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Outline I

e HW Fixes

e Chance Constrained Programming
o Is Hard
o Main Result(s)

o How to use it

April 21, 2002 Stochastic Programming — Lecture 22 Slide 2



Homework Fixes I

e “Graph” problems
o Please graph the expected value function for all (non-integer
too) values of x.
e Problem 6.
o c=1

o Please graph x + Q(x) — it will be more instructive.
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Multistage Stochastic Programming'

e How would you solve a really small instance?
e What is your favorite eight-syllable word?

e Modeling
o Explicit N-A
o Implicit N-A
e Nested Decomposition

o What goes forward?

& What goes backwards?
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A Random Linear Program I

minimize
T1 + T2

subject to
w1 + Io Z 7
wWoX1 + To 2 4
I Z 0
9 Z 0

® Wy v Z/[[l, 4]

o wy ~U[1/3,1]
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Say Goodbye to Our Favorite Problem... I

April 21, 2002 Stochastic Programming — Lecture 22 Slide 6



What To Do? I

e How do we solve this problem?
e What do you mean by solving this problem?
e Today, we answer the question in another way

e Let’s enforce that the probability of a constraint holding is
sufficiently large.
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Chance Constrained I

e Separate Chance Constraints

Vv
2

P{wlxl + 9 Z 7}
P{ngl + X9 Z 4} > %)

e Joint (integrated) chance constraint

Plwixs + 20 > T,woxy + 12 > 4} > «

April 21, 2002 Stochastic Programming — Lecture 22 Slide 8



Example—Integrated Chance Constraints I

(1) : P{(w1,w2) = (1,1)} = 0.1

(2) : P{(w1,w2) = (2,5/9)} = 0.4
(3) : P{(w1,w2) =(3,7/9)} = 0.4
(4) : P{(w1,w2) = (4,1/3)} = 0.1

Consider for some « € (0.8,0.9]...

Plwixs + 20 > T,woxy + 12 > 4} > «

Then constraints for realizations (2), (3), and either (1) or (4)

must hold.
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Picture .
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What Does This Show.

e Define the feasibility set...

Ki(a) =A{z|P(T(w)x > h(w)) > a}.

e Ki(a) need not be convex. :-(
e When will it be “nice”?

Thm:

Suppose T'(w) = T is fixed, and h(w) has a quasi-concave
probability measure P. Then K;(«) is convex for 0 < a <1
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Quasi-Concave I

e A function P : D — R defined on a domain D is quasi-concave
if Veconvex U,V C D,and 0 < X\ <1,

P((1 — MU + AV) > min{P(U), P(V)}.

A

f()
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Quasi-Concave Probability Distributions I

Uniform:

1/u(S) reS
0 Otherwise

flz) =

Exponential density: f(z) = Ae™?*

Mutivariable normal density: f(z) = ye~z(@=#)" V" (@=u)
e What this means?
e If you have such a density, you can

¢ Use Lagrangian Techniques

¢ Use a reduced-gradient technique (see Kall & Wallace
Section 4.1)
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Single Constraint—Easy Case I

e The situation in the single constraint case is somewhat more
simple.

e Suppose again that T;(w) = T; is constant. (The ith row of the
technology matrix is constant, and we wish to enforce...)

P(T;x > h;(w)) = F(Tix) > «

so the deterministic equivalent is

TZ'CIZ Z F_l(Oé)

e This is a linear constraint—we just need to compute F'~!(a)
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Other “Solvable” Cases I

e Let h(w) = h be fixed, T'(w) = (w1,wa, .. .,wy), with
w = (w1,ws,...,w,) a multivariate normal distribution with
mean u = (u1, 2, - - - 4n) and covariance matrix V. Then

Ki(a)={z|p'z>h+d 1 (a)VaTVz}.
e Ki(«a) is a convex set for a > 0.5

e You can write it as a “Second Order Cone” constraint.
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“Robust” Portfolio Optimization'

e Suppose I have a universe of stocks to pick from each with an
expected return aq, as, . .. Q.

e The « are random variables. Assume that they are follow a
multivariate normal distribution with means «; and covariance
matrix ..

e Suppose I want to be “reasonably” sure that [ make a good
return 7.
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Robust Portfolio Optimization I

e 1; > 0 : Percentage of portfolio to invest in stock ¢

P{(zn:ozixi >T) > a}

otz —d Y a)VaTSz > h

e We’ll do one final “proof” of the main result if time allows...
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Chance Constrained Programming in a Nutshell'

e Single Chance Constraint(s)
o 15 fixed = LP! (TZCIZ > F_l(()é))

o T; normal = convex! (Solve as SOCP).

e Joint Chance Constraints
o T(w) fixed, h =~ P, with P quasi-concave = K;(«) is convex
— Use Lagrangian Approach
— a “Reduced Gradient” NLP approach
e Otherwise—Very Hard.

& Use a bounding approximation
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Next Time... I

e I'll pass out the final...
e You should try to have the homework finished...
e For your learning pleasure...

e Banu Gemici
¢ Variance Reduction for Monte-Carlo Approaches to Product
Portfolio Optimization
e Rui Kang

& Stochastic Integer Programming—Primal and Dual
Approaches
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For Your Learning Pleasure... I

e Jen Rogers

o Replacement Analysis with Technological Breakthroughs

e Jerry Shen
o A Multistage Stochastic Programming Approach to Running
Red Lights
e Clara Novoa

o Integer L-Shaped Method
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