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Outline

• Review�Monte Carlo Methods

• �Interior� Sampling Methods
¦ Stochastic Decomposition
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Some Questions

v∗ = min
x∈S

{f(x) ≡ EP g(x; ξ)}

• How can I use sampling to get a (statistical) lower bound on
v∗?

• How can I use sampling to get a (statictical) upper bound on
v∗?

• When do you think you will ever get your homeworks back?
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Putting it all together

• f̂N (x) is the sample average function
¦ Draw ω1, . . . ωN from P

¦ f̂N (x) ≡ N−1
∑N

j=1 g(x, ωj)

¦ E[f̂N (x)] = f(x) ≥ v∗

• v̂N is the optimal solution value for the sample average
function:
¦ v̂N ≡ minx∈S

{
f̂N (x) := N−1

∑N
j=1 g(x, ωj)

}

¦ E[v̂N ] ≤ v∗

• Estimate E(v̂N ) as Ê(v̂N ) = LN,M = M−1
∑M

j=1 v̂j
N

¦ Solve M stochastic LP's, each of sampled size N .
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The Gap

f(x̂)
f̂N ′(x̂)

v∗

Êv̂N

Ev̂N
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Sampling Methods

• �Interior� sampling methods.

• Sample during the course of the algorithm
¦ LShaped Method (Dantzig and Infanger)
¦ Stochastic Decomposition (Higle and Sen)
¦ Stochastic Quasi-gradient methods (Ermoliev)

• �Exterior� sampling methods
¦ Sample. Then solve problem approximating problem.
¦ Can we get (statistical) bounds on key solution quantities?

March 19, 2003 Stochastic Programming � Lecture 17 Slide 6



Stochastic Decomposition

• Designed to solve 2-stage stochastic LP with �xed recourse

• Assume randomness only in objective function

• Assume relatively complete recourse and Q(x) ≥ 0.

• X = {<n
+|Ax = b}

min
x∈X

Q(x) ≡ EP Q(x, ω) =
∫

Ω

Q(x, ω)dP (ω)

Q(x, ω) = min
y∈<p

+

{qT y : Wy = h(ω)− T (ω)x}
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Key Ideas�1

• Do sampling within the optimization

• Take one new sample per iteration

• A bit like �Using Bounds in the LShaped Method�

• There, we used Jensen's Inequality to give a lower bound.
¦ There the lower bound was based on using a limited number

of samples (namely the mean) and conditioning (to be in a
region of Ω to get progressively tigther lower bounds).

• Here, we just randomly draw a sample, and we produce a
lower bound that is valid in expectation only.
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Key Ideas�2

• Method for �approximately� solving lots of LPs fast

• Cuts �phase out� as they get older. (Since they were based on
less sampled information).

March 19, 2003 Stochastic Programming � Lecture 17 Slide 9



Bounds in LShaped Method�Review

• Use the LShaped method to optimize the problem using QL(x).
¦ Only include ω̄ �scenarios�.

• When optimized with respect to QL(x), compare to QU (x), if
we have one

• If QU (x)−QL(x) is �suf�ciently small�. Stop.

• Otherwise, re�ne the partition (which improves the bounds),
and repeat.
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More Detail

Partition form of Jensen's inequality...

• Let S = {Ωl, l = 1, 2, . . . v} be some partition of Ω:

Eω[Q(x̂, ω)] ≥
v∑

l=1

P (ω ∈ Ωl)Q(x̂,Eω(ω|ω ∈ Ωl))
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Lower Bounding-Based LShaped Method

0. Let l = 1,Ωl = Ω, k = 1, xk = 0

1. For j = 1, 2, . . . l solve...

πj = arg max
π∈<m

{πT (h(ω̄j)− T (ω̄j)xk)|WT π ≤ q}

ω̄j = EP (ω|ω ∈ Ωj)

2. Create cut as...

θ ≥
l∑

j=1

πT
j

[
(h(ω̄j)− T ((ω̄j)xk)

]−
l∑

j=1

πT
j

[
πT

j T ((ω̄j)
]
(x− xk)

(pj = P(ω ∈ Ωj).
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Continuing

3. Let k = k + 1, add cut to master problem and solve

(xk, θk) = arg min
x∈X

cT x + θ

subject to
θ ≥ αk + βkx ∀k = 1, 2, . . .

4. L(xk) = cT xk + θx ≤ Q(x). If you are happy with xk based on
L(xk), then quit, otherwise create a new partition of
Ω = {Ω1,Ω2, . . . , Ωl}. Go to 1.

(I'll draw some pictures in class)...
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Stochastic Decomposition

0. Let k = 1, xk = 0, V = ∅
1a. Draw random sample ωk, and solve...

πk = arg max
π∈<m

{πT (h(ω̄k)− T ((ω̄k)xk)|WT π ≤ q}

1b. V = V ∪ πk. For j = 1, 2, . . . k − 1, solve

πj = arg max
π∈V

{
πT ((h(ω̄j)− T ((ω̄j)xk)

}
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Stochastic Decomposition

2a. Create cut as...

θ ≥ 1/k
k∑

j=1

πT
j (h(ωj)− T (ωj)xk)

• Call the cut (αk + βT
k x).

2b. For j = 1, 2, . . . , k − 1, Phase Out old cuts as

αk + βT
k x = (k − 1)/k(αk−1 + βT

k−1x).
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Stochastic Decomposition

3. Solve Master Problem

(xk, θk) = arg min
x∈X

cT x + θ

subject to
θ ≥ αk + βkx ∀k = 1, 2, . . .

• Go to 1.

? There is some subsequence of the xk → x∗

• Typically people use some sort of statistical based stopping
criteria
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LP Duality

• By duality

Q(x, ω) = max
π∈<m

{πT (h(ω)− T (ω)x)|πT W ≤ q

• So if π̂ satis�es π̂T W ≤ q, then

Q(x, ω) ≥ π̂T (h(ω)− T (ω)x) ∀ω ∈ Ω, ∀x ∈ X

? (Why?)

⇒ The lower bounding function L(x) is (only) such that
EPL(x) ≤ Q(x)
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Checkpoint! � What we've learned

• Modeling the Deterministic Equivalent of Stochastic (Linear)
Programs
¦ Two-stage
¦ Multi-stage. (Modeling our favorite eight-syllable word).

• EVPI

• VSS

• Recourse Function
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We Really Learned This Much?

• Two-Stage Stochastic LP With Recourse
¦ Properties of the recourse function

� Convex
� Subdifferentiable
� Lipschitz-Continuous

¦ LShaped Method
� Feasibility Cuts
� Multicut methods
� Regularized methods. Trust region and regularized

decomposition.
� Bunching and Trickling Down

March 19, 2003 Stochastic Programming � Lecture 17 Slide 19



WOW!

¦ Bounds
� Jensen's Inequality
� Edmunson-Madansky Inequality

• Monte Carlo Methods
¦ Valid Statistical Lower and Upper Bounds on optimal

objective function value
¦ Variance Reduction (Latin Hypercube Sampling)
¦ Convergence of Optimal Solutions
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Math Stuff We've Learned

• KKT Conditions

• Convexity

• (Lipschitz)-Continuity

• Minkowski Sum

• Weak-Strong Long of Large Numbers

• Central Limit Theorem

• Lebesgue-Stiltjes Integral

• L'Hopital's Rule
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Comouter Stuff We've Learned

• AMPL! Lots and lots of AMPL.

• Numerical Integration

• MPS format

• SMPS

• High Performance Computing
¦ SMP
¦ Message Passing

• Grid Computing
¦ Condor

March 19, 2003 Stochastic Programming � Lecture 17 Slide 22



Survey Time

• A simple show of hands please...

• What Next?
¦ Stochastic MIP
¦ Probabilistic Constraints?
¦ Multi-Stage Stochastic LP?

• Next Time...
¦ Go over old homeworks
¦ Get Homework �#5�#6�
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Remainder of Course

• Start calling for people's projects to be done soon!

• Only 8 more classes left. Last 3�4 classes will be (interspersed)
with project presentations ⇒ you have roughly 2�3 weeks to
�nish.

• There will be 1.5 more assignments

⇒ There is LOTS of work that you have left to do for this course!
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