IE 495 - Lecture 3

Stochastic Programming Modeling

Prof. Jeff Linderoth

January 20, 2003

Outline

- Review convexity
- Review Farmer Ted
- Expected Value of Perfect Information
- Value of the Stochastic Solution
- Building the Deterministic Equivalent
\diamond In an algebraic modeling language
- Formal notation
- More examples

Please don't call on me!

- Name one way in which to deal with randomness in mathematical programming problems.
- Name another way.
- Name another way
- A set C is convex if and only if...
- A function f is convex if and only if...
- What does Farmer Ted like to grow?

For the Math Lovers Out There...

- It is extremely important to understand the convexity properties of a function you are trying to optimize.
- A function $f: \Re^{n} \rightarrow \Re$ is convex if for any two points x and y, the graph of f lies below or on the straight line connecting $(x, f(x))$ to $(y, f(y))$ in \Re^{n+1}.
$\diamond f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \quad \forall 0 \leq \alpha \leq 1$
- A function $f: \Re^{n} \rightarrow \Re$ is concave if for any two points x and y, the graph of f lies above or on the straight line connecting $(x, f(x))$ to $(y, f(y))$ in \Re^{n+1}.
$\diamond f(\alpha x+(1-\alpha) y) \geq \alpha f(x)+(1-\alpha) f(y) \quad \forall 0 \leq \alpha \leq 1$
- A function that is neither convex nor concave, we will call nonconvex.

CONVEX

NONCONVEX

Convexity - Again. Ugh!

- A set S is convex if the straight line segment connecting any two points in S lies entirely inside or on the boundary of S.
$\diamond x, y \in S \Rightarrow \alpha x+(1-\alpha) y \in S \quad \forall 0 \leq \alpha \leq 1$
- A Confusing Point...
\diamond Why do they have a convex function and a convex set? How are they related?
$\diamond f$ is convex if and only if the epigraph, or "over part" of f is a convex set.

CONVEX

NONCONVEX

True or False

- Discrete Constraint Sets are convex?
- Empty Constraint Sets are convex?
- Discontinuous functions are convex?

Recall Farmer Ted

- Farmer Ted can grow Wheat, Corn, or Beans on his 500 acres.
- Farmer Ted requires 200 tons of wheat and 240 tons of corn to feed his cattle
\diamond These can be grown on his land or bought from a wholesaler.
\diamond Any production in excess of these amounts can be sold for $\$ 170 /$ ton (wheat) and $\$ 150 /$ ton (corn)
\diamond Any shortfall must be bought from the wholesaler at a cost of $\$ 238 /$ ton (wheat) and $\$ 210 /$ ton (corn).
- Farmer Ted can also grow beans
\diamond Beans sell at $\$ 36 /$ ton for the first 6000 tons
\diamond Due to economic quotas on bean production, beans in excess of 6000 tons can only be sold at $\$ 10 /$ ton

Formulate the LP - Decision Variables

- $x_{W, C, B}$ Acres of Wheat, Corn, Beans Planted
- $w_{W, C, B}$ Tons of Wheat, Corn, Beans sold (at favorable price).
- e_{B} Tons of beans sold at lower price
- $y_{W, C}$ Tons of Wheat, Corn purchased.

Formulation

maximize
$-150 x_{W}-230 x_{C}-260 x_{B}-238 y_{W}+170 w_{W}-210 y_{C}+150 y_{C}+36 w_{B}+10 e_{B}$ subject to

$$
\begin{aligned}
x_{W}+x_{C}+x_{B} & \leq 500 \\
2.5 x_{W}+y_{W}-w_{W} & =200 \\
3 x_{C}+y_{C}-w_{C} & =240 \\
20 x_{B}-w_{B}-e_{B} & =0 \\
w_{B} & \leq 6000 \\
x_{W}, x_{C}, x_{B}, y_{W}, y_{C}, e_{B}, w_{W}, w_{C}, w_{B} & \geq 0
\end{aligned}
$$

Randomness

- Farmer Ted knows he doesn't get the yields Y all the time.
- Assume that three yield scenarios $(1.2 Y, Y, 0.8 Y)$ occur with equal probability.
- Maximize Expected Profit
- Attach a scenario subscript $s=1,2,3$ to each of the purchase and sale variables.
\diamond 1: Good, 2: Average, 3: Bad
Ex. $w_{C 2}$: Tons of corn sold at favorable price in scenario 2
Ex. $e_{B 3}$: Tons of beans sold at unfavorable price in scenario 3 .

Expected Profit

- An expression for Farmer Ted's Expected Profit is the following:

$$
\begin{array}{r}
-150 x_{W}-230 x_{C}-260 x_{B} \\
+1 / 3\left(-238 y_{W 1}+170 w_{W 1}-210 y_{C 1}+150 y_{C 1}+36 w_{B 1}+10 e_{B 1}\right) \\
+1 / 3\left(-238 y_{W 2}+170 w_{W 2}-210 y_{C 2}+150 y_{C 2}+36 w_{B 2}+10 e_{B 2}\right) \\
+1 / 3\left(-238 y_{W 3}+170 w_{W 3}-210 y_{C 3}+150 y_{C 3}+36 w_{B 3}+10 e_{B 3}\right)
\end{array}
$$

Expected Value Problem - Constraints

$$
\begin{aligned}
x_{W}+x_{C}+x_{B} & \leq 500 \\
3 x_{W}+y_{W 1}-w_{W 1} & =200 \\
2.5 x_{W}+y_{W 2}-w_{W 2} & =200 \\
2 x_{W}+y_{W 3}-w_{W 3} & =200 \\
3.6 x_{C}+y_{C 1}-w_{C 1} & =240 \\
3 x_{C}+y_{C 2}-w_{C 2} & =240 \\
2.4 x_{C}+y_{C 3}-w_{C 3} & =240 \\
24 x_{B}-w_{B 1}-e_{B 1} & =0 \\
20 x_{B}-w_{B 2}-e_{B 2} & =0 \\
16 x_{B}-w_{B 3}-e_{B 3} & =0 \\
w_{B 1}, w_{B 2}, w_{B 3} & \leq 6000 \\
\text { All vars } & \geq 0
\end{aligned}
$$

Optimal Solution

	Wheat	Corn	Beans	
s	Plant (acres)	100	25	375
1	Production	510	288	6000
1	Sales	310	48	6000
1	Purchase	0	0	0
2	Production	425	240	5000
2	Sales	225	0	5000
2	Purchase	0	0	0
3	Production	340	192	4000
3	Sales	140	0	4000
3	Purchase	0	48	0

- (Expected) Profit: $\$ 108390$

DE

- Congratulations, we've just solved our first stochastic program.
- What we've done is known as forming (and solving) the deterministic equivalent of a stochastic program
- Note that you can always do this when...
$\diamond \Omega$ is a finite set. (There are a finite number of scenarios $\left.\omega_{1}, \omega_{2}, \ldots \omega_{K} \in \Omega\right)$
\diamond We are interested in optimizing an expected value.
\Rightarrow We can write $\mathbb{E}_{\omega} f(x, \omega)$ as $\sum_{k=1}^{K} p_{k} f\left(x, \omega_{k}\right)$

Wait and See

- Recall from last time, that Farmer Ted also "ran some scenarios"
- Given that he knew the yields, what was his best policy?
\diamond We called these "Wait-and-see" solutions

	$0.8 Y$	Y	$1.2 Y$
Corn	25	80	66.67
Wheat	100	120	183.33
Beans	375	300	250
Profit	59950	118600	167667

Fortune Tellers

- Suppose Farmer Ted could with certainty tell whether or not the upcoming growing season was going to be wet, average, or dry (or what his yields were going to be).
\diamond His bursitits was acting up
\diamond Consulting the Farmer's Almanac
\diamond Hiring a fortune teller
- The real point here is how much Farmer Ted would be willing to pay for this "perfect" information.
* In real-life problems, how much is it "worth" to invest in better forecasting technology?
- This amount is called The Expected Value of Perfect Information.

What is the EVPI?

- With perfect information, Farmer Ted's Long Run Profit/Year would be:
$\diamond(1 / 3)(167667)+(1 / 3)(118600)+(1 / 3)(59950)=115406$
- Without perfect information, Farmer Ted can at best maximize his expected profit by solving the stochastic program.
- In this case, he would make 108390 in the long run
\star EVPI $=115406-108390=7016$.
- Is there any other important information that you would like to know?
\diamond What is the value of including the randomess?

The Value of the Stochastic Solution (VSS)

- Suppose we just replaced the "random" quantities (the yields) by their mean values and solved that problem.
? Would we get the same expected value for the Farmer's profit?
- How can we check?
\diamond Solve the "mean-value" problem to get a first stage solution x. (A "policy").
\diamond Fix the first stage solution at that value x, and solve all the scenarios to see Farmer Ted's profit in each.
\diamond Take the weighted (by probability) average of the optimal objective value for each scenario

AMPL, Everyone?

- To do this, we'll use AMPL
- You are welcome to solve problems anyway you can
\diamond Except for copying/cheating
* An algebraic modeling language will be quite useful!
- Average AMPL proficiency was around 7 , and minimium was 3, so I am going to assume everyone comfortable with AMPL.
- There are some AMPL pointers on the web page.
- I have one copy of the AMPL book I can loan out for brief periods.
- AMPL is all about algebraic notation, so lets convert Farmer Ted to a more algebraic description...

Algebraic FT

- Sets...
$\diamond C$: Set of crops
$\diamond D \subseteq C$: Set of crops that have quotas
$\diamond Q \subseteq C$: Set of crops that FT can purchase.
- Variables...
$\diamond x_{c}, c \in C$: Acres to allocate to c
$\diamond w_{c}, c \in C$: Amount of c to sell (at high price)
$\diamond y_{c}, c \in C:\left(y_{c}=0 \forall c \in C \backslash Q\right):$ Amount of c to purchase
$\diamond e_{c}, c \in C:\left(e_{c}=0 \forall c \in D\right):$ Amount of c to sell (at low price)

AMPL

(Showing off AMPL here)

Great, but This Class is called Stochastic Programming

- Here's how to create the deterministic equivalent...
- For each possible state of nature (scenario), formulate an appropriate LP model
- Combine these submodels into one "supermodel" making sure
\diamond The first-stage variables are common to all submodels
\diamond The second-stage variables in a submodel appear only in that submodel
* Do this by attaching a "scenario index" to the second stage variables and to the parameters that change in the different scenarios

Deterministic Equivalent

- Combine these submodels into one "supermodel" making sure
\diamond The first-stage variables are common to all submodels
\diamond The second-stage variables in a submodel appear only in that submodel

$$
\begin{aligned}
x_{W}+x_{C}+x_{B} & \leq 500 \\
3 x_{W}+y_{W 1}-w_{W 1} & =200 \\
2.5 x_{W}+y_{W 2}-w_{W 2} & =200 \\
2 x_{W}+y_{W 3}-w_{W 3} & =200
\end{aligned}
$$

Constraints (cont.)

$$
\begin{aligned}
3.6 x_{C}+y_{C 1}-w_{C 1} & =240 \\
3 x_{C}+y_{C 2}-w_{C 2} & =240 \\
2.4 x_{C}+y_{C 3}-w_{C 3} & =240 \\
24 x_{B}-w_{B 1}-e_{B 1} & =0 \\
20 x_{B}-w_{B 2}-e_{B 2} & =0 \\
16 x_{B}-w_{B 3}-e_{B 3} & =0 \\
w_{B 1}, w_{B 2}, w_{B 3} & \leq 6000 \\
\text { All vars } & \geq 0
\end{aligned}
$$

Computing Farmer Ted's VSS

- Solve the "mean-value" problem to get a first stage solution x. (A"policy").
\diamond Mean yields $Y=(2.5,3,20)$
\diamond (We already solved this problem).
$\diamond x_{W}=120, x_{C}=80, x_{B}=300$
- Fix the first stage solution at that value x, and solve all the scenarios to see Farmer Ted's profit in each.
- Take the weighted (by probability) average of the optimal objective value for each scenario

Fixed Policy - Average Yield Scenario

maximize
$-150 x_{W}-230 x_{C}-260 x_{B}-238 y_{W}+170 w_{W}-210 y_{C}+150 y_{C}+36 w_{B}+10 e_{B}$ subject to

$$
\begin{aligned}
x_{W} & =120 \\
x_{C} & =80 \\
x_{B} & =300 \\
x_{W}+x_{C}+x_{B} & \leq 500 \\
2.5 x_{W}+y_{W}-w_{W} & =200 \\
3 x_{C}+y_{C}-w_{C} & =240 \\
20 x_{B}-w_{B}-e_{B} & =0 \\
w_{B} & \leq 6000 \\
x_{W}, x_{C}, x_{B}, y_{W}, y_{C}, e_{B}, w_{W}, w_{C}, w_{B} & \geq 0
\end{aligned}
$$

Fixed Policy - Bad Yield Scenario

maximize
$-150 x_{W}-230 x_{C}-260 x_{B}-238 y_{W}+170 w_{W}-210 y_{C}+150 y_{C}+36 w_{B}+10 e_{B}$ subject to

$$
\begin{aligned}
x_{W} & =120 \\
x_{C} & =80 \\
x_{B} & =300 \\
x_{W}+x_{C}+x_{B} & \leq 500 \\
2 x_{W}+y_{W}-w_{W} & =200 \\
2.4 x_{C}+y_{C}-w_{C} & =240 \\
16 x_{B}-w_{B}-e_{B} & =0 \\
w_{B} & \leq 6000 \\
x_{W}, x_{C}, x_{B}, y_{W}, y_{C}, e_{B}, w_{W}, w_{C}, w_{B} & \geq 0
\end{aligned}
$$

Fixed Policy - Good Yield Scenario

maximize
$-150 x_{W}-230 x_{C}-260 x_{B}-238 y_{W}+170 w_{W}-210 y_{C}+150 y_{C}+36 w_{B}+10 e_{B}$ subject to

$$
\begin{aligned}
x_{W} & =120 \\
x_{C} & =80 \\
x_{B} & =300 \\
x_{W}+x_{C}+x_{B} & \leq 500 \\
3 x_{W}+y_{W}-w_{W} & =200 \\
3.6 x_{C}+y_{C}-w_{C} & =240 \\
24 x_{B}-w_{B}-e_{B} & =0 \\
w_{B} & \leq 6000 \\
x_{W}, x_{C}, x_{B}, y_{W}, y_{C}, e_{B}, w_{W}, w_{C}, w_{B} & \geq 0
\end{aligned}
$$

Profits

- If you solved those three problems, you would get

Yield	Profit
Average	118600
Bad	55120
Good	148000

* Another trick - you don't need to solve all three. Just solve the DE with the first stage fixed.
- I'll show you this if we have time.

What's it Worth to Model Randomness?

- If Farmer Ted implemented the policy based on using only "average" yields, he would plant $x_{W}=120, x_{C}=80, x_{B}=300$
- He would expect in the long run to make an average profit of...
$\diamond 1 / 3(118600)+1 / 3(55120)+1 / 3(148000)=107240$
- If Farmer Ted implemented the policy based on the solution to the stochastic programming problem, he would plant
$x_{W}=170, x_{C}=80, x_{B}=250$.
\diamond From this he would expect to make 108390

VSS

- The difference of the values $180390-107240$ is the Value of the Stochastic Solution: $\$ 1150$.
\diamond It would pay off $\$ 1150$ per growing season for Farmer Ted to use the "stochastic" solution rather than the "mean value" solution.

