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HW#2 I

e Problem #1
o Doesn’t depend on E[¢{] < oo!
¢ Complete Recourse Definition...

& Case by case...

e Problem #2—Ugly Math
o Ph.D. students—Get used to it!

& Masters students—I apologize

e Problem #3
& No one formulated SMPS correctly.

o We'll go over a bit in class...
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If the World Ended Today... I

e Based on the first number in the box on your homework...

Score | Grade | #
> 18 A 9
> 17.7 A- 4
>17.4 B+ 1
> 16.8 B 0
< 16.8 B- 2
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(Mixed) Integer Programming I

e Linear programming where some of the variables are
constrained to take ony integer values

. T o
Il’él)f(l{c x|Ax = b}

o X ={zecZl' xR ™™}
e If n = ny, (pure) integer programming,

e Otherwise mixed integer programming
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Why MIP I

e “Natural” integrality of decision variables.

¢ Depending on scale of integer variables, often a linear
approximation is close enough.

e Yes/No decisions

e Logical conditions
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Stochastic MIP I

Given random outcome w and set X = {x € Z"' x R},

want to
min{c’ z|Az = b, T(w)z = h(w)}.
reX
If we must decide on x before the outcome w is known, we

need to do something.

We will do our favorite thing, and equip the problem with
recourse:

g € RP : Recourse costs
W € R™*P : Recourse matrix

Y ={yeZ xR}

we
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Stochastic MIP I

. T . T . _
min {c xr+ E, [gg/l{q y: Wy = h(w) T(w)x}] }

e Second stage value function, or recourse (penalty) function
v: R — R,
_ T, . _
o v(z) = mingey{q'y: Wy = 2},
¢ For any vector z of “deviations in the random constraints

T(w)x = h(w)”, it describes the corresponding cost.

e Expected Value Function, or Expected minimium recourse function
Q:R" — R.
o Q) = Ky |v(h(w) — T(w)z)]
o For any policy x € R", it describes the expected cost of the
recourse.

April 9, 2002 Stochastic Programming — Lecture 19 Slide 8



Stochastic MIP I

e Recall that if €2 was finite, we could write the (deterministic
equivalent) of a stochastic LP

o Just a large scale LP

e We can do the same for stochastic MIP
e Just a large-scale IP

o But a large-scale IP with a very weak linear programming
relaxation = not likely to be solved by “off-the-shelf”
software like cplex.
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Nasty, Nasty, Functions'

e If you recall, our L-Shaped method for stochastic LP was based
on knowing “nice” properties of the second stage value function
(v(z)) or the Expected Value Function O(x).

* We'll study it again!

v(z) = min{q y|[Wy = 2z}, 2z € ™
yeyY

e Here are two properties...
o v(z) is lower semicontinuous on R

o The discontinuity points of v are contained in a countable
union of hyperplanes in R™
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v(2)

v(z) = yeig{Zyl—|—5y2+6y3+y4|2y1+5y2—|—ty3—y4 =z}LY = {Zixﬁh}

A

AN
\\\

AN

0
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Lower Semicontinuous? I

e f: D +— Rislower semicontinuous at x if Ve > 036 > 0 such
thatz € S ||z — z|| < 0 = f(x) — f(Z) > —e.

e f: D — Rislower semicontinuous at z if for any sequence

{zn} — 2, with {f(z,)} — f: f > f(2).
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Expected Recourse Function'

e Now we will consider properties of
Q(x) =E,[v(h(w) — T(w)x)],z € R"
o Let D(z) = {w € Q|v is not continuous at h(w) — T(w)x}
e O(x) is a finite lower semicontinuous function on R".
e Q is continuous at z if P(w € D(z)) =0

& The sum of lower semicontinuous functions is lower
semicontinuous

o The condition P(w € D(z)) = 0 implies that the set of w
such that v is discontinuous at h(w) — T'(w)x is negligible in
the integral E, [v(h(w) — T'(w)x)].

¢ Then continuity of () follows
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Algorithms for Stochastic IPI

e I don’t want to steal people’s thunder, but I will briefly discuss
the following methods.

e Integer L-Shaped method
e Dual Decomposition Method
e Stochastic Branch-and-Bound

e Structured Enumeration
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Stochastic IP—The Simple Case I

. T . T . o B
_min {c r+ E, [IyIél}l’/l{q y: Wy = h(w) T(w)az}] }

e Suppose X CZ" x R ™"
o Y C §R]_9|_.

e What is the shape of Q(x)?

o It is convex!

e Do the L-shaped method except that you solve an integer
program as the master problem.
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Integer L-Shaped Method I

Gilbert Laporte and Francois Louveaux, “The integer L-shaped
method for stochastic integer programs with complete recourse”,
Operations Research Letters, 13:133-142, 1993.

Designed to work on

- T
Lmin  Jete+ Q)

Q) = E, Z%'}e{qu : Wy = h(w) — T(w)z}

e X C{0,1}"

° Yng_X%ﬁ_ﬁ
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New Optimality Cuts I

For 2 € X C {0,1}", define the set

Sk = {]|:c§: = 1}.

Thm: The cut

0> Q") —L) | Y a;— ) a;—|S¥+1]+L.

jeSk JES*k

is a valid optimality cut for Q(x)
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Next Time .

e Finish all of Stochastic IP including example of Integer
L-Shaped method.

e I'll try to figure out what to do about the project presentations...
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