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Outline

• HW#2 Review

• Stochastic Integer Programming

• Properties of the recourse function

• Integer LShaped Method
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HW#2

• Problem #1
¦ Doesn't depend on E[ξ] < ∞!
¦ Complete Recourse De�nition...
¦ Case by case...

• Problem #2�Ugly Math
¦ Ph.D. students�Get used to it!
¦ Masters students�I apologize

• Problem #3
¦ No one formulated SMPS correctly.
¦ We'll go over a bit in class...
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If the World Ended Today...

• Based on the �rst number in the box on your homework...

Score Grade #
≥ 18 A 9
≥ 17.7 A- 4
≥ 17.4 B+ 1
≥ 16.8 B 0
< 16.8 B- 2
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(Mixed) Integer Programming

• Linear programming where some of the variables are
constrained to take ony integer values

min
x∈X

{cT x|Ax = b}

• X = {x ∈ Zn1
+ ×<n−n1

+ }
• If n = n1, (pure) integer programming,

• Otherwise mixed integer programming

April 9, 2002 Stochastic Programming � Lecture 19 Slide 5



Why MIP

• �Natural� integrality of decision variables.
¦ Depending on scale of integer variables, often a linear

approximation is close enough.

• Yes/No decisions

• Logical conditions

April 9, 2002 Stochastic Programming � Lecture 19 Slide 6



Stochastic MIP

• Given random outcome ω and set X = {x ∈ Zn1
+ ×<n−n1

+ }, we
want to

min
x∈X

{cT x|Ax = b, T (ω)x = h(ω)}.

• If we must decide on x before the outcome ω is known, we
need to do something.

• We will do our favorite thing, and equip the problem with
recourse:

• q ∈ <p : Recourse costs

• W ∈ <m×p : Recourse matrix

• Y = {y ∈ Zp1
+ ×<p−p1

+ }
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Stochastic MIP

min
x∈X:Ax=b

{
cT x + Eω

[
min
y∈Y

{qT y : Wy = h(ω)− T (ω)x}
]}

• Second stage value function, or recourse (penalty) function
v : <m 7→ <.
¦ v(z) ≡ miny∈Y {qT y : Wy = z},
¦ For any vector z of �deviations in the random constraints

T (ω)x = h(ω)�, it describes the corresponding cost.
• Expected Value Function, or Expected minimium recourse function
Q : <n 7→ <.
¦ Q(x) ≡ Eω[v(h(ω)− T (ω)x)]

¦ For any policy x ∈ <n, it describes the expected cost of the
recourse.
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Stochastic MIP

• Recall that if Ω was �nite, we could write the (deterministic
equivalent) of a stochastic LP
¦ Just a large scale LP

• We can do the same for stochastic MIP
• Just a large-scale IP
¦ But a large-scale IP with a very weak linear programming

relaxation ⇒ not likely to be solved by �off-the-shelf�
software like cplex.
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Nasty, Nasty, Functions

• If you recall, our L-Shaped method for stochastic LP was based
on knowing �nice� properties of the second stage value function
(v(z)) or the Expected Value Function Q(x).

? We'll study it again!

v(z) = min
y∈Y

{qT y|Wy = z}, z ∈ <m

• Here are two properties...
¦ v(z) is lower semicontinuous on <m

¦ The discontinuity points of v are contained in a countable
union of hyperplanes in <m
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v(z)

v(z) = min
y∈Y

{2y1+5y2+6y3+y4|2y1+5y2+ty3−y4 = z}, Y = {Z3
+×<+}

v(z)

0

April 9, 2002 Stochastic Programming � Lecture 19 Slide 11



Lower Semicontinuous?

• f : D 7→ < is lower semicontinuous at x̂ if ∀ε > 0∃δ > 0 such
that x ∈ S, ‖x− x̂‖ < δ ⇒ f(x)− f(x̂) > −ε.

• f : D 7→ < is lower semicontinuous at x̂ if for any sequence
{xn} → x̂, with {f(xn)} → f̂ , f̂ ≥ f(x̂).
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Expected Recourse Function

• Now we will consider properties of
Q(x) = Eω[v(h(ω)− T (ω)x)], x ∈ <n

• Let D(x) = {ω ∈ Ω|v is not continuous at h(ω)− T (ω)x}
• Q(x) is a �nite lower semicontinuous function on <n.

• Q is continuous at x̂ if P (ω ∈ D(x̂)) = 0

¦ The sum of lower semicontinuous functions is lower
semicontinuous

¦ The condition P (ω ∈ D(x̂)) = 0 implies that the set of ω

such that v is discontinuous at h(ω)− T (ω)x is negligible in
the integral Eω[v(h(ω)− T (ω)x)].

¦ Then continuity of Q follows
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Algorithms for Stochastic IP

• I don't want to steal people's thunder, but I will brie�y discuss
the following methods.

• Integer L-Shaped method

• Dual Decomposition Method

• Stochastic Branch-and-Bound

• Structured Enumeration
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Stochastic IP�The Simple Case

min
x∈X:Ax=b

{
cT x + Eω

[
min
y∈Y

{qT y : Wy = h(ω)− T (ω)x}
]}

• Suppose X ⊆ Zn̄ ×<n−n̄
+

• Y ⊆ <p
+.

• What is the shape of Q(x)?
¦ It is convex!

• Do the L-shaped method except that you solve an integer
program as the master problem.
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Integer L-Shaped Method

Gilbert Laporte and François Louveaux, �The integer L-shaped
method for stochastic integer programs with complete recourse�,

Operations Research Letters, 13:133-142, 1993.

Designed to work on

min
x∈X:Ax=b

{
cT x +Q(x)

}

Q(x) = Eω

[
min
y∈Y

{qT y : Wy = h(ω)− T (ω)x}
]

• X ⊆ {0, 1}n

• Y ⊆ Zp̄
+ ×<p−p̄

+
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New Optimality Cuts

For xk ∈ X ⊆ {0, 1}n, de�ne the set

Sk = {j|xk
j = 1}.

Thm: The cut

θ ≥ (Q(xk)− L)


 ∑

j∈Sk

xj −
∑

j 6∈Sk

xj − |Sk|+ 1


 + L.

is a valid optimality cut for Q(x)
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Next Time

• Finish all of Stochastic IP, including example of Integer
L-Shaped method.

• I'll try to �gure out what to do about the project presentations...
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