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Outline

• Formal notation for recourse models

¦ Second-stage value function

¦ Expected value function

• Forming the determinstic equivalent

¦ An example

• A (famous) modeling example...

¦ The NewsVendor Problem. (Complete with fancy math).
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Please don’t call on me!

• What is the EVPI?

• What is the VSS?
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Random LP’s

• Consider the following linear program LP (ω) that is
parameterized by the random vector ω:

minimize
cT x

subject to

Ax = b

T (ω)x = h(ω)

x ∈ X

• X = {x ∈ <n : l ≤ x ≤ u}
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Example – From Lecture #2

minimize
x1 + x2

subject to

ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1 ≥ 0

x2 ≥ 0
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Random LPs

• Again, we deal with decision problems where the decision x

must be made before the realization of ω is known.

• We do, however, know the distribution of ω on Ω.

• In recourse models, the random constraints are modeled as
“soft” constraints. Possible violation is accepted, but the cost
of violations will influence the choice of x.

• In fact, a second-stage linear program is introduced that will
describe how the violated random constraints are dealt with.
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The New LP (ω)

• In the simplest case, we may just count penalize deviation in
the constraints by penalty coefficient vectors q+ and q−

minimize
cT x + qT

+s(ω) + qT
−t(ω)

subject to

Ax = b

T (ω)x + s(ω)− t(ω) = h(ω)

x ∈ X
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The New Optimization Problem

• So then, a reasonable problem to solve (to deal with the
randomness) is...

minimize
cT x + Eω

[
qT
+s(ω) + qT

−t(ω)
]

subject to

Ax = b

T (ω)x + s(ω)− t(ω) = h(ω) ∀ω ∈ Ω

x ∈ X
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Recourse

• In general, we can react in an intelligent (or optimal) way.

? We have some recourse!

• A recourse structure is provided by three items

¦ A set Y ∈ <p that describes the feasible set of recourse
actions.

Ex. Y = {y ∈ <p : y ≥ 0}
¦ q : a vector of recourse costs.

¦ W : a m× p matrix, called the recourse matrix
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A Recourse Formulation

minimize
cT x + Eω

[
qT y

]

subject to

Ax = b

T (ω)x + Wy(ω) = h(ω) ∀ω ∈ Ω

x ∈ X

y(ω) ∈ Y

• Right now, (and in nearly all problems we will see), we have
only one W .

⇒ Our recourse does not change with the scenario.

• This is called Fixed recourse.
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Some Definitions

min
x∈X:Ax=b

{
cT x + Eω

[
min
y∈Y

{qT y : Wy = h(ω)− T (ω)x}
]}

• Second stage value function, or recourse (penalty) function
v : <m 7→ <.

¦ v(z) ≡ miny∈Y {qT y : Wy = z},
¦ For any vector z of “deviations in the random constraints

T (ω)x = h(ω)”, it describes the corresponding cost.

• Expected Value Function, or Expected minimium recourse
function Q : <n 7→ <.

¦ Q(x) ≡ Eω[v(h(ω)− T (ω)x)]

¦ For any policy x ∈ <n, it describes the expected cost of the
recourse.
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The SP Problem

• Using these definitions, we can write our recourse problem in
terms only of the x variables:

min
x∈X

{cT x +Q(x) : Ax = b}

• This is a (nonlinear) programming problem in <n.

⇒ The ease of solving such a problem depends on the properties
of Q(x).

? Does anyone know what Q(x) is?

¦ Linear?

¦ Convex?

¦ Continuous?

¦ Differentiable?
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Writing With the y’s

min
x∈<n,y(ω)∈<p

Eω

[
cT x + qT y(ω)

]

subject to

Ax = b First Stage Constraints

T (ω)x + Wy(ω) = h(ω) ∀ω ∈ Ω Second Stage Constraints

x ∈ X y(ω) ∈ Y

• Imagine the case where Ω = {ω1, ω2, . . . ωS} ⊆ <r.

• P(ω = ωs) = ps, ∀s = 1, 2, . . . , S

• Ts ≡ T (ωs), hs = h(ωs)
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Deterministic Equivalent

• We can then write the deterministic equivalent as:

cT x + p1q
T y1 + p2q

T y2 + · · · + psq
T ys

s.t.

Ax = b

T1x + Wy1 = h1

T2x + Wy2 = h2

... +
. . .

TSx + Wys = hs

x ∈ X y1 ∈ Y y2 ∈ Y ys ∈ Y
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About the DE

• ys ≡ y(ωs) is the recourse action to take if scenario ωs occurs.

• Pro: It’s a linear program.

• Con: It’s a BIG linear program.

¦ n + pS variables

¦ m1 + mS constraints.

• Pro: The matrix of the linear program has a very special
(staircase) structure.

? Has anyone heard of Bender’s Decomposition?
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What is BIG

We have r random variables (That is why Ω ∈ <r)

• Imagine the following (real) problem. A Telecom company
wants to expand its network in a way in which to meet an
unknown (random) demand.

• There are 86 unknown demands. Each demand is independent
and may take on one of seven values.

• S = |Ω| = Π86
k=1(5) = 586 = 4.77× 1072

¦ The number of subatomic particles in the universe.

? How do we solve a problem that has more variables and more
constraints than the number of subatomic particles in the
universe?
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But Its Even Worse!

• If Ω is not a countable set (say if it is made up of
continuous-valued random variables, our “deterministic
equivalent” would have ∞ variables and constraints. :-)

• The answer is we can’t!

• We solve an approximating problem obtained through
sampling.

¦ We’ll talk more about this later in the course
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An Example

Let’s solve a deterministic equivalent version of our little problem...
minimize

x1 + x2

subject to

ω1x1 + x2 ≥ 7

ω2x1 + x2 ≥ 4

x1 ≥ 0

x2 ≥ 0

• ω1 ∼ U [1, 4]

• ω2 ∼ U [1/3, 1]
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A Recourse Formulation

• Imagine for a moment that Ω was countable, with a finite set of
scenarios S.

minimize
x1 + x2 +

∑

s∈S

psλ(y1s + y2s)

subject to

ω1sx1 + x2 + y1s ≥ 7 ∀s ∈ S

ω2sx1 + x2 + y2s ≥ 4 ∀s ∈ S

x1 ≥ 0

x2 ≥ 0

y1s ≥ 0

y2s ≥ 0
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AMPL – 1

param n := 50;

set S := 1 .. n;

param p{s in S} default 1/card(S);

param w1{S} := Uniform(1,4);

param w2{S} := Uniform(1/3,1);

param PENALTY := 5;

var x1 >= 0;

var x2 >= 0;

var y1{S} >= 0;

var y2{S} >= 0;
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AMPL – 2

minimize ObjPlusRecourse:

x1 + x2 + sum{s in S} p[s] * PENALTY * (y1[s] + y2[s]);

subject to c1{s in S}:

w1[s] * x1 + x2 + y1[s] >= 7;

subject to c2{s in S}:

w2[s] * x1 + x2 + y2[s] >= 4;
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Hot Off the Presses

• Since many of you are interested in supply chain, I would be derelict if I didn’t

mention the newsvendor problem.

• A paperboy (newsvendor) needs to decide how many papers to buy in order to

maximize his profit.

? He doesn’t know at the beginning of the day how many papers he can sell (his

demand).

¦ Each newspaper costs c.

¦ He can sell each newspaper for a price of q.

¦ He can return each unsold newspaper at the end of the day for r.

? Given only knowledge of the probability distribution F (t) = P(ω ≤ t), how

may papers should the newsvendor buy to maximize his profits?
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Newsvendor, Cont.

• According to our recourse definitions, the newsvendor would
like to solve the following optimization problem.

max
x≥0

{−cx +Q(x)}

• Q(x) is the expected amount of money the newsvendor can
make if he purchases x newspapers:

Q(x) = EωQ(x, ω)

• This is some more notation. You will often see
Q(x, ω) = v(h(ω)− T (ω)x).
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Newsvendor, Cont.

• Here Q(x, ω) is the amount of money the newsvendor makes if
he purchases x papers and demand is ω.

• For this problem, we don’t need to formulate a linear program
(although you can see how in BL). Let’s just reason it out...

Let’s convince ourselves that...

Q(x, ω) =





qx x ≤ ω

qω + r(x− ω) x ≥ ω
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Calculating Q(x) – Ugly Math

Q(x) ≡ EωQ(x, ω) =
∫ ∞

−∞
Q(x, ω)dF (ω)

=
∫ x

ω=−∞
(qω + r(x− ω)dF (ω) +

∫ ∞

ω=x

qxdF (ω)

= (q − r)
∫ x

ω=−∞
ωdF (ω) + rx

∫ x

ω=−∞
dF (ω) + qx

∫ ∞

ω=x

dF (ω)

= (q − r)
∫ x

ω=−∞
ωdF (ω) + rxF (x) + qx(1− F (x))
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All About
∫

? What the heck is
∫

g(x)dF (x)?

• How many people know what a Lebesgue-Stieltjes integral is?

¦ (Me neither!)

• Interpret the integral that you see here (and likely in any of the
papers you will read) in the following way...

• If F is continuous

¦ Which means F (x) =
∫

f(x)dx, then

¦ ∫
g(x)dF (x) =

∫
g(x)f(x)dx
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All About
∫

• If F is discrete.

¦ So there exists “atoms” ai and “weights” wi so that
F (x) =

∑
i:ai≤x wi

¦ ∫
g(x)dF (x) =

∑
i g(ai)wi

? You can also combine the two if F is a combination of a
continuous and discrete function.
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Integrate by Parts – I Learned That LONG Ago

• If F (t) is “nice”

¦ (limt→−∞ tF (t) = 0)

• We can integrate by parts to get...

∫ x

ω=−∞
ωdF (ω) = ωF (ω)|xω=−∞ −

∫ x

ω=−∞
F (ω)dω

= xF (x)−
∫ x

ω=−∞
F (ω)dω
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Putting it All Together

Q(x) = qx− (q − r)
∫ x

ω=−∞
F (ω)dω

• Why did we do this exercise?

¦ “To get to the other side”

¦ Also, to help out the newsvendor

• So we need to optimize −cx +Q(x).

? How many people know what the KKT-conditions are?

¦ They are conditions under which we can ensure that a given
solution x̂ is an optimal solution.
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Helping Out the Newsvendor

• The KKT conditions for this problem are especially simple.

? We take the first derivative of the objective function and set it
equal to 0

Q′(x) = q − (q − r)F (x)

• So, the optimal solution satisfies...

−c + q − (q − r)F (x) = 0

• x∗ is optimal when F (x) = q−c
q−r

x∗ = F−1

(
q − c

q − r

)
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An Example

• c = 0.15

• q = 0.25

• r = 0.02

• ω ∼ N (650, 80).

x∗ = N−1(0.1/0.23) = 636.863137833653695452085230499505
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All That Math for Nothing?!?!?!

• Just to show you that math is useless (just kidding), let’s arrive
at the same formula arguing from a more intuitive approach.

• Let’s ask the question (for the newsvendor), suppose we have
bought t newspapers, what is the expected marginal revenue of
buying one more?

• From an economic viewpoint, we would like this marginal
revenue (MR(t)) to be 0. (Just like the KKT conditions say).
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A Can’t Believe He Made Me Do All Those Integrals

MR(t) = −c + qP(ω ≥ t) + rP(ω ≤ t)

= −c + q(1− F (t)) + rF (t)

• Doing the math, we see that

MR(t) = 0 ⇔ F (t) =
(

q − c

q − r

)

• So the optimal solution is to buy newspapers until
t = x∗ = F−1( q−c

q−r )
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Next time

• Two more modeling examples

• Then that’s it for modeling (for the time being).

• You should definitely have read most if not all of the first two
chapters. (Come see me if you have questions).

¦ In particular, 2.5 and 2.8 have interesting material that I
probably won’t cover (at least now)

¦ 1.3 and 1.4 are other modeling examples I won’t cover
explicitly either.
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