

Stochastic Integer Programming

Prof. Jeff Linderoth

April 9, 2003

- HW#2 Review
- Stochastic Integer Programming
- Properties of the recourse function
- Integer LShaped Method

- Problem #1
 - ♦ Doesn't depend on $\mathbb{E}[\xi] < \infty!$
 - ◊ Complete Recourse Definition...
 - ♦ Case by case...
- Problem #2—Ugly Math
 - ♦ Ph.D. students—Get used to it!
 - ♦ Masters students—I apologize
- Problem #3
 - ♦ No one formulated SMPS correctly.
 - ♦ We'll go over a bit in class...

If the World Ended Today...

• Based on the first number in the box on your homework...

Score	Grade	#
≥ 18	А	9
≥ 17.7	A-	4
217.4	B+	1
≥ 16.8	В	0
< 16.8	B-	2

(Mixed) Integer Programming

• Linear programming where some of the variables are constrained to take ony integer values

$$\min_{x \in X} \{ c^T x | Ax = b \}$$

- $X = \{ x \in \mathbb{Z}_+^{n_1} \times \Re_+^{n-n_1} \}$
- If $n = n_1$, (pure) integer programming,
- Otherwise *mixed* integer programming

Why MIP

- "Natural" integrality of decision variables.
 - Depending on scale of integer variables, often a linear approximation is close enough.
- Yes/No decisions
- Logical conditions

Stochastic MIP

• Given random outcome ω and set $X = \{x \in \mathbb{Z}^{n_1}_+ \times \Re^{n-n_1}_+\}$, we want to

$$\min_{x \in X} \{ c^T x | Ax = b, T(\omega)x = h(\omega) \}.$$

- If we must decide on x before the outcome ω is known, we need to do something.
- We will do our favorite thing, and equip the problem with *recourse*:
- $q \in \Re^p$: Recourse costs
- $W \in \Re^{m \times p}$: Recourse matrix
- $Y = \{ y \in \mathbb{Z}_+^{p_1} \times \Re_+^{p-p_1} \}$

Stochastic MIP

$$\min_{x \in X: Ax=b} \left\{ c^T x + \mathbb{E}_{\omega} \left[\min_{y \in Y} \{ q^T y : Wy = h(\omega) - T(\omega)x \} \right] \right\}$$

• Second stage value function, or recourse (penalty) function $v: \Re^m \mapsto \Re$.

$$\diamond \ v(z) \equiv \min_{y \in Y} \{ q^T y : W y = z \},$$

- ♦ For any vector z of "deviations in the random constraints $T(\omega)x = h(\omega)$ ", it describes the corresponding cost.
- Expected Value Function, or Expected minimium recourse function $Q: \Re^n \mapsto \Re.$
 - $\diamond \ \mathcal{Q}(x) \equiv \mathbb{E}_{\omega}[v(h(\omega) T(\omega)x)]$
 - ♦ For any policy $x \in \Re^n$, it describes the expected cost of the recourse.

Stochastic MIP

- Recall that if Ω was finite, we could write the (deterministic equivalent) of a stochastic LP
 - ◊ Just a large scale LP
- We can do the same for stochastic MIP
 - Just a large-scale IP
 - ♦ But a large-scale IP with a very weak linear programming relaxation ⇒ not likely to be solved by "off-the-shelf" software like cplex.

Nasty, Nasty, Functions

- If you recall, our L-Shaped method for stochastic LP was based on knowing "nice" properties of the second stage value function (v(z)) or the Expected Value Function Q(x).
- ★ We'll study it again!

$$v(z) = \min_{y \in Y} \{q^T y | Wy = z\}, z \in \Re^m$$

- Here are two properties...
 - $\diamond v(z)$ is lower semicontinuous on \Re^m
 - ♦ The discontinuity points of v are contained in a countable union of hyperplanes in $ℜ^m$

$$v(z) = \min_{y \in Y} \{ 2y_1 + 5y_2 + 6y_3 + y_4 | 2y_1 + 5y_2 + ty_3 - y_4 = z \}, Y = \{ \mathbb{Z}_+^3 \times \Re_+ \}$$

Lower Semicontinuous?

- $f: D \mapsto \Re$ is lower semicontinuous at \hat{x} if $\forall \epsilon > 0 \exists \delta > 0$ such that $x \in S, ||x \hat{x}|| < \delta \Rightarrow f(x) f(\hat{x}) > -\epsilon$.
- $f: D \mapsto \Re$ is *lower semicontinuous* at \hat{x} if for any sequence $\{x_n\} \to \hat{x}$, with $\{f(x_n)\} \to \hat{f}, \hat{f} \ge f(\hat{x})$.

Expected Recourse Function

- Now we will consider properties of $Q(x) = \mathbb{E}_{\omega}[v(h(\omega) - T(\omega)x)], x \in \Re^n$
- Let $D(x) = \{\omega \in \Omega | v \text{ is not continuous at } h(\omega) T(\omega)x\}$
- $\mathcal{Q}(x)$ is a finite lower semicontinuous function on \Re^n .
- \mathcal{Q} is continuous at \hat{x} if $P(\omega \in D(\hat{x})) = 0$
 - The sum of lower semicontinuous functions is lower semicontinuous
 - ♦ The condition $P(\omega \in D(\hat{x})) = 0$ implies that the set of ω such that v is discontinuous at $h(\omega) - T(\omega)x$ is negligible in the integral $\mathbb{E}_{\omega}[v(h(\omega) - T(\omega)x)]$.
 - $\diamond~$ Then continuity of Q follows

Algorithms for Stochastic IP

- I don't want to steal people's thunder, but I will *briefly* discuss the following methods.
- Integer L-Shaped method
- Dual Decomposition Method
- Stochastic Branch-and-Bound
- Structured Enumeration

Stochastic IP—The Simple Case

$$\min_{x \in X: Ax=b} \left\{ c^T x + \mathbb{E}_{\omega} \left[\min_{y \in Y} \{ q^T y : Wy = h(\omega) - T(\omega)x \} \right] \right\}$$

• Suppose
$$X \subseteq \mathbb{Z}^{\bar{n}} \times \Re^{n-\bar{n}}_+$$

- $Y \subseteq \Re^p_+$.
- What is the shape of $\mathcal{Q}(x)$?
 - ♦ It is convex!
- Do the L-shaped method except that you solve an *integer* program as the master problem.

Integer L-Shaped Method

Gilbert Laporte and François Louveaux, "The integer *L*-shaped method for stochastic integer programs with complete recourse", Operations Research Letters, 13:133-142, 1993.

Designed to work on

$$\min_{x \in X: Ax=b} \left\{ c^T x + \mathcal{Q}(x) \right\}$$

$$\mathcal{Q}(x) = \mathbb{E}_{\omega} \left[\min_{y \in Y} \{ q^T y : Wy = h(\omega) - T(\omega)x \} \right]$$

• $X \subseteq \{0,1\}^n$

•
$$Y \subseteq \mathbb{Z}_+^{\bar{p}} \times \Re_+^{p-\bar{p}}$$

New Optimality Cuts

For $x^k \in X \subseteq \{0,1\}^n$, define the set

$$S^k = \{j | x_j^k = 1\}.$$

Thm: The cut

$$\theta \ge (\mathcal{Q}(x^k) - L) \left(\sum_{j \in S^k} x_j - \sum_{j \notin S^k} x_j - |S^k| + 1 \right) + L.$$

is a valid optimality cut for $\mathcal{Q}(x)$

- Finish all of Stochastic IP, including example of Integer L-Shaped method.
- I'll try to figure out what to do about the project presentations...