IE 495 - Lecture 5

Stochastic Programming - Math Review and MultiPeriod Models

Prof. Jeff Linderoth

January 27, 2003

Outline

- Homework - questions?
\diamond I would start on it fairly soon if I were you...
- A fairly lengthy math (review?) session
\diamond Differentiability
\diamond KKT Conditions
- Modeling Examples
\diamond Jacob and MIT
\diamond "Multi-period" production planning

Yucky Math Review - Derivative

- Let f be a function from $\Re^{n} \mapsto \Re$. The directional derivative f^{\prime} of f with respect to the direction d is

$$
f^{\prime}(x, d)=\lim _{\lambda \rightarrow 0} \frac{f(x+\lambda d)-f(x)}{\lambda}
$$

- If this direction derivative exists and has the same value for all $d \in \Re^{n}$, then f is differentiable.
- The unique value of the derivative is called the gradient of f at x
\diamond We denote its value as $\nabla f(x)$.

Not Everything is Differentiable

- Probably, everything you have ever tried to optimize has been differentiable.
* This will not be the case in this class!
- Even nice, simple, convex functions may not be differentiable at all points in their domain.
\diamond Examples?
- A vector $\eta \in \Re^{n}$ is a subgradient of a convex function f at a point x iff (if and only if)
$\diamond f(z) \geq f(x)+\eta^{T}(z-x) \quad \forall z \in \Re^{n}$
\diamond The graph of the (linear) function $h(z)=f(x)+\eta^{T}(z-x)$ is a supporting hyperplane to the convex set $e p i(f)$ at the point $(x, f(x))$.

More Definitions

- The set of all subgradients of f at x is called the subdifferential of f at x.
\diamond Denoted by $\partial f(x)$
? Is $\partial f(x)$ a convex set?
- Thm: $\eta \in \partial f(x)$ iff
$\diamond f^{\prime}(x, d) \geq \eta^{T} d \quad \forall d \in \Re^{n}$

Optimality Conditions

- We are interested in determining conditions under which we can verify that a solution is optimal.
- To KISS, we will (for now) focus on minimizing functions that are
\diamond One-dimensional
\diamond Continuous $(|f(a)-f(b)| \leq L|a-b|)$
\diamond Differentiable
- Recall: a function $f(x)$ is convex on a set S if for all $a \in S$ and $b \in S, f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) b$.

Why do we care?

- Because they are important
- Because Prof. Linderoth says so!
- Many optimization algorithms work to find points that satisfy these conditions
- When faced with a problem that you don't know how to handle, write down the optimality conditions
- Often you can learn a lot about a problem, by examining the properties of its optimal solutions.

Preliminaries

Call the following problem P:

$$
z^{*}=\min f(x): x \in S
$$

- Def: Any point $x^{*} \in S$ that gives a value of $f\left(x^{*}\right)=z^{*}$ is the global minimum of P.
$x^{*}=\arg \min _{x \in S} f(x)$.
- Def: Local minimum of P: Any point $x^{l} \in S$ such that $f\left(x^{l}\right) \geq f(y)$ for all y "in the neighborhood" of x^{l}. $\left(y \in S \cap N_{\epsilon}\left(x^{l}\right)\right)$.
- Thm: Assume S is convex, then if $f(x)$ is convex on S, then any local minimum of P is a global minimum of P .

Oh No - A Proof!

- Since x^{l} is a local minimum, $\exists N_{\epsilon}\left(x^{l}\right)$ around x^{l} such that
$\diamond f(x) \geq f\left(x^{l}\right) \forall x \in S \cap N_{\epsilon}\left(x^{l}\right)$.
- Suppose that x^{l} is not a global minimum, so $\exists \hat{x} \in S$ such that $f(\hat{x})<f\left(x^{l}\right)$.
- Since f is convex, $\forall \lambda \in[0,1]$,
$\diamond f\left(\lambda \hat{x}+(1-\lambda) x^{l}\right) \leq \lambda f(\hat{x})+(1-\lambda) f\left(x^{l}\right)<\lambda f\left(x^{l}\right)+(1-\lambda) f\left(x^{l}\right)=f\left(x^{l}\right)$
- For $\lambda>0$ and very small $\lambda \hat{x}+(1-\lambda) x^{l} \in S \cap N_{\epsilon}\left(x^{l}\right)$.
- But this contradicts $f(x) \geq f\left(x^{l}\right) \forall x \in S \cap N_{\epsilon}\left(x^{l}\right)$. Q. E. D.

Starting Simple - Optimizing 1-D functions

Consider optimizing the following function (for a scalar variable $\left.x \in \Re^{1}\right)$:

$$
z^{*}=\min f(x)
$$

Call an optimal solution to this problem $x^{*} .\left(x^{*}=\arg \min f(x)\right)$.
What is necessary for a point x to be an optimal solution?

$$
\star f^{\prime}(x)=0
$$

Ex. $f(x)=(x-1)^{2}$
$\diamond f^{\prime}(x)=2(x-1)=0 \Leftrightarrow x=1$

Is That All We Need?

- Is $f^{\prime}(x)=0$ also sufficient for x to be a (locally) optimal solution?

$$
\begin{aligned}
& \text { Ex. } f(x)=1-(x-1)^{2} \\
& \quad \diamond f^{\prime}(x)=-2(x-1)=0 \Leftrightarrow x=1
\end{aligned}
$$

Obviously Not

- Since $x=1$ is a local minimum of $f(x)=1-(x-1)^{2}$, the $f^{\prime}(x)=0$ condition is obviously not all we need to ensure that we get a local minimum
? What is the sufficient condition for a point \hat{x} to be (locally) optimal?
$\Rightarrow f^{\prime \prime}(\hat{x})>0$!
\diamond This is equivalent to saying that $f(x)$ is convex at \hat{x}.
? Who has heard of the following terms?
\diamond "Hessian Matrix"?
\diamond "Positive (Semi)-definite"?
- If $f(x)$ is convex for all x, then (from the previous Thm.) any local minimum is also a global minimum.

(1-D) Constrained Optimization

Now we consider the following problem for scalar variable $x \in \Re^{1}$.

$$
z^{*}=\min _{0 \leq x \leq u} f(x)
$$

- There are three cases for where an optimal solution might be
$\diamond x=0$
$\diamond 0<x<u$
$\diamond x=u$

Breaking it down

- If $0<x<u$, then the necessary and sufficient conditions for optimality are the same as the unconstrained case
- If $x=0$, then we need $f^{\prime}(x) \geq 0$ (necessary), $f^{\prime \prime}>0$ (sufficient)
- If $x=u$, then we need $f^{\prime}(x) \leq 0$ (necessary), $f^{\prime \prime}>0$ (sufficient)

KKT Conditions

- How do these conditions generalize to optimization problems with more than one variable?
- The intuition - if a constraint holds with equality (is binding), then the gradient of the objective function must be pointing in a way that would improve the objective.
- Formally - The negative gradient of the objective function must be a linear combination of the gradients of the binding constraints.
- The "KKT" stands for Karush-Kuhn-Tucker.
\diamond Story Time!
* Remember the "Optimality Conditions" from linear programming? These are just the KKT conditions!

Example $\left(x \in \Re^{2}\right)$

minimize

- You see at the optimal solution $x=(-\sqrt{2}, 0)$,

The Canonical Problem

minimize

$$
f(x)
$$

subject to

$$
\begin{aligned}
g_{1}(x) & \leq b_{1} \\
g_{2}(x) & \leq b_{2} \\
& \vdots \\
g_{m}(x) & \leq b_{m} \\
-x_{1} & \leq 0 \\
-x_{2} & \leq 0 \\
& \vdots \\
-x_{n} & \leq 0
\end{aligned}
$$

KKT Conditions

- Geometrically, if (\hat{x}) is an optimal solution, then we must be able to write $-\nabla f(\hat{x})$ as a nonnegative linear combination of the binding constraints.
- If a constraint is not binding, it's "weight" must be 0 .

$$
\begin{array}{rll}
\nabla-f(\hat{x}) \quad & = & \sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(\hat{x})-\mu \\
\lambda_{i}=0 & \text { if } & g_{i}(\hat{x})<b \\
\mu_{j}=0 & \text { if } & \hat{x}_{j}>0 \quad(\forall i) \\
\end{array}
$$

KKT Conditions

If \hat{x} is an optimal solution to P , then there exists multipliers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}, \mu_{1}, \mu_{2}, \ldots, \mu_{n}$ that satisfy the following conditions:

$$
\begin{aligned}
g_{i}(\hat{x}) & \leq b_{i} & \forall i=1,2, \ldots, m \\
-x_{i} & \leq 0 & \forall j=1,2, \ldots, n \\
-\frac{\partial f(\hat{x})}{\partial x_{j}}-\sum_{i=1}^{m} \lambda_{i} \frac{\partial g(\hat{x})}{\partial x_{j}}+\mu_{j} & =0 & \forall j=1,2, \ldots n \\
\lambda_{i} & \geq 0 & \forall i=1,2, \ldots, m \\
\mu_{j} & \geq 0 & \forall j=1,2, \ldots, n \\
\lambda_{i}\left(b_{i}-g_{i}(\hat{x})\right) & =0 & \forall i=1,2, \ldots, m \\
\mu_{j} x_{j} & =0 & \forall j=1,2, \ldots n
\end{aligned}
$$

Returning to example

minimize

$$
x_{1}+x_{2}
$$

subject to

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2} & \leq 2 \\
-x_{2} & \leq 0
\end{aligned}
$$

KKT Conditions

Primal Feasible:

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2} & \leq 2 \\
-x_{2} & \leq 0
\end{aligned}
$$

Dual Feasible:

$$
\begin{aligned}
\lambda & \geq 0 \\
\mu & \geq 0 \\
-1 & =\lambda\left(2 x_{1}\right) \\
-1 & =\lambda\left(2 x_{2}\right)-\mu
\end{aligned}
$$

KKT Conditions, cont.

Complementary Slackness:

$$
\begin{aligned}
\lambda\left(2-x_{1}^{2}-x_{2}^{2}\right) & =0 \\
\mu x_{2} & =0
\end{aligned}
$$

Generalizing to Nondifferentiable Functions

- In full generality, this would require some fairly heavy duty convex analysis.
\diamond Convex analysis is a great subject, you should all study it!
- Instead, I first want to show that when passing to nondifferentiable functions, we would replace $\nabla f(x)=0$ with $0 \in \partial f(x)$.
- I am sorry for all the theorems, but all little more math never hurt anyone. (At least as far as I know).

Theorem

- Let $f: \Re^{n} \mapsto \Re$ be a convex function and let S be a nonempty convex set. $\hat{x}=\arg \min _{x \in S} f(x)$ if (and only if) η is a subgradient of f at \hat{x} such that $\eta^{T}(x-\hat{x}) \geq 0 \forall x \in S$

Proof.

- I will prove only the very, very easy direction.
- If η is a subgradient of f at \hat{x} such that $\eta^{T}(x-\hat{x}) \geq 0 \forall x \in S$,
$\diamond f(x) \geq f(\hat{x})+\eta^{T}(x-\hat{x}) \geq f(\hat{x}) \quad \forall x \in S$.
\diamond So $\hat{x}=\arg \min _{x \in S} f(x)$
Q.E.D.

Theorem

- Let $f: \Re^{n} \mapsto \Re$ be a convex function. $\hat{x}=\arg \min _{x \in \Re^{n}} f(x)$ if (and only if) $0 \in \partial f(\hat{x})$.

Proof.

- $\hat{x}=\arg \min _{x \in \Re^{n}} f(x)$ if and only if $(\Leftrightarrow) \eta$ is a subgradient where $\eta^{T}(x-\hat{x}) \geq 0 \forall x \in \Re^{n}$.
- Choose $x=\hat{x}-\eta$.
- $\eta^{T}(\hat{x}-\eta-\hat{x})=-\eta^{T} \eta \geq 0$.
- This can only happen when $\eta=0$
$\diamond\left(-\sum \eta_{i}^{2}=0 \Leftrightarrow \eta_{i}=0 \quad \forall i\right)$.
- So $\eta=0 \in \partial f(\hat{x})$
Q.E.D.

Now in Full Generality

- Thm: For a convex function $f: \Re^{n} \mapsto \Re$, and convex functions $g_{i}: R e^{n} \mapsto \Re, i=1,2, \ldots m$, if we have some nice "regularity conditions" (which you should assume we have unless I tell you otherwise), \hat{x} is an optimal solution to $\min \left\{f(x): g_{i}(x) \leq 0 \forall i=1,2, \ldots m\right\}$ if and only if the following conditions hold:
$\diamond g_{i}(x) \leq 0 \forall i=1,2, \ldots m$
$\diamond \exists \lambda_{1}, \lambda_{2}, \ldots \lambda_{m} \in \Re$ such that
- $0 \in \partial f(\hat{x})+\sum_{i=1}^{m} \lambda_{i} \partial g_{i}(\hat{x})$.
- $\lambda_{i} \geq 0 \forall i=1,2, \ldots m$
- $\lambda_{i} g_{i}(\hat{x})=0 \forall i=1,2, \ldots m$

Daddy Has Big Plans

- MIT costs $\$ 39,060 /$ year right now
- In 10 years, when Jacob is ready for MIT, it will cost > \$80000/year. (YIKES!)
- Let's design a stochastic programming problem to help us out.
- In Y years, we would like to reach a tuition goal of G.
- We will assume that Helen and I rebalance our portfolio every v years, so that there are $T=Y / v$ times when we need to make a decision about what to buy.
\diamond There are T periods in our stochastic programming problem.

Details

- We are given a universe N of investment decisions
- We have a set $\mathcal{T}=\{1,2, \ldots T\}$ of investment periods
- Let $\omega_{i t}, i \in N, t \in \mathcal{T}$ be the return of investment $i \in N$ in period $t \in \mathcal{T}$.
- If we exceed our goal G, we get an interest rate of q that Helen and I can enjoy in our golden years
- If we don't meet the goal of G, Helen and I will have to borrow money at a rate of r so that Jacob can go to MIT.
- We have $\$ b$ now.

Variables

- $x_{i t}, i \in N, t \in \mathcal{T}:$ Amount of money to invest in vehicle i during period t
- y : Excess money at the end of horizon
- w : Shortage in money at the end of the horizon

(Deterministic) Formulation

maximize

$$
q y+r w
$$

subject to

$$
\begin{aligned}
\sum_{i \in N} x_{i 1} & =b \\
\sum_{i \in N} \omega_{i t} x_{i, t-1} & =\sum_{i \in N} x_{i t} \quad \forall t \in \mathcal{T} \backslash 1 \\
\sum_{i \in N} \omega_{i T} x_{i T}-y+w & =G \\
x_{i t} & \geq 0 \quad \forall i \in N, t \in \mathcal{T} \\
y, w & \geq 0
\end{aligned}
$$

Random returns

- As evidenced by our recent performance, my wife and I are bad at picking stocks.
\diamond In our defense, returns on investments are random variables.
- Imagine that for each there are a number of potential outcomes R for the returns at each time t.

Scenarios

- The scenarios consist of all possible sequences of outcomes.

Ex. Imagine $R=4$ and $T=3$. The the scenarios would be...

$t=1$	$t=2$	$t=3$
1	1	1
1	1	2
1	1	3
1	1	4
1	2	1
	\vdots	
4	4	4

Making it Stochastic

- $x_{i t s}, i \in N, t \in \mathcal{T}, s \in S$: Amount of money to invest in vehicle i during period t in scenario s
- y_{s} : Excess money at the end of horizon in scenario s
- w_{s} : Shortage in money at the end of the horizon in scenario s
* Note that the (random) return $\omega_{i t}$ now is like a function of the scenario s.
\diamond It depends on the mapping of the scenarios to the scenario tree.

A Stochastic Version

maximize

$$
q y_{s}+r w_{s}
$$

subject to

$$
\begin{aligned}
\sum_{i \in N} x_{i 1} & =b \\
\sum_{i \in N} \omega_{i t s} x_{i, t-1, s} & =\sum_{i \in N} x_{i t s} \quad \forall t \in \mathcal{T} \backslash 1, \forall s \in S \\
\sum_{i \in N} \omega_{i T} x_{i T s}-y_{s}+w_{s} & =G \quad \forall s \in S \\
x_{i t s} & \geq 0 \quad \forall i \in N, t \in \mathcal{T}, \forall s \in S \\
y_{s}, w_{s} & \geq 0 \quad \forall s \in S
\end{aligned}
$$

Next time

? Is this correct?

- Answer the question above...
- Writing the deterministic equivalent of multistage problems
- (Maybe) one more modeling example
- Properties of the recourse function. (Starting BL 3.1)

