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Outline

• HW Fixes

• Chance Constrained Programming
¦ Is Hard
¦ Main Result(s)
¦ How to use it
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Homework Fixes

• �Graph� problems
¦ Please graph the expected value function for all (non-integer

too) values of x.

• Problem 6.
¦ c = 1

¦ Please graph x +Q(x) � it will be more instructive.

April 21, 2002 Stochastic Programming � Lecture 22 Slide 3



Multistage Stochastic Programming

• How would you solve a really small instance?

• What is your favorite eight-syllable word?

• Modeling
¦ Explicit N-A
¦ Implicit N-A

• Nested Decomposition
¦ What goes forward?
¦ What goes backwards?
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A Random Linear Program

minimize
x1 + x2

subject to

ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1 ≥ 0

x2 ≥ 0

• ω1 ∼ U [1, 4]

• ω2 ∼ U [1/3, 1]
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Say Goodbye to Our Favorite Problem...
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What To Do?

• How do we solve this problem?

• What do you mean by solving this problem?

• Today, we answer the question in another way

• Let's enforce that the probability of a constraint holding is
suf�ciently large.
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Chance Constrained

• Separate Chance Constraints

P{ω1x1 + x2 ≥ 7} ≥ α1

P{ω2x1 + x2 ≥ 4} ≥ α2

• Joint (integrated) chance constraint

P{ω1x1 + x2 ≥ 7, ω2x1 + x2 ≥ 4} ≥ α
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Example�Integrated Chance Constraints

• (1) : P{(ω1, ω2) = (1, 1)} = 0.1

• (2) : P{(ω1, ω2) = (2, 5/9)} = 0.4

• (3) : P{(ω1, ω2) = (3, 7/9)} = 0.4

• (4) : P{(ω1, ω2) = (4, 1/3)} = 0.1

• Consider for some α ∈ (0.8, 0.9]...

P{ω1x1 + x2 ≥ 7, ω2x1 + x2 ≥ 4} ≥ α

• Then constraints for realizations (2), (3), and either (1) or (4)
must hold.
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Picture
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What Does This Show

• De�ne the feasibility set...

K1(α) = {x|P(T (ω)x ≥ h(ω)) ≥ α}.
• K1(α) need not be convex. :-(

• When will it be �nice�?

Thm:
Suppose T (ω) = T is �xed, and h(ω) has a quasi-concave
probability measure P . Then K1(α) is convex for 0 ≤ α ≤ 1
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Quasi-Concave

• A function P : D → < de�ned on a domain D is quasi-concave
if ∀ convex U, V ⊆ D, and 0 ≤ λ ≤ 1,

P((1− λ)U + λV ) ≥ min{P(U), P(V )}.

x

f(x)
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Quasi-Concave Probability Distributions

Uniform:

f(x) =





1/µ(S) x ∈ S

0 Otherwise

Exponential density: f(x) = λe−λx

Mutivariable normal density: f(x) = γe−
1
2 (x−µ)T V −1(x−µ)

• What this means?
• If you have such a density, you can
¦ Use Lagrangian Techniques
¦ Use a reduced-gradient technique (see Kall & Wallace

Section 4.1)
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Single Constraint�Easy Case

• The situation in the single constraint case is somewhat more
simple.

• Suppose again that Ti(ω) = Ti is constant. (The ith row of the
technology matrix is constant, and we wish to enforce...)

P(Tix ≥ hi(ω)) = F (Tix) ≥ α

so the deterministic equivalent is

Tix ≥ F−1(α)

• This is a linear constraint�we just need to compute F−1(α)
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Other �Solvable� Cases

• Let h(ω) = h be �xed, T (ω) = (ω1, ω2, . . . , ωn), with
ω ≡ (ω1, ω2, . . . , ωn) a multivariate normal distribution with
mean µ = (µ1, µ2, . . . µn) and covariance matrix V . Then

K1(α) = {x|µT x ≥ h + Φ−1(α)
√

xT V x}.
• K1(α) is a convex set for α ≥ 0.5

• You can write it as a �Second Order Cone� constraint.
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�Robust� Portfolio Optimization

• Suppose I have a universe of stocks to pick from each with an
expected return α1, α2, . . . αn.

• The α are random variables. Assume that they are follow a
multivariate normal distribution with means αi and covariance
matrix Σ.

• Suppose I want to be �reasonably� sure that I make a good
return T .
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Robust Portfolio Optimization

• xi ≥ 0 : Percentage of portfolio to invest in stock i

P
{

(
n∑

i=1

αixi ≥ T ) ≥ α

}

αT x− Φ−1(α)
√

xT Σx ≥ h

• We'll do one �nal �proof� of the main result if time allows...
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Chance Constrained Programming in a Nutshell

• Single Chance Constraint(s)
¦ Ti �xed ⇒ LP! (Tix ≥ F−1(α))

¦ Ti normal ⇒ convex! (Solve as SOCP).

• Joint Chance Constraints
¦ T (ω) �xed, h ≈ P , with P quasi-concave ⇒ K1(α) is convex

� Use Lagrangian Approach
� a �Reduced Gradient� NLP approach

• Otherwise�Very Hard.
¦ Use a bounding approximation
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Next Time...

• I'll pass out the �nal...

• You should try to have the homework �nished...

• For your learning pleasure...

• Banu Gemici
¦ Variance Reduction for Monte-Carlo Approaches to Product

Portfolio Optimization

• Rui Kang
¦ Stochastic Integer Programming�Primal and Dual

Approaches
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For Your Learning Pleasure...

• Jen Rogers
¦ Replacement Analysis with Technological Breakthroughs

• Jerry Shen
¦ A Multistage Stochastic Programming Approach to Running

Red Lights

• Clara Novoa
¦ Integer L-Shaped Method
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