text{ as } T \to \infty, \\ &\sigma_U^2(\hat{x}) \equiv \text{Var}\left[\widehat{f}_{\bar{N}}(\hat{x})\right] \end{split}$$

• Estimate $\sigma_U^2(\hat{x})$ by the sample variance estimator $s_U^2(\hat{x},T)$

$$s_{U}^{2}(\hat{x},T) \equiv \frac{1}{T-1} \sum_{j=1}^{T} \left[\hat{f}_{\bar{N}}^{j}(\hat{x}) - U_{\bar{N},T}(\hat{x}) \right]^{2}.$$
$$\left[U_{\bar{N},T}(\hat{x}) - \frac{z_{\alpha} s_{U}(\hat{x};T)}{\sqrt{T}}, U_{\bar{N},T}(\hat{x}) + \frac{z_{\alpha} s_{U}(\hat{x};T)}{\sqrt{T}} \right]$$

Better Living Through Sampling

- ★ Again, if I could reduce Var $[\hat{f}_{\bar{N}}(\hat{x})]$, while keeping $\hat{f}_{\bar{N}}^{j}$ i.i.d, I would get a tighter confidence interval.
- ★ That is what *Variance Reduction Techniques* are all about.
- ★ We can reduce the variance in our estimator by better sampling

A Neopyhte's Guide to Sampling Techniques

- The main goal is to reduce $Var(\widehat{f}_N(x))$ or $(Var(\widehat{v}_N))$.
- Uniform (Monte Carlo) Sampling
 - Sampling with replacement
- Latin Hypercube Sampling
 - ♦ Sampling without replacement
- Importance Sampling (Dantzig and Infanger)
- Control Variates
- Common Random Number Generation

Latin Hypercube Sampling — An example

Suppose Ω = {ω × ω × ω}, where ω has the following distribution:

♦
$$P(\omega = A) = 0.5, \ P(\omega = B) = 0.25, P(\omega = C) = 0.25$$

• $|\Omega| = 27$. We would like to draw a sample of size N = 4.

L.H. Sample				M.C. Sample					
ω_1	В	C	A	A	ω_1	A	A	А	В
ω_2	A	A	В	С	ω_2	A	A	В	С
ω_3	A	C	A	В	ω_3	A	C	А	В

• The variance of $\widehat{f}_N(x)$ for the L.H. sample will likely be less

Fancy AMPL Demonstration

	Monte C	Carlo	Latin Hypercube		
Ν	$\widehat{\mathcal{Q}}(2,2)$ $\frac{s_U}{\sqrt{T}}$		$\widehat{\mathcal{Q}}(2,2)$	$\frac{s_U}{\sqrt{T}}$	

Putting it all together

- $\widehat{f}_N(x)$ is the sample average function
 - $\diamond \ \mathrm{Draw} \ \omega^1, \dots \omega^N \ \mathrm{from} \ P$

$$\diamond \ \widehat{f}_N(x) \equiv N^{-1} \sum_{j=1}^N g(x, \omega^j)$$

♦ For Stochastic LP w/recourse \Rightarrow solve N LP's.

• \hat{v}_N is the optimal solution value for the sample average function:

$$\diamond \ \widehat{v}_N \equiv \min_{x \in S} \left\{ \widehat{f}_N(x) := N^{-1} \sum_{j=1}^N g(x, \omega^j) \right\}$$

• Estimate $\mathbb{E}(\hat{v}_N)$ as $\widehat{\mathbb{E}(\hat{v}_N)} = L_{N,M} = M^{-1} \sum_{j=1}^M \hat{v}_N^j$

 $\diamond\,$ Solve M stochastic LP's, each of sampled size N.

 \diamond Of most concern is the "bias" $v^* - \mathbb{E}\hat{v}_N$.

 \diamond How fast can we make this go down in N?

A Biased Discussion

- Some problems are "ill-conditioned"
 - It takes a large sample to get an accurate estimate of the solution
- Variance reduction can help reduce the bias
 - ♦ You get the "right" small sample

An experiment

- M times Solve a stochastic sampled approximation of size N.
 (Thus obtaining an estimate of E(v̂_N)).
- For each of the M solutions $x^1,\ldots x^M,$ estimate $f(\hat{x})$ by solving N' LP's.
- Test Instances

Name	Application	$ \Omega $	(m_1,n_1)	(m_2,n_2)
LandS	HydroPower Planning	10^{6}	(2,4)	(7,12)
gbd	?	6.46×10^{5}	(?,?)	(?,?)
storm	Cargo Flight Scheduling	6×10^{81}	(185, 121)	(?,1291)
20term	Vehicle Assignment	1.1×10^{12}	(1,5)	(71,102)
ssn	Telecom. Network Design	10^{70}	(1,89)	(175,706)

Convergence of Optimal Solution Value

- $9 \le M \le 12$, $N' = 10^6$
- Monte Carlo Sampling

Instance	N = 50	N = 100	N = 500	N = 1000	N = 5000
20term	253361 254442	254025 254399	254324 254394	254307 254475	254341 254376
gbd	1678.6 1660.0	1595.2 1659.1	1649.7 1655.7	1653.5 1655.5	1653.1 1655.4
LandS	227.19 226.18	226.39 226.13	226.02 226.08	225.96 226.04	225.72 226.11
storm	1550627 1550321	1548255 1550255	1549814 1550228	1550087 1550236	1549812 1550239
ssn	4.108 14.704	7.657 12.570	8.543 10.705	9.311 10.285	9.982 10.079

• Latin Hypercube Sampling

Instance	N = 50	N = 100	N = 500	N = 1000	N = 5000
20term	254308 254368	254387 254344	254296 254318	254294 254318	254299 254313
gbd	1644.2 1655.9	1655.6 1655.6	1655.6 1655.6	1655.6 1655.6	1655.6 1655.6
LandS	222.59 222.68	225.57 225.64	225.65 225.63	225.64 225.63	225.62 225.63
storm	1549768 1549879	1549925 1549875	1549866 1549873	1549859 1549874	1549865 1549873
ssn	10.100 12.046	8.904 11.126	9.866 10.175	9.834 10.030	9.842 9.925

20term Convergence. Monte Carlo Sampling

20term Convergence. Latin Hypercube Sampling

ssn Convergence. Monte Carlo Sampling

ssn Convergence. Latin Hypercube Sampling

storm Convergence. Monte Carlo Sampling

storm Convergence. Latin Hypercube Sampling

gbd Convergence. Monte Carlo Sampling

gbd Convergence. Latin Hypercube Sampling

Convergence of Optimal Solutions

- A *very interesting* recent result of Shapiro and Homem-de-Mello says the following:
- Suppose that x^* is the unique optimal solution to the "true" problem
- Let \hat{x}_N be the solution to the sampled approximating problem
- Under certain conditions (like 2-stage stochastic LP with recourse with finite support), the event (x̂_N = x^{*}) happens with probability 1 for N large enough.
- * The probability of this event approaches 1 exponentially fast as $N \to \infty$!!

Convergence of Optimal Solutions

• There exists a constant β such that

$$\lim_{N \to \infty} N^{-1} \log[1 - P(\hat{x} = x^*)] \le -\beta.$$

- This is a qualitative result indicating that it might not be necessary to have a large sample size in order to solve the true problem *exactly*.
- Determining a proper size N is of course difficult and problem dependent
 - ◇ Some problems are *well conditioned* a small sample suffices
 - ◊ Others are *ill conditioned*

Function Shape

Problem Conditioning

- With the help of some heavy-duty analysis, Shapiro, Homem-de-Mello, and Kim go on to give a quantitative estimate of a stochastic program's condition.
- g'_ω(x*, d) is the directional derivative of g(·, ω) at x* in the direction d
- f'(x[⋆], d) is the directional derivative of f(·) at x[⋆] in the direction d
- The condition number κ of the true problem is

$$\kappa \equiv \sup_{d \in T_S(x^*) \setminus \{0\}} \frac{\operatorname{Var}\left[g'_{\omega}(x^*, d)\right]}{[f'(x^*, d)]^2}$$

Properties of κ

$$\kappa \equiv \sup_{d \in T_S(x^*) \setminus \{0\}} \frac{\operatorname{Var}\left[g'_{\omega}(x^*, d)\right]}{[f'(x^*, d)]^2}$$

- κ is related to the exponential convergence rate $\beta \approx 1/(2\kappa)$.
- ★ The sample size N required to achieve a given probability of the event $(\hat{x}_N = x^*)$ is roughly proportional to κ
- If $f'(x^*, d)$ is 0 (the optimal solution is not unique), then the condition number is essentially infinite.

◊ (This is not really true).

- If f'(x*, d) is small (f is "flat" in the neighborhood of the optimal solution), then κ is large
- You can also make similar statements about ϵ optimal solutions.

Examples

- Shapiro and Homem-de-Mello give a simple example of a well conditioned problem where the condition number can be computed exactly.
- ★ For a problem with 5^{1000} scenarios a sample of size $N \approx 400$ is required in order to find the true optimal solution with probability 95%!!!
- ★ Some "real" problems...

Instance	$ \Omega $	$\hat{\kappa}$	N≥ (95%)
CEP1	216	17.45	54
APL1P	1280	1105.6	3363

Distance of ssn solutions

0.00	396.72	176.90	481.92	286.11	477.05
396.72	0.00	465.13	743.21	528.69	326.39
176.90	465.13	0.00	501.36	381.06	495.92
481.92	743.21	501.36	0.00	698.67	934.41
286.11	528.69	381.06	698.67	0.00	712.62
477.05	326.39	495.92	934.41	712.62	0.00

- For "large" sample size (N = 5000), L.H. Sampling, the solutions x̂_N are very far apart, even though the objective functions are close to being the same.
- $f(x^*)$ is "flat" \Rightarrow This instance is ill-conditioned.
- We will require a large sample size to get an ϵ -optimal solution

ssn Convergence. Latin Hypercube Sampling

Distance of 20term solutions

0.00	259.36	700.39	87504.49	77043.47	68975.66
259.36	0.00	413.07	88080.16	77726.57	69723.88
700.39	413.07	0.00	84761.87	74631.07	67052.76
87504.49	88080.16	84761.87	0.00	2419.97	4485.82
77043.47	77726.57	74631.07	2419.97	0.00	1017.77
68975.66	69723.88	67052.76	4485.82	1017.77	0.00

• This instance is also ill-conditioned

gbd solution distances

17e-27
22e-26
96e-27
19e-26
l7e-28
0e+00

• This instance is extremely well conditioned

gbd Convergence. Latin Hypercube Sampling

Distance of storm solutions

0.00e + 00	3.51e-04	1.34e-05	1.11e-04	4.79e-05	5.27e-05
3.51e-04	0.00e + 00	2.35e-04	8.94e-05	1.54e-04	1.47e-04
1.34e-05	2.35e-04	0.00e + 00	4.73e-05	1.07e-05	1.30e-05
1.11e-04	8.94e-05	4.73e-05	0.00e + 00	1.31e-05	1.08e-05
4.79e-05	1.54e-04	1.07e-05	1.31e-05	0.00e + 00	1.12e-07
5.27e-05	1.47e-04	1.30e-05	1.08e-05	1.12e-07	0.00e + 00

• This instance is also well conditioned

storm Convergence. Latin Hypercube Sampling

Conclusions

- Sometimes theory and practice do actually coincide
- You don't *need* to solve the whole problem or consider all scenarios!
 - Using sampled approximations, you can quickly get good solutions (and bounds) to difficult stochastic programs
 - ◊ Variance reduction techniques will be very helpful
 - For "rare event" scenarios, likely importance sampling is the way to go

- Interior Sampling Methods
 - ♦ Stochastic Decomposition