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Outline

• Stochastic Integer Programming
¦ Integer LShaped Method
¦ Dual Decomposition Method
¦ Stochastic Branch and Bound
¦ Structured Enumeration
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Stochastic MIP

min
x∈X:Ax=b

{
cT x + Eω

[
min
y∈Y

{qT y : Wy = h(ω)− T (ω)x}
]}

• X = {x ∈ Zn1
+ ×<n−n1

+ }
• Y = {y ∈ Zp1

+ ×<p−p1
+ }

¦ v(z) ≡ miny∈Y {qT y : Wy = z},
¦ Q(x) ≡ Eω[v(h(ω)− T (ω)x)]

min
x∈X:Ax=b

{
cT x +Q(x)

}
.
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Stochastic MIP

• Recall that if Ω was �nite, we could write the (deterministic
equivalent) of a stochastic LP
¦ Just a large scale LP

• We can do the same for stochastic MIP
• Just a large-scale IP
¦ But a large-scale IP with a very weak linear programming

relaxation ⇒ not likely to be solved by �off-the-shelf�
software like cplex.
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Stochastic IP�The Simple Case

min
x∈X:Ax=b

{
cT x + Eω

[
min
y∈Y

{qT y : Wy = h(ω)− T (ω)x}
]}

• Suppose X ⊆ Zn̄ ×<n−n̄
+

• Y ⊆ <p
+.

• Integrality only in the �rst stage?

• What is the shape of Q(x)?
¦ It is convex!

? Idea to solve�Do the L-shaped method except that you solve
an integer program as the master problem.

This case is almost as easy as two-stage LP w/recourse
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Integer L-Shaped Method

Gilbert Laporte and François Louveaux, �The integer L-shaped
method for stochastic integer programs with complete recourse�,

Operations Research Letters, 13:133-142, 1993.
Designed to work on

min
x∈X:Ax=b

{
cT x +Q(x)

}

Q(x) = Eω

[
min
y∈Y

{qT y : Wy = h(ω)− T (ω)x}
]

• X ⊆ {0, 1}n

• Y ⊆ Zp̄
+ ×<p−p̄

+

• All binary �rst stage variables, arbitrary second stage
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New Optimality Cuts

For xk ∈ X ⊆ {0, 1}n, de�ne the set

Sk = {j|xk
j = 1}.

Thm: The cut

θ ≥ (Q(xk)− L)


 ∑

j∈Sk

xj −
∑

j 6∈Sk

xj − |Sk|+ 1


 + L.

is a valid optimality cut for Q(x)

• �Valid Optimality Cut� means
¦ Cut is tight at x

¦ Inequality holds for all feasible x.
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Proof

θ ≥ (Q(xk)− L)


 ∑

j∈Sk

xj −
∑

j 6∈Sk

xj − |Sk|+ 1


 + L.

• Consider the quantity A ≡ ∑
j∈Sk xj −

∑
j 6∈Sk xj . A ≤ |Sk|.

A = |Sk| if and only if Sk is the set based on x = (x1, x2, . . . xn).

• If A = |Sk|, then the cut is θ ≥ Q(xk).

• If A < |Sk|, then (x) is not the solution on which Sk is based.
In this case,
¦ A < |Sk| ⇒ A ≤ |Sk| − 1
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Proof, cont.

A ≤ |Sk| − 1...

⇒
(∑

j∈Sk xj −
∑

j 6∈Sk xj − |Sk|+ 1
)
≤ 0

⇒ (Q(xk)− L)
(∑

j∈Sk xj −
∑

j 6∈Sk xj − |Sk|+ 1
)
≤ 0,

⇒ so thw cut is θ ≥ L + M , with M ≤ 0, and the cut must be valid
for this x.

QUITE ENOUGH DONE.
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Integer L-Shaped Method�Algorithm

• We just will do a �single cut� version of the Integer L-Sshaped
method. (Multicut is a simple extension).

0. Let v = 0, let z̄ = ∞
1. Select node. If none exist, stop.
2. v = v + 1. Solve problem, if infeasible, fathom node and go to

1. Let (xv, θv) be solution to problem at node v. If
cT xv + θv > z̄, fathom node and go to 1.

3. If x violates integrality, branch, creating new nodes. Go to 1.
4. Compute Q(xv). If zv = ctxv +Q(xv) < z̄, then update z̄ ← zv.
5. If θv ≥ Q(xv), fathom the node and go to 1. Otherwise, add

(integer) optimality cut, and go to 2.
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Dual Decomposition

C. C. Carøe and R. Schultz, �Dual Decomposition in Stochastic
Integer Programming,� Operations Research Letters, 24:37-45,
1999.

• Main idea, having to choose only one solution x for each
scenario s is a bummer.
¦ If we didn't have this restriction, the problem would be

�easy� in the sense that we could just solve each scenario
independently.
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Dual Decomposition

minimize ∑

s∈S

psc
T xs + qT ys

subject to

Ax = b

Tsx + Wys = hs ∀s ∈ S

xs ∈ X ∀s ∈ S

ys ∈ Y ∀s ∈ S

x1 = x2 = . . . = xs
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Relax Nonanticipativity

• The constraints x1 = x2 = . . . = xs are like nonanticipativity
constraints.

• We can write the equalities as

∑

s∈S

Hsxs = 0.
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Dual Decomposition

x1 =
X
s∈S

psxs

x2 =
X
s∈S

psxs

...
xs =

X
s∈S

psxs

• Use Lagrangian relaxation. Provides a lower bound on the
optimal solution.

• If solution is integer feasible, then it is optimal. Otherwise
branch.

• More details in a presentation.
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Stochastic Branch and Bound

V. I. Norkin and Y. M. Ermoliev and A. Ruszczyński, �On Optimal
Allocation of Indivisibles under Uncertainty,� Operations Research,
46:381-392, 1998.

• Shares many similarities to the Monte Carlo Approach

• Very general
¦ Works on (mixed) integer variable in both stages.
¦ Arbitrary probability distributions for random parameters
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Stochastic Branch and Bound

z∗(X) min
x∈X

F (x)

• In this description, we assume X is a �nite set.

• Partition feasible set X into partition Pk ≡ {X1, X2, . . . Xn(k)}
at iteration k

• z∗(X) = minn(k)
j=1 z∗(Xj)

• In general, we assume that we can compute (maybe statistical)
upper and lower bounds L(Xj) ≤ z∗(Xj) ≤ U(xj)
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Stochastic Branch and Bound

1. Select �Record Set� X̄ ∈ arg minj{L(Xj)}. Select �Approximate
Solution� xk ∈ arg minj{U(xj)}.

2. If X̄ is not a singleton, partition X̄ and update the working
parition accordingly.

3. Update (estimates) of L(Xj) and U(Xj), paying most attention
to (subsets of) the record set.

4. Remove subsets of Xj that contain no feasible solutions.
Bounding out can only be applied if the estimates of the bounds
are exact.

5. Go to 1 unless a stopping criteria is met.
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Stochastic Branch and Bound

• A typical stopping criterion is that there is some (singleton)
record set X̂ where U(X̂) < L(Xk) for all other subsets k.
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Stochastic Branch and Bound�Example

min{x +Q(x)|x ∈ {0, 1, . . . , 10}
• Q(x) = Eω[v(x, ω)]

• v(x, ω) = min{1.5y : y ≥ ω − x, y ∈ Z+ = 1.5dω − xe+
Your notes here
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Projects

• Everyone will prepare a short report. No more than 4 pages.
¦ Background
¦ Goal of project
¦ Things I Learned
¦ Conclusions

• 15 minute (NO MORE THAN 15 MINUTE) presentation to class.
¦ Six people present on 4/23

? Any volunteers? Otherwise, I am going to �volunteer� six
people.

¦ Everyone else present on 5/1 (when our �nal is scheduled).
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Final Exam

• I will pass out �nal on 4/23.

• It will be due on 5/1.

• It will be of comparable dif�culty to the homeworks.
¦ It will require some modeling.
¦ It will require some sampling/computational component.
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Next Time...

• Multistage Stochastic Programming
¦ Modeling Issues

• Nested Bender's Decomposition
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