IE 495 - Lecture 4

Stochastic Programming - Recourse Models

Prof. Jeff Linderoth

January 22, 2003

Outline

- Formal notation for recourse models
\diamond Second-stage value function
\diamond Expected value function
- Forming the determinstic equivalent
\diamond An example
- A (famous) modeling example...
\diamond The NewsVendor Problem. (Complete with fancy math).

Please don't call on me!

- What is the EVPI?
- What is the VSS?

Random LP's

- Consider the following linear program $L P(\omega)$ that is parameterized by the random vector ω :
minimize

$$
c^{T} x
$$

subject to

$$
\begin{aligned}
A x & =b \\
T(\omega) x & =h(\omega) \\
x & \in X
\end{aligned}
$$

- $X=\left\{x \in \Re^{n}: l \leq x \leq u\right\}$

Example - From Lecture \#2

minimize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
\omega_{1} x_{1}+x_{2} & \geq 7 \\
\omega_{2} x_{1}+x_{2} & \geq 4 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Random LPs

- Again, we deal with decision problems where the decision x must be made before the realization of ω is known.
- We do, however, know the distribution of ω on Ω.
- In recourse models, the random constraints are modeled as "soft" constraints. Possible violation is accepted, but the cost of violations will influence the choice of x.
- In fact, a second-stage linear program is introduced that will describe how the violated random constraints are dealt with.

The New $L P(\omega)$

- In the simplest case, we may just count penalize deviation in the constraints by penalty coefficient vectors q_{+}and q_{-}
minimize

$$
c^{T} x+q_{+}^{T} s(\omega)+q_{-}^{T} t(\omega)
$$

subject to

$$
\begin{aligned}
A x & =b \\
T(\omega) x+s(\omega)-t(\omega) & =h(\omega) \\
x & \in X
\end{aligned}
$$

The New Optimization Problem

- So then, a reasonable problem to solve (to deal with the randomness) is...
minimize

$$
c^{T} x+\mathbb{E}_{\omega}\left[q_{+}^{T} s(\omega)+q_{-}^{T} t(\omega)\right]
$$

subject to

$$
\begin{aligned}
A x & =b \\
T(\omega) x+s(\omega)-t(\omega) & =h(\omega) \quad \forall \omega \in \Omega \\
x & \in X
\end{aligned}
$$

Recourse

- In general, we can react in an intelligent (or optimal) way.
* We have some recourse!
- A recourse structure is provided by three items
$\diamond \mathrm{A}$ set $Y \in \Re^{p}$ that describes the feasible set of recourse actions.
Ex. $Y=\left\{y \in \Re^{p}: y \geq 0\right\}$
$\diamond q:$ a vector of recourse costs.
$\diamond W:$ a $m \times p$ matrix, called the recourse matrix

A Recourse Formulation

minimize

$$
c^{T} x+\mathbb{E}_{\omega}\left[q^{T} y\right]
$$

subject to

$$
\begin{aligned}
A x & =b \\
T(\omega) x+W y(\omega) & =h(\omega) \quad \forall \omega \in \Omega \\
x & \in X \\
y(\omega) & \in Y
\end{aligned}
$$

- Right now, (and in nearly all problems we will see), we have only one W.
\Rightarrow Our recourse does not change with the scenario.
- This is called Fixed recourse.

Some Definitions

$$
\min _{x \in X: A x=b}\left\{c^{T} x+\mathbb{E}_{\omega}\left[\min _{y \in Y}\left\{q^{T} y: W y=h(\omega)-T(\omega) x\right\}\right]\right\}
$$

- Second stage value function, or recourse (penalty) function $v: \Re^{m} \mapsto \Re$.
$\diamond v(z) \equiv \min _{y \in Y}\left\{q^{T} y: W y=z\right\}$,
\diamond For any vector z of "deviations in the random constraints $T(\omega) x=h(\omega)$ ", it describes the corresponding cost.
- Expected Value Function, or Expected minimium recourse function $\mathcal{Q}: \Re^{n} \mapsto \Re$.
$\diamond \mathcal{Q}(x) \equiv \mathbb{E}_{\omega}[v(h(\omega)-T(\omega) x)]$
\diamond For any policy $x \in \Re^{n}$, it describes the expected cost of the recourse.

The SP Problem

- Using these definitions, we can write our recourse problem in terms only of the x variables:

$$
\min _{x \in X}\left\{c^{T} x+\mathcal{Q}(x): A x=b\right\}
$$

- This is a (nonlinear) programming problem in \Re^{n}.
\Rightarrow The ease of solving such a problem depends on the properties of $\mathcal{Q}(x)$.
? Does anyone know what $\mathcal{Q}(x)$ is?
\diamond Linear?
\diamond Convex?
\diamond Continuous?
\diamond Differentiable?

```
Writing With the \(y\) 's
\[
\min _{x \in \Re^{n}, y(\omega) \in \Re^{p}} \mathbb{E}_{\omega}\left[c^{T} x+q^{T} y(\omega)\right]
\]
```

subject to

$$
\begin{array}{cccl}
A x & = & b & \text { First Stage Constraints } \\
T(\omega) x+ & W y(\omega) & =h(\omega) \quad \forall \omega \in \Omega & \text { Second Stage Constraints } \\
x \in X & y(\omega) \in Y & &
\end{array}
$$

- Imagine the case where $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots \omega_{S}\right\} \subseteq \Re^{r}$.
- $\mathrm{P}\left(\omega=\omega_{s}\right)=p_{s}, \forall s=1,2, \ldots, S$
- $T_{s} \equiv T\left(\omega_{s}\right), h_{s}=h\left(\omega_{s}\right)$

Deterministic Equivalent

- We can then write the deterministic equivalent as:

$$
\begin{aligned}
& c^{T} x+p_{1} q^{T} y_{1}+p_{2} q^{T} y_{2}+\cdots+p_{s} q^{T} y_{s} \\
& \text { s.t. } \\
& A x \quad=b \\
& T_{1} x+W y_{1} \quad=h_{1} \\
& T_{2} x+W y_{2} \quad=h_{2} \\
& \vdots \quad+\quad \ddots
\end{aligned}
$$

About the DE

- $y_{s} \equiv y\left(\omega_{s}\right)$ is the recourse action to take if scenario ω_{s} occurs.
- Pro: It's a linear program.
- Con: It's a BIG linear program.
$\diamond n+p S$ variables
$\diamond m_{1}+m S$ constraints.
- Pro: The matrix of the linear program has a very special (staircase) structure.
? Has anyone heard of Bender's Decomposition?

What is BIG

We have r random variables (That is why $\Omega \in \Re^{r}$)

- Imagine the following (real) problem. A Telecom company wants to expand its network in a way in which to meet an unknown (random) demand.
- There are 86 unknown demands. Each demand is independent and may take on one of seven values.
- $S=|\Omega|=\Pi_{k=1}^{86}(5)=5^{86}=4.77 \times 10^{72}$
\diamond The number of subatomic particles in the universe.
? How do we solve a problem that has more variables and more constraints than the number of subatomic particles in the universe?

But Its Even Worse!

- If Ω is not a countable set (say if it is made up of continuous-valued random variables, our "deterministic equivalent" would have ∞ variables and constraints. :-)
- The answer is we can't!
- We solve an approximating problem obtained through sampling.
\diamond We'll talk more about this later in the course

An Example

Let's solve a deterministic equivalent version of our little problem... minimize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
\omega_{1} x_{1}+x_{2} & \geq 7 \\
\omega_{2} x_{1}+x_{2} & \geq 4 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

- $\omega_{1} \sim \mathcal{U}[1,4]$
- $\omega_{2} \sim \mathcal{U}[1 / 3,1]$

A Recourse Formulation

- Imagine for a moment that Ω was countable, with a finite set of scenarios S.
minimize

$$
x_{1}+x_{2}+\sum_{s \in S} p_{s} \lambda\left(y_{1 s}+y_{2 s}\right)
$$

subject to

$$
\begin{aligned}
\omega_{1 s} x_{1}+x_{2}+y_{1 s} & \geq 7 \\
\omega_{2 s} x_{1}+x_{2}+y_{2 s} & \geq 4 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0 \\
y_{1 s} & \geq 0 \\
y_{2 s} & \geq 0
\end{aligned}
$$

AMPL - 1

```
param n := 50;
set S := 1 .. n;
param p{s in S} default 1/card(S);
param w1{S} := Uniform(1,4);
param w2{S} := Uniform(1/3,1);
param PENALTY := 5;
var x1 >= 0;
var x2 >= 0;
var y1{S} >= 0;
var y2{S} >= 0;
```


AMPL - 2

minimize ObjPlusRecourse:

```
x1 + x2 + sum{s in S} p[s] * PENALTY * (y1[s] + y2[s]);
```

subject to c1\{s in S$\}$:
$\mathrm{w} 1[\mathrm{~s}] * \mathrm{x} 1+\mathrm{x} 2+\mathrm{y} 1[\mathrm{~s}] \quad>=7$;
subject to c2\{s in S$\}:$
$\mathrm{w} 2[\mathrm{~s}] * \mathrm{x} 1+\mathrm{x} 2+\mathrm{y} 2[\mathrm{~s}] \quad>=4$;

Hot Off the Presses

- Since many of you are interested in supply chain, I would be derelict if I didn't mention the newsvendor problem.
- A paperboy (newsvendor) needs to decide how many papers to buy in order to maximize his profit.
* He doesn't know at the beginning of the day how many papers he can sell (his demand).
\diamond Each newspaper costs c.
\diamond He can sell each newspaper for a price of q.
\diamond He can return each unsold newspaper at the end of the day for r.
? Given only knowledge of the probability distribution $F(t)=\mathrm{P}(\omega \leq t)$, how may papers should the newsvendor buy to maximize his profits?

Newsvendor, Cont.

- According to our recourse definitions, the newsvendor would like to solve the following optimization problem.

$$
\max _{x \geq 0}\{-c x+\mathcal{Q}(x)\}
$$

- $\mathcal{Q}(x)$ is the expected amount of money the newsvendor can make if he purchases x newspapers:

$$
\mathcal{Q}(x)=\mathbb{E}_{\omega} Q(x, \omega)
$$

- This is some more notation. You will often see
$Q(x, \omega)=v(h(\omega)-T(\omega) x)$.

Newsvendor, Cont.

- Here $Q(x, \omega)$ is the amount of money the newsvendor makes if he purchases x papers and demand is ω.
- For this problem, we don't need to formulate a linear program (although you can see how in BL). Let's just reason it out...

Let's convince ourselves that...

$$
Q(x, \omega)=\left\{\begin{array}{cl}
q x & x \leq \omega \\
q \omega+r(x-\omega) & x \geq \omega
\end{array}\right.
$$

Calculating $\mathcal{Q}(x)$ - Ugly Math

$$
\begin{aligned}
& \mathcal{Q}(x) \equiv \mathbb{E}_{\omega} Q(x, \omega)=\int_{-\infty}^{\infty} Q(x, \omega) d F(\omega) \\
&=\int_{\omega=-\infty}^{x}\left(q \omega+r(x-\omega) d F(\omega)+\int_{\omega=x}^{\infty} q x d F(\omega)\right. \\
&=(q-r) \int_{\omega=-\infty}^{x} \omega d F(\omega)+r x \int_{\omega=-\infty}^{x} d F(\omega)+q x \int_{\omega=x}^{\infty} d F(\omega) \\
&=(q-r) \int_{\omega=-\infty}^{x} \omega d F(\omega)+r x F(x)+q x(1-F(x))
\end{aligned}
$$

All About \int

? What the heck is $\int g(x) d F(x)$?

- How many people know what a Lebesgue-Stieltjes integral is?
\diamond (Me neither!)
- Interpret the integral that you see here (and likely in any of the papers you will read) in the following way...
- If F is continuous
\diamond Which means $F(x)=\int f(x) d x$, then
$\diamond \int g(x) d F(x)=\int g(x) f(x) d x$

All About \int

- If F is discrete.
\diamond So there exists "atoms" a_{i} and "weights" w_{i} so that $F(x)=\sum_{i: a_{i} \leq x} w_{i}$
$\diamond \int g(x) d F(x)=\sum_{i} g\left(a_{i}\right) w_{i}$
* You can also combine the two if F is a combination of a continuous and discrete function.

Integrate by Parts - I Learned That LONG Ago

- If $F(t)$ is "nice"
$\diamond\left(\lim _{t \rightarrow-\infty} t F(t)=0\right)$
- We can integrate by parts to get...

$$
\begin{aligned}
\int_{\omega=-\infty}^{x} \omega d F(\omega) & =\left.\omega F(\omega)\right|_{\omega=-\infty} ^{x}-\int_{\omega=-\infty}^{x} F(\omega) d \omega \\
& =x F(x)-\int_{\omega=-\infty}^{x} F(\omega) d \omega
\end{aligned}
$$

Putting it All Together

$$
\mathcal{Q}(x)=q x-(q-r) \int_{\omega=-\infty}^{x} F(\omega) d \omega
$$

- Why did we do this exercise?
\diamond "To get to the other side"
\diamond Also, to help out the newsvendor
- So we need to optimize $-c x+\mathcal{Q}(x)$.
? How many people know what the KKT-conditions are?
\diamond They are conditions under which we can ensure that a given solution \hat{x} is an optimal solution.

Helping Out the Newsvendor

- The KKT conditions for this problem are especially simple.
* We take the first derivative of the objective function and set it equal to 0

$$
\mathcal{Q}^{\prime}(x)=q-(q-r) F(x)
$$

- So, the optimal solution satisfies...

$$
-c+q-(q-r) F(x)=0
$$

- x^{*} is optimal when $F(x)=\frac{q-c}{q-r}$

$$
x^{*}=F^{-1}\left(\frac{q-c}{q-r}\right)
$$

An Example

- $c=0.15$
- $q=0.25$
- $r=0.02$
- $\omega \sim \mathcal{N}(650,80)$.
$x^{*}=\mathcal{N}^{-1}(0.1 / 0.23)=636.863137833653695452085230499505$

All That Math for Nothing?!?!?!

- Just to show you that math is useless (just kidding), let's arrive at the same formula arguing from a more intuitive approach.
- Let's ask the question (for the newsvendor), suppose we have bought t newspapers, what is the expected marginal revenue of buying one more?
- From an economic viewpoint, we would like this marginal revenue $(M R(t))$ to be 0 . (Just like the KKT conditions say).

A Can't Believe He Made Me Do All Those Integrals

$$
\begin{aligned}
M R(t) & =-c+q \mathrm{P}(\omega \geq t)+r \mathrm{P}(\omega \leq t) \\
& =-c+q(1-F(t))+r F(t)
\end{aligned}
$$

- Doing the math, we see that

$$
M R(t)=0 \Leftrightarrow F(t)=\left(\frac{q-c}{q-r}\right)
$$

- So the optimal solution is to buy newspapers until

$$
t=x^{*}=F^{-1}\left(\frac{q-c}{q-r}\right)
$$

Next time

- Two more modeling examples
- Then that's it for modeling (for the time being).
- You should definitely have read most if not all of the first two chapters. (Come see me if you have questions).
\diamond In particular, 2.5 and 2.8 have interesting material that I probably won't cover (at least now)
$\diamond 1.3$ and 1.4 are other modeling examples I won't cover explicitly either.

