IE 495 — Lecture 4'

Stochastic Programming — Recourse Models

Prof. Jeff Linderoth
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Outline '

e Formal notation for recourse models
¢ Second-stage value function

o Expected value function

e Forming the determinstic equivalent

¢ An example

e A (famous) modeling example...

o The NewsVendor Problem. (Complete with fancy math).
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Please don’t call on me! '

e What is the EVPI?
e What is the VSS?
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Random LP’s I

e Consider the following linear program LP(w) that is

parameterized by the random vector w:

minimize
clx
subject to
Az = b
Tw)r = h(w)
r € X

o X ={zxeR": I <z<u}
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Example — From Lecture #2'

minimize
r1 + To
subject to
wiT1+xo > 7
wox1 +x2 = 4
r1 > 0
ro > 0
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Random LPs '

e Again, we deal with decision problems where the decision x

must be made before the realization of w is known.
e We do, however, know the distribution of w on (2.

e In recourse models, the random constraints are modeled as
“soft” constraints. Possible violation is accepted, but the cost
of violations will influence the choice of .

e In fact, a second-stage linear program is introduced that will
describe how the violated random constraints are dealt with.
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The New LP(w)

e In the simplest case, we may just count penalize deviation in

the constraints by penalty coefficient vectors ¢, and q_

minimize
'+ qls(w) + gl t(w)
subject to
Ar = b
Tw)r+ s(w) —tw) = h(w)
r € X
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The New Optimization Problem'

e So then, a reasonable problem to solve (to deal with the

randomness) is...

minimize
'z +E, (¢} s(w) + gL t(w)]
subject to
Ar = b
Tw)r+s(w) —tw) = hw) Vw € Q
r € X
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Recourse '

e In general, we can react in an intelligent (or optimal) way.
* We have some recourse!

e A recourse structure is provided by three items

o A set' Y € RP that describes the feasible set of recourse

actions.
Ex. Y ={yeR?:y >0}
& @ : a vector of recourse costs.

o W . am X p matrix, called the recourse matrix
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A Recourse Formulation'

minimize
x4+ E, [qu]
subject to
Ar = b
Tw)x+Wyw) = h(w) Yw € ()
r € X
ylw) € Y

e Right now, (and in nearly all problems we will see), we have
only one W.

= Qur recourse does not change with the scenario.

e This is called Fixed recourse.

January 22, 2003 Stochastic Programming — Lecture 4 Slide 10



Some Definitions '

. T . T . o _
_min {c xr+ E, [irél{/l{q y: Wy = h(w) T(w)x}] }

e Second stage value function, or recourse (penalty) function
v: R - R
o v(z) = mingey{q¢ly : Wy = 2},
¢ For any vector z of “deviations in the random constraints

T(w)x = h(w)”, it describes the corresponding cost.

e Fzxpected Value Function, or Expected minimium recourse

function Q : R" — R.
o Qz) =Eu|v(h(w) - T(w)z)]
¢ For any policy z € R™, it describes the expected cost of the
recourse.
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The SP Problem'

e Using these definitions, we can write our recourse problem in
terms only of the x variables:

: T : _
:1;:%1)1(1{0 r+ Qx) : Ax = b}

e This is a (nonlinear) programming problem in R".

= The ease of solving such a problem depends on the properties
of Q(x).
? Does anyone know what Q(x) is?
¢ Linear?
o Convex?
¢ Continuous?

o Differentiable?
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Writing With the y’s'

min E, [¢'x+ gl y(w
| ¢ y(w)]

subject to
Ax = b First Stage Constraints
T(w)x -+ W’y(W) = h(w) Yw - ) Second Stage Constraints
reX y(w) ey
e Imagine the case where Q) = {w1,ws,...ws} C R".

e Plw=uws)=ps,Vs=1,2,...,8
o Ts =T(ws),hs = h(ws)
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Deterministic Equivalent I

e We can then write the deterministic equivalent as:

e+ pidtyi + pegtye + +  psqlys
S.t.
Ax b
Tix + Wy hq
Trx + Wy ha
+

Tsx + Wy, hs

reX y1 €Y Yo €Y Ys €Y
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About the DEI

e ys = y(ws) is the recourse action to take if scenario ws occurs.
e Pro: It’s a linear program.

e Con: It’s a BIG linear program.
o n + pS variables
o mi +mS constraints.

e Pro: The matrix of the linear program has a very special
(staircase) structure.

? Has anyone heard of Bender’s Decomposition?
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What is BIGI

We have r random variables (That is why Q € R")

e Imagine the following (real) problem. A Telecom company
wants to expand its network in a way in which to meet an

unknown (random) demand.

e There are 86 unknown demands. Each demand is independent

and may take on one of seven values.
o S=1|Q| =118 ,(5) = 5%0 = 4.77 x 107
¢ The number of subatomic particles in the universe.
7 How do we solve a problem that has more variables and more

constraints than the number of subatomic particles in the

universe”?
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But Its Even Worse! '

e If 2 is not a countable set (say if it is made up of
continuous-valued random variables, our “deterministic

equivalent” would have oo variables and constraints. :-)
e The answer is we can’t!

e We solve an approximating problem obtained through
sampling.

o We'll talk more about this later in the course
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An Example I

Let’s solve a deterministic equivalent version of our little problem...

minimize
T1 + T2
subject to
W11 + Io Z 7
Wox1 + T9 Z 4
I 2 0
9 Z 0
o wi ~ U[1,4]
o wy ~U[1/3,1]
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A Recourse Formulation'

e Imagine for a moment that {2 was countable, with a finite set of
scenarios S.

minimize
T1+ T2+ Zps)\(?hs + Yas)
s€S
subject to
WisT1 +To+1Y1s > 7 Vs e S
WosT1 + To +Y2s > 4 Vse S
r1 > 0
ro > 0
y1s = 0
Yy2s = 0
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}&DA}?IJ——]_'

param n := 50;

set S :=1 .. n;

param p{s in S} default 1/card(S);
param wil{S} := Uniform(1,4);

param w2{S} := Uniform(1/3,1);

param PENALTY := 5;

var x1 >= 0;

var x2 >= 0;

var y1{S} >= 0;
var y2{S} >= 0;
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AMPL — 2'

minimize ObjPlusRecourse:
x1 + x2 + sum{s in S} pls] * PENALTY * (y1[s] + y2[sl);

subject to cl{s in S}:
wills] * x1 + x2 + yl[s] >= 7;

subject to c2{s in S}:
w2[s] * x1 + x2 + y2[s] >= 4;
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Hot Off the Presses.

e Since many of you are interested in supply chain, I would be derelict if I didn’t
mention the newsvendor problem.

e A paperboy (newsvendor) needs to decide how many papers to buy in order to
maximize his profit.

* He doesn’t know at the beginning of the day how many papers he can sell (his
demand).
o Each newspaper costs c.
& He can sell each newspaper for a price of q.
¢ He can return each unsold newspaper at the end of the day for r.

7 Given only knowledge of the probability distribution F'(t) = P(w < t), how
may papers should the newsvendor buy to maximize his profits?
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Newsvendor, Cont. I

e According to our recourse definitions, the newsvendor would

like to solve the following optimization problem.

max{—cz + Q(z)}

e O(x) is the expected amount of money the newsvendor can

make if he purchases x newspapers:

Q(:C) — EwQ(xa w)

e This is some more notation. You will often see

Q(r,w) =v(h(w) —T(w)x).
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Newsvendor, Cont. I

e Here Q(z,w) is the amount of money the newsvendor makes if
he purchases x papers and demand is w.

e For this problem, we don’t need to formulate a linear program
(although you can see how in BL). Let’s just reason it out...

Let’s convince ourselves that...
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Calculating Q(x) — Ugly Math

_ /wi_oo(qw +r(r —w)dF(w) + /O: qrdF(w)

W=

= (q—r)Li_wwdF(w)+rxLx dF(w)—I—qx/:o dF(w)

=—00 =T

= (q—7) /i_ wdF(w) + reF(x) 4+ qr(l — F(x))
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All About f'

? What the heck is [ g(z)dF(x)?

e How many people know what a Lebesgue-Stieltjes integral is?

& (Me neither!)

e Interpret the integral that you see here (and likely in any of the

papers you will read) in the following way...

e If I is continuous

o Which means F(x) = [ f(x)dz, then
o [ g@)dF(@) = [ g(x)f(x)da
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All About [ I

e If F'is discrete.
¢ So there exists “atoms” a; and “weights” w; so that
F(z) = Zi:aigx Wi
o Jg(@)dF(z) =3, g(a;)w
* You can also combine the two if F' is a combination of a

continuous and discrete function.
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Integrate by Parts — I Learned That LONG Ago'

o If F'(t) is “nice”
o (limy—,— oo tF(t) = 0)

e We can integrate by parts to get...

[ wdFE) = ol - [ P

= — 00 =0

— zF(z)— /j F(w)dw

=—00
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Putting it All Together'

x

O(x) = qz — (¢ — 1) / F(w)dw

w=—0c

e Why did we do this exercise?
o “To get to the other side”

¢ Also, to help out the newsvendor
e So we need to optimize —cx + Q(x).

7 How many people know what the KK'T-conditions are?

¢ They are conditions under which we can ensure that a given

solution Z is an optimal solution.
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Helping Out the Newsvendor'

e The KKT conditions for this problem are especially simple.

* We take the first derivative of the objective function and set it
equal to 0

Q(x) =q—(q—r)F(z)

e So, the optimal solution satisfies...

—c+q—(q—7)F(x) =0

e x* is optimal when F(x) =

¥ = F ! 4~ ¢
q—r
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An Example I

e ¢c=0.15
o ¢ =0.25
e 7 =0.02

e w~ N(650,80).

r* = N71(0.1/0.23) = 636.863137833653695452085230499505
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e Just to show you that math is useless (just kidding), let’s arrive

at the same formula arguing from a more intuitive approach.

e Let’s ask the question (for the newsvendor), suppose we have
bought £ newspapers, what is the expected marginal revenue of

buying one more?

e From an economic viewpoint, we would like this marginal

revenue (M R(t)) to be 0. (Just like the KKT conditions say).
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A Can’t Believe He Made Me Do All Those Integrals'

MR(t) = —-c+qP(w>1t)+rPw<t)
= —c+q(l1—=F())+rF(t)

e Doing the math, we see that

MR(t) =0 F(t) = (q_ C)

q—r
e So the optimal solution is to buy newspapers until

t=a* = F1 (125
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Next time I

e Two more modeling examples
e Then that’s it for modeling (for the time being).
e You should definitely have read most if not all of the first two

chapters. (Come see me if you have questions).

¢ In particular, 2.5 and 2.8 have interesting material that I

probably won’t cover (at least now)

¢ 1.3 and 1.4 are other modeling examples I won’t cover

explicitly either.
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