IE 495 - Lecture 2

Stochastic Programming Modeling

Prof. Jeff Linderoth

Grading Policy

I forgot to add my grading policy for this semester on the syllabus...

- I will use a "sampling-based" grading scheme.
- For the assigned problems, I will grade one (maybe two) problems in-depth.
\diamond These problems will be out of 7 points.
\diamond The remaining problems will be worth 3 points.
* I will always produce a full set of solutions.

Bueller? Bueller? Anyone?

Survey results...

- Happy: Most people want to do a project.
\diamond Some people even want to do both!
- Sad: Less than half have taken Nonlinear Programming.
\diamond That's OK, we'll introduce/review as needed
- Some people don't want much theory.

Today's Outline

- Review
- Stages and Decisions in Stochastic Programs
\diamond Wait-and-see vs. Here-and-now
- Dealing with Randomness in Linear Programs
\diamond Guess
- Risk aversion
\diamond Chance constraints
\diamond Penalize shortages
\diamond Recourse actions
- Farmer Ted - A recourse problem

Please don't call on me!

- What does the term programming mean in stochastic programming?
- What is the expected value of (positive-valued) discrete random variable ξ ?
- What is a probability space?
\diamond Do you care what a probability space is?

A Random Linear Program

minimize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
\omega_{1} x_{1}+x_{2} & \geq 7 \\
\omega_{2} x_{1}+x_{2} & \geq 4 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

- $\omega_{1} \sim \mathcal{U}[1,4]$
- $\omega_{2} \sim \mathcal{U}[1 / 3,1]$

Worth 1000 Words?

What To Do?

- How do we solve this problem?
- What do you mean by solving this problem?
- Suppose it is possible to decide about x after the observation of the random vector ω ?
\diamond We can interpret this as a wait-and-see approach
- Can we solve the problem then?
\diamond I sure the heck hope so - it's just a simple deterministic linear program!

Here and Now

- Generally, "wait-and-see" is not an appropriate model of how things work.
\Rightarrow We need to decide on x before knowing the values of ω.
- In order for the problem to make sense in this case, we need to decide what to do about not knowing ω_{1}, ω_{2}.
- Three suggestions
\diamond Guess at uncertainty
\diamond Probabilistic Constraints
\diamond Penalize Shortfall

Guess Away!

- We will guess reasonable values for ω_{1}, ω_{2}
\diamond Like I mentioned last lecture, this is what people normally do.
\diamond What should be guess?
- I will offer three (reasonable) suggestions - each of which tells us something about our level of "risk"
\diamond Unbiased: Choose mean values for each random variable
\diamond Pessimistic: Choose worst case values for ω
\diamond Optimistic: Choose best case values for ω

Unbiased

- $\hat{\omega} \equiv \mathbb{E}(\omega)=(5 / 2,3 / 2)$
minimize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
\frac{5}{2} x_{1}+x_{2} & \geq 7 \\
\frac{3}{2} x_{1}+x_{2} & \geq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- $\hat{v}=50 / 11$
- $\left(\hat{x}_{1}, \hat{x}_{2}\right)=(18 / 11,32 / 11)$

Pessimistic

- $\hat{\omega}=(1,1 / 3)$
minimize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
1 x_{1}+x_{2} & \geq 7 \\
1 / 3 x_{1}+x_{2} & \geq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Picture...

- $\hat{v}=7$
- $\left(\hat{x}_{1}, \hat{x}_{2}\right)=(0,7)$

Optimistic

- $\hat{\omega}=(4,1)$
minimize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
4 x_{1}+x_{2} & \geq 7 \\
1 x_{1}+x_{2} & \geq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- $\hat{v}=4$
- $\left(\hat{x}_{1}, \hat{x}_{2}\right)=(4,0)$

Pros and Cons

+ Easy!
\diamond Solve a deterministic problem oif the same size as the original random problem
+ Only "rough" information about the randomness ω is needed.
- Only takes into account one "case" of what the randomness might be
- There might even be ω for which the chosen x is infeasible.

Chance Constrained

- Another (probably more reasonable) approach. Let's enforce that the probability of a constraint holding is sufficiently large.

Let's add the constraints

$$
\begin{aligned}
& \mathrm{P}\left\{\omega_{1} x_{1}+x_{2} \geq 7\right\} \geq \alpha_{1} \\
& \mathrm{P}\left\{\omega_{2} x_{1}+x_{2} \geq 4\right\} \geq \alpha_{2}
\end{aligned}
$$

Or maybe the constraint

$$
\mathrm{P}\left\{\omega_{1} x_{1}+x_{2} \geq 7, \omega_{2} x_{1}+x_{2} \geq 4\right\} \geq \alpha
$$

Chance Constraints

- Note for α_{1}, alpha $a_{2}, \alpha=1$ this is equivalent to a normal (deterministic) problem
? How do we solve probabilistically constrained problems?
- It's (very) difficult
\diamond Stay tuned.
\Rightarrow We will learn (a little) bit about these problems later in the course

Approach III - Penalize Shortfall

- We will accept infeasibility, but penalize the expected shortage.
- Notation:
$\diamond x^{+} \equiv \max (0, z):$ The positive part of z.
$\diamond x^{-} \equiv \max (0,-z):$ The negative part of z.
- Then, for the constraint $\omega_{1} x_{1}+x_{2} \geq 7$, the shortfall is $\left(\omega_{1} x_{1}+x_{2} \geq 7\right)^{-}$
- For each constraint, assign (unit) shortfall costs q_{1}, q_{2}.
- Optimization problem becomes...

$$
\min _{x \in \Re_{+}^{2}}\left\{x_{1}+x_{2}+q_{1} \mathbb{E}_{\omega_{1}}\left[\left(\omega_{1} x_{1}+x_{2}-7\right)^{-}\right]+q_{2} \mathbb{E}_{\omega_{2}}\left[\left(\omega_{2} x_{1}+x_{2}-4\right)^{-}\right]\right\}
$$

Yikes!

- Yes, I concur that the function we are trying to optimize looks ugly.
- However, it is convex.
\diamond You will learn this formally later. (Yuck! Theory!)
- In fact, it is not too hard to see that the problem is equivalent to the following:

$$
\min _{x \in \Re_{+}^{2}}\left\{x_{1}+x_{2}+\mathbb{E}_{\omega}\left[\min _{y \in \Re_{+}^{2}}\left\{q_{1} y_{1}+q_{2} y_{2}: \begin{array}{l}
\omega_{1} x_{1}+x_{2}+y_{1} \geq 7 \\
\omega_{2} x_{1}+x_{2}+y_{2} \geq 4
\end{array}\right\}\right]\right\}
$$

Recourse Function

- Let's write the problem in terms of x only

$$
\min _{x \in \Re_{+}^{2}}\left\{x_{1}+x_{2}+\mathcal{Q}\left(x_{1}, x_{2}\right)\right\}
$$

where

$$
\mathcal{Q}\left(x_{1}, x_{2}\right)=\mathbb{E}_{\omega}\left[\min _{y \in \Re_{+}^{2}}\left\{q_{1} y_{1}+q_{2} y_{2}: \begin{array}{l}
y_{1} \geq 7-\omega_{1} x_{1}-x_{2} \\
\\
y_{2} \geq 4-\omega_{2} x_{1}-x_{2}
\end{array}\right\}\right]
$$

- $\mathcal{Q}\left(x_{1}, x_{2}\right)$ is called the recourse function.
- For a given decision x_{1}, x_{2}, what do we do (recourse)?
- In this case, it is simply to penalize the shortfall.
- y_{1}, y_{2} will be exactly the shortfall in constraints 1 and 2 .

Decisions, Stages, and Recourse

When dealing with "here-and-now" decision problems, in general, we don't have to necessarily penalize shortfall, but we might be able to take "corrective action" - recourse!

Consider a planning problem with two periods. The following sequence of events occurs.

1. We make a decision now (first-period decision)
2. Nature makes a random decision ("stuff" happens)
3. We make a second period decision that attempts to repair the havoc wrought by nature in (2). (recourse)

Recourse Example - Farmer Ted

- Farmer Ted can grow Wheat, Corn, or Beans on his 500 acres.
- Farmer Ted requires 200 tons of wheat and 240 tons of corn to feed his cattle
\diamond These can be grown on his land or bought from a wholesaler.
\diamond Any production in excess of these amounts can be sold for $\$ 170 /$ ton (wheat) and $\$ 150 /$ ton (corn)
\diamond Any shortfall must be bought from the wholesaler at a cost of $\$ 238 /$ ton (wheat) and $\$ 210 /$ ton (corn).
- Farmer Ted can also grow beans
\diamond Beans sell at $\$ 36 /$ ton for the first 6000 tons
\diamond Due to economic quotas on beet production, beans in excess of 6000 tons can only be sold at $\$ 10 /$ ton

The Data

- 500 acres available for planting

	Wheat	Corn	Beans
Yield (T/acre)	2.5	3	20
Planting Cost (\$/acre)	150	230	260
Selling Price	170	150	$36(\leq 6000 \mathrm{~T})$
			$10(>6000 \mathrm{~T})$
Purchase Price	238	210	N/A
Minimum Requirement	200	240	N/A

Formulate the LP - Decision Variables

- $x_{W, C, B}$ Acres of Wheat, Corn, Beans Planted
- $w_{W, C, B}$ Tons of Wheat, Corn, Beans sold (at favorable price).
- e_{B} Tons of beans sold at lower price
- $y_{W, C}$ Tons of Wheat, Corn purchased.
* Note that Farmer Ted has recourse. After he observes the weather event, he can decide how much of each crop to sell or purchase!
- (Farmer Fred from lecture \#1 had no recourse - his recourse action was to simply count the profits).

Formulation

maximize
$-150 x_{W}-230 x_{C}-260 x_{B}-238 y_{W}+170 w_{W}-210 y_{C}+150 y_{C}+36 w_{B}+10 e_{B}$ subject to

$$
\begin{aligned}
x_{W}+x_{C}+x_{B} & \leq 500 \\
2.5 x_{W}+y_{W}-w_{W} & =200 \\
3 x_{C}+y_{C}-w_{C} & =240 \\
20 x_{B}-w_{B}-e_{B} & =0 \\
w_{B} & \leq 6000 \\
x_{W}, x_{C}, x_{B}, y_{W}, y_{C}, e_{B}, w_{W}, w_{C}, w_{B} & \geq 0
\end{aligned}
$$

Solution with (expected) yields

	Wheat	Corn	Beans
Plant (acres)	120	80	300
Production	300	240	6000
Sales	100	0	6000
Purchase	0	0	0

- Profit: \$118,600

Planting Intuition

- Farmer Ted is happy to see that the LP solution corresponds to his intuition.
\diamond Plant the land necessary to grow up to his quota limit of beans.
\diamond Plant land necessary to meet his requirements for wheat and corn
\diamond Plant remaining land with wheat - sell excess.

It's the Weather, Stupid!

- Farmer Ted knows well enough to know that his yields aren't always precisely $Y=(2.5,3,20)$. He decides to run two more scenarios
- Good weather: $1.2 Y$
- Bad weather: $0.8 Y$

Formulation - Good yields

maximize
$-150 x_{W}-230 x_{C}-260 x_{B}-238 y_{W}+170 w_{W}-210 y_{C}+150 y_{C}+36 w_{B}+10 e_{B}$ subject to

$$
\begin{aligned}
x_{W}+x_{C}+x_{B} & \leq 500 \\
3 x_{W}+y_{W}-w_{W} & =200 \\
3.6 x_{C}+y_{C}-w_{C} & =240 \\
24 x_{B}-w_{B}-e_{B} & =0 \\
w_{B} & \leq 6000 \\
x_{W}, x_{C}, x_{B}, y_{W}, y_{C}, e_{B}, w_{W}, w_{C}, w_{B} & \geq 0
\end{aligned}
$$

	Wheat	Corn	Beans
Plant (acres)	183.33	66.67	250
Production	550	240	6000
Sales	350	0	6000
Purchase	0	0	0

- Profit: $\$ 167,667$

Formulation - Bad Yields

maximize
$-150 x_{W}-230 x_{C}-260 x_{B}-238 y_{W}+170 w_{W}-210 y_{C}+150 y_{C}+36 w_{B}+10 e_{B}$ subject to

$$
\begin{aligned}
x_{W}+x_{C}+x_{B} & \leq 500 \\
2 x_{W}+y_{W}-w_{W} & =200 \\
2.4 x_{C}+y_{C}-w_{C} & =240 \\
16 x_{B}-w_{B}-e_{B} & =0 \\
w_{B} & \leq 6000 \\
x_{W}, x_{C}, x_{B}, y_{W}, y_{C}, e_{B}, w_{W}, w_{C}, w_{B} & \geq 0
\end{aligned}
$$

Solution - Bad Yields

	Wheat	Corn	Beans
Plant (acres)	100	25	375
Production	200	60	6000
Sales	0	0	6000
Purchase	0	180	0

- Profit: $\$ 59,950$

What to do?

- Obviously the answer is quite dependent on the weather and the respective yields.
- Another main issue is on bean production. Without knowing the weather/yield, he can't determine the proper amount of beans to plant to maximize his quota and not have to sell any at the unfavorable price.
- It's impossible to make a perfect decision, since planting decisions must be made now, but purchase and sales decisions can be made later.

Maximize Expected Profit

- Assume that the three scenarios occur with equal proability.
- Attach a scenario subscript $s=1,2,3$ to each of the purchase and sale variables.
$\diamond 1$: Good, 2: Average, 3: Bad
Ex. $w_{C 2}$: Tons of corn sold at favorable price in scenario 2
Ex. $e_{B 3}$: Tons of beans sold at unfavorable price in scenario 3 .

Expected Profit

- An expression for Farmer Ted's Expected Profit is the following:

$$
\begin{array}{r}
150 x_{W}-230 x_{C}-260 x_{B} \\
+1 / 3\left(-238 y_{W 1}+170 w_{W 1}-210 y_{C 1}+150 y_{C 1}+36 w_{B 1}+10 e_{B 1}\right) \\
+1 / 3\left(-238 y_{W 2}+170 w_{W 2}-210 y_{C 2}+150 y_{C 2}+36 w_{B 2}+10 e_{B 2}\right) \\
+1 / 3\left(-238 y_{W 3}+170 w_{W 3}-210 y_{C 3}+150 y_{C 3}+36 w_{B 3}+10 e_{B 3}\right)
\end{array}
$$

Expected Value Problem - Constraints

$$
\begin{aligned}
x_{W}+x_{C}+x_{B} & \leq 500 \\
3 x_{W}+y_{W 1}-w_{W 1} & =200 \\
2.5 x_{W}+y_{W 2}-w_{W 2} & =200 \\
2 x_{W}+y_{W 3}-w_{W 3} & =200 \\
3.6 x_{C}+y_{C 1}-w_{C 1} & =240 \\
3 x_{C}+y_{C 2}-w_{C 2} & =240 \\
2.4 x_{C}+y_{C 3}-w_{C 3} & =240 \\
24 x_{B}-w_{B 1}-e_{B 1} & =0 \\
20 x_{B}-w_{B 2}-e_{B 2} & =0 \\
16 x_{B}-w_{B 3}-e_{B 3} & =0 \\
w_{B 1}, w_{B 2}, w_{B 3} & \leq 6000 \\
\text { All vars } & \geq 0
\end{aligned}
$$

Optimal Solution

	Wheat	Corn	Beans	
s	Plant (acres)	170	80	250
1	Production	510	288	6000
1	Sales	310	48	6000
1	Purchase	0	0	0
2	Production	425	240	5000
2	Sales	225	0	5000
2	Purchase	0	0	0
3	Production	340	192	4000
3	Sales	140	0	4000
3	Purchase	0	48	0

- (Expected) Profit: $\$ 108,390$

Solution Characteristics

- Best solution allocates land for beans to always avoid having to sell them at the unfavorable price.
- Corn is planted so that the requirement is met in the average scenario.
- The remaining land is allocated to wheat.
* Again, it is impossible to find a solution that is ideal under all circumstances. Decisions in stochastic models are balanced, or hedged against the various scenarios.

AMPL

Fortune Tellers

- Suppose Farmer Ted could with certainty tell whether or not the upcoming growing season was going to have good yields, average yields, or bad yields.
\diamond His bursitits was acting up
\diamond Consulting the Farmer's Almanac
\diamond Hire a fortune teller
- The real point here is how much Farmer Fred would be willing to pay for this "perfect" information.
* In real-life problems, how much is it "worth" to invest in better (or perfect) forecasting technology?

What's it worth?

- If $p=0.5$ - i.e. half of the seasons are wet, and half of the seasons are dry, how much more money could he make?
- In the wet seasons, he would plant all corn and make $\$ 100$.
- In the dry seasons, he would plant all wheat and make $\$ 40$.
- In the long run, his profit would be $0.5(100)+0.5(40)=\$ 70$.
- Constrast this to the optimal (in the presence of uncertainty) profit of planting all beans : $\$ 57.5$.
- We can this difference (\$70-\$57.5) the expected value of perfect information(EVPI)

What's it worth?

- With perfect information, Farmer Ted's would plant (wheat, corn, beans).
\diamond Good yield: (183.33, 66.67, 250), Profit: $\$ 167,667$
\diamond Average yield: $(120,80,300)$, Profit: $\$ 118,600$
\diamond Bad yield: (100, 25, 375), Profit: \$59,950
- Assuming each of these scenarios occurs with probability $1 / 3$, his long run average profit would be
$\diamond(1 / 3)(167667)+(1 / 3)(118600)+(1 / 3)(59950)=115406$
- With his (optimal) "here-and-now" decision of (170, 80, 250), he would make a long run profit of 108390
- This difference (115406-108390) is the expected value of perfect information(EVPI)

Readings

- 1.2, 2.1, 2.2, 2.3, 2.4, 2.7
- If you want to review some math - 2.9

