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Outline I

e Review—Monte Carlo Methods

e “Interior” Sampling Methods

& Stochastic Decomposition
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Some Questions I

V¥ = rxnelg{f(x) =Epg(x;§)}

e How can I use sampling to get a (statistical) lower bound on
v*?

e How can I use sampling to get a (statictical) upper bound on
v*?

e When do you think you will ever get your homeworks back?
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Putting it all together'

e fn(x) is the sample average function

o Draw w!,...w" from P
o fnlz) = 123 L 9(z,w)
o E[fn(2)] = f(z) = v*

e vy is the optimal solution value for the sample average
function:

O VN = mingeg {fN( ) = 123 19(3j W )}

O E[@\N] S v*

—

e Estimate E(vy) as E(oy) = Ly = M1 ij\il Uy

o Solve M stochastic LP’s, each of sampled size V.
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The Gap I

AN

E’UN

AN

E’UN
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Sampling Methods I

e “Interior” sampling methods.

e Sample during the course of the algorithm
¢ LShaped Method (Dantzig and Infanger)
& Stochastic Decomposition (Higle and Sen)

& Stochastic Quasi-gradient methods (Ermoliev)

e “Exterior” sampling methods
o Sample. Then solve problem approximating problem.

¢ Can we get (statistical) bounds on key solution quantities?
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Stochastic Decomposition I

e Designed to solve 2-stage stochastic LP with fixed recourse
e Assume randomness only in objective function

e Assume relatively complete recourse and Q(z) > 0.

o X = {R"|Az = b}

min Q(z) = EpQ(x,w) = LQ(x,w)dP(w)

reX

Q(z,w) = min {¢"y : Wy = h(w) — T(w)z}

VY
y6%+
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Key Ideas-1 I

e Do sampling within the optimization
e Take one new sample per iteration

e A bit like “Using Bounds in the LShaped Method”

e There, we used Jensen’s Inequality to give a lower bound.

¢ There the lower bound was based on using a limited number
of samples (namely the mean) and conditioning (to be in a
region of () to get progressively tigther lower bounds).

e Here, we just randomly draw a sample, and we produce a
lower bound that is valid in expectation only.
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Key Ideas-2 I

e Method for “approximately” solving lots of LPs fast

e Cuts “phase out” as they get older. (Since they were based on
less sampled information).
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Bounds in LShaped Method—ReViewI

e Use the LShaped method to optimize the problem using Q; (z).

& Only include @ “scenarios”.

e When optimized with respect to Qy (z), compare to Oy (x), if
we have one

o If Qu(x) — Qr(x) is “sufficiently small”. Stop.

e Otherwise, refine the partition (which improves the bounds),
and repeat.
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More Detail I

Partition form of Jensen’s inequality...
o Let S = {0 1=1,2,...v} be some partition of Q:

v

E,[Q(#w)] > ) PlweQ)Q(#,E,(wlw € QY))

=1
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Lower Bounding-Based LShaped Method I

0. Letl=1,0=0k=1,2"=0
1. For j = 1,2,...1 solve...

Tj = arg max {71 (h(@;) — T(@;)x")Whn < ¢}
TeEyR™

w; = Ep(wjw € Q)

2. Create cut as...

0> T [(h(@;) — T(@)a")] = Y] [ T((@,)] (@ - o)

(pj = Plw € ).

March 19, 2003 Stochastic Programming — Lecture 17 Slide 12



Continuing I

3. Let kK =k + 1, add cut to master problem and solve

0)) = inc’ 'z + 6
(wk, 0k) = arg minc’ z +

subject to
0>ap+ Prr Ve=1,2,...

4. L(zy) = ctxp + 0, < Q(x). If you are happy with x;, based on
L(zy), then quit, otherwise create a new partition of
() = {Ql,QQ, cen ,Ql}. Goto 1.

(I'll draw some pictures in class)...
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Stochastic Decomposition I

0. Letk:LZCk:O,V:@
la. Draw random sample w;, and solve...

T, = arg max {7 (h(wy) — T((0r)z™) W' r < ¢}
TeyR™

1b. V=V UxrFk. Forj=1,2,...k—1, solve

T = arg max {7 (h(@;) — T((@;)z")}
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Stochastic Decomposition I

2a. Create cut as...

0 > 1/kzﬂf(h(wj) — T'(wj)xk)

e Call the cut (o + ﬂkT:c).

2b. For j =1,2,...,k — 1, Phase Out old cuts as

ap+ Bix=(k—1)/klar_1 + Bi_,x).
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Stochastic Decomposition I

3. Solve Master Problem

0)) = inc’z+6
(2k,0%) = argminc”a +

subject to
0>ar+0kxr Vek=1,2,...

e Goto 1.
» There is some subsequence of the ¥ — x*

e Typically people use some sort of statistical based stopping
criteria
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LP Duality I

e By duality

Qler,w) = max {n7 (h(w) — T(w)e)|7"W < g

e So if 7 satisfies 7' W < g, then

Q(z,w) > 7l (h(w) — T(w)x) Yw e Q, Ve e X
? (Why?)

= The lower bounding function £(x) is (only) such that
EpL(z) < Q(x)
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Checkpoint! - What we’ve learned I

e Modeling the Deterministic Equivalent of Stochastic (Linear)
Programs

¢ 'Two-stage

o Multi-stage. (Modeling our favorite eight-syllable word).
e EVPI
e VSS

e Recourse Function
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We Really Learned This Much? I

e Two-Stage Stochastic LP With Recourse

o Properties of the recourse function
— Convex
— Subdifferentiable
— Lipschitz-Continuous

¢ LShaped Method
— Feasibility Cuts
— Multicut methods
— Regularized methods. Trust region and regularized
decomposition.
— Bunching and Trickling Down
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WOW! .

¢ Bounds
— Jensen’s Inequality

— Edmunson-Madansky Inequality

e Monte Carlo Methods

o Valid Statistical Lower and Upper Bounds on optimal
objective function value

¢ Variance Reduction (Latin Hypercube Sampling)

o Convergence of Optimal Solutions

March 19, 2003 Stochastic Programming — Lecture 17 Slide 20



Math Stuff We’ve Learned I

e KKT Conditions

e Convexity

e (Lipschitz)-Continuity

e Minkowski Sum

e Weak-Strong Long of Large Numbers
e Central Limit Theorem

e Lebesgue-Stiltjes Integral

e I'Hopital’s Rule
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Comouter Stuff We’ve Learned I

e AMPL! Lots and lots of AMPL.
e Numerical Integration

e MPS format

e SMPS

e High Performance Computing
o SMP

¢ Message Passing

e Grid Computing

o Condor
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Survey Time I

e A simple show of hands please...

e What Next?
o Stochastic MIP
o Probabilistic Constraints?

& Multi-Stage Stochastic LP?

e Next Time...
o Go over old homeworks

o Get Homework “#5-#6"
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Remainder of Course I

e Start calling for people’s projects to be done soon!

e Only 8 more classes left. Last 3—4 classes will be (interspersed)
with project presentations =- you have roughly 2—-3 weeks to

finish.
e There will be 1.5 more assignments

= There is LOTS of work that you have left to do for this course!
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