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Outline

• Homework – questions?

¦ I would start on it fairly soon if I were you...

• A fairly lengthy math (review?) session

¦ Differentiability

¦ KKT Conditions

• Modeling Examples

¦ Jacob and MIT

¦ “Multi-period” production planning
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Yucky Math Review – Derivative

• Let f be a function from <n 7→ <. The directional derivative f ′

of f with respect to the direction d is

f ′(x, d) = lim
λ→0

f(x + λd)− f(x)
λ

• If this direction derivative exists and has the same value for all
d ∈ <n, then f is differentiable.

• The unique value of the derivative is called the gradient of f at
x

¦ We denote its value as ∇f(x).
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Not Everything is Differentiable

• Probably, everything you have ever tried to optimize has been
differentiable.

? This will not be the case in this class!

• Even nice, simple, convex functions may not be differentiable
at all points in their domain.

¦ Examples?

• A vector η ∈ <n is a subgradient of a convex function f at a
point x iff (if and only if)

¦ f(z) ≥ f(x) + ηT (z − x) ∀z ∈ <n

¦ The graph of the (linear) function h(z) = f(x) + ηT (z − x)
is a supporting hyperplane to the convex set epi(f) at the
point (x, f(x)).
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More Definitions

• The set of all subgradients of f at x is called the subdifferential
of f at x.

¦ Denoted by ∂f(x)

? Is ∂f(x) a convex set?

• Thm: η ∈ ∂f(x) iff

¦ f ′(x, d) ≥ ηT d ∀d ∈ <n
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Optimality Conditions

• We are interested in determining conditions under which we
can verify that a solution is optimal.

• To KISS, we will (for now) focus on minimizing functions that
are

¦ One-dimensional

¦ Continuous (|f(a)− f(b)| ≤ L|a− b|)
¦ Differentiable

• Recall: a function f(x) is convex on a set S if for all a ∈ S and
b ∈ S, f(λa + (1− λ)b) ≤ λf(a) + (1− λ)b.
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Why do we care?

• Because they are important

• Because Prof. Linderoth says so!

• Many optimization algorithms work to find points that satisfy
these conditions

• When faced with a problem that you don’t know how to
handle, write down the optimality conditions

• Often you can learn a lot about a problem, by examining the
properties of its optimal solutions.
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Preliminaries

Call the following problem P:

z∗ = min f(x) : x ∈ S

• Def: Any point x∗ ∈ S that gives a value of f(x∗) = z∗ is the
global minimum of P.

¦
x∗ = arg minx∈S f(x).

• Def: Local minimum of P: Any point xl ∈ S such that
f(xl) ≥ f(y) for all y “in the neighborhood” of xl.
(y ∈ S ∩Nε(xl)).

• Thm: Assume S is convex, then if f(x) is convex on S, then
any local minimum of P is a global minimum of P.
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Oh No – A Proof!

• Since xl is a local minimum, ∃Nε(xl) around xl such that

¦ f(x) ≥ f(xl) ∀ x ∈ S ∩Nε(xl).

• Suppose that xl is not a global minimum, so ∃ x̂ ∈ S such that
f(x̂) < f(xl).

• Since f is convex, ∀λ ∈ [0, 1],

¦ f(λx̂ + (1− λ)xl) ≤ λf(x̂) + (1− λ)f(xl) < λf(xl) + (1− λ)f(xl) = f(xl)

• For λ > 0 and very small λx̂ + (1− λ)xl ∈ S ∩Nε(xl).

• But this contradicts f(x) ≥ f(xl) ∀ x ∈ S ∩Nε(xl). Q. E. D.

January 27, 2003 Stochastic Programming – Lecture 5 Slide 9



Starting Simple – Optimizing 1-D functions

Consider optimizing the following function (for a scalar variable
x ∈ <1):

z∗ = min f(x)

Call an optimal solution to this problem x∗. (x∗ = arg min f(x)).

What is necessary for a point x to be an optimal solution?

? f ′(x) = 0

Ex. f(x) = (x− 1)2

¦ f ′(x) = 2(x− 1) = 0 ⇔ x = 1
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f(x) = (x− 1)2
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Is That All We Need?

• Is f ′(x) = 0 also sufficient for x to be a (locally) optimal
solution?

Ex. f(x) = 1− (x− 1)2

¦ f ′(x) = −2(x− 1) = 0 ⇔ x = 1
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f(x) = 1− (x− 1)2
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Obviously Not

• Since x = 1 is a local minimum of f(x) = 1− (x− 1)2, the
f ′(x) = 0 condition is obviously not all we need to ensure that
we get a local minimum

? What is the sufficient condition for a point x̂ to be (locally)
optimal?

⇒ f ′′(x̂) > 0!

¦ This is equivalent to saying that f(x) is convex at x̂.

? Who has heard of the following terms?
¦ “Hessian Matrix”?
¦ “Positive (Semi)-definite”?

• If f(x) is convex for all x, then (from the previous Thm.) any
local minimum is also a global minimum.
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(1-D) Constrained Optimization

Now we consider the following problem for scalar variable x ∈ <1.

z∗ = min
0≤x≤u

f(x)

• There are three cases for where an optimal solution might be

¦ x = 0

¦ 0 < x < u

¦ x = u
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Breaking it down

• If 0 < x < u, then the necessary and sufficient conditions for
optimality are the same as the unconstrained case

• If x = 0, then we need f ′(x) ≥ 0 (necessary), f ′′ > 0 (sufficient)

• If x = u, then we need f ′(x) ≤ 0 (necessary), f ′′ > 0 (sufficient)
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KKT Conditions

• How do these conditions generalize to optimization problems
with more than one variable?

• The intuition — if a constraint holds with equality (is binding),
then the gradient of the objective function must be pointing in
a way that would improve the objective.

• Formally — The negative gradient of the objective function
must be a linear combination of the gradients of the binding
constraints.

• The “KKT” stands for Karush-Kuhn-Tucker.

¦ Story Time!

? Remember the “Optimality Conditions” from linear
programming? These are just the KKT conditions!
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Example (x ∈ <2)

minimize

x1 + x2

subject to

x2
1 + x2

2 ≤ 2

−x2 ≤ 0

• You see at the optimal solution x = (−√2, 0),
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The Canonical Problem

minimize
f(x)

subject to

g1(x) ≤ b1

g2(x) ≤ b2

...

gm(x) ≤ bm

−x1 ≤ 0

−x2 ≤ 0
...

−xn ≤ 0
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KKT Conditions

• Geometrically, if (x̂) is an optimal solution, then we must be
able to write −∇f(x̂) as a nonnegative linear combination of
the binding constraints.

• If a constraint is not binding, it’s “weight” must be 0.

∇− f(x̂) =
m∑

i=1

λi∇gi(x̂)− µ

λi = 0 if gi(x̂) < b (∀i)
µj = 0 if x̂j > 0 (∀j)

January 27, 2003 Stochastic Programming – Lecture 5 Slide 20



KKT Conditions

If x̂ is an optimal solution to P, then there exists multipliers
λ1, λ2, . . . , λm, µ1, µ2, . . . , µn that satisfy the following conditions:

gi(x̂) ≤ bi ∀i = 1, 2, . . . , m

−xi ≤ 0 ∀j = 1, 2, . . . , n

−∂f(x̂)
∂xj

−
m∑

i=1

λi
∂g(x̂)
∂xj

+ µj = 0 ∀j = 1, 2, . . . n

λi ≥ 0 ∀i = 1, 2, . . . ,m

µj ≥ 0 ∀j = 1, 2, . . . , n

λi(bi − gi(x̂)) = 0 ∀i = 1, 2, . . . ,m

µjxj = 0 ∀j = 1, 2, . . . n
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Returning to example

minimize
x1 + x2

subject to

x2
1 + x2

2 ≤ 2 (λ)

−x2 ≤ 0 (µ)
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KKT Conditions

Primal Feasible:

x2
1 + x2

2 ≤ 2

−x2 ≤ 0

Dual Feasible:

λ ≥ 0

µ ≥ 0

−1 = λ(2x1)

−1 = λ(2x2)− µ
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KKT Conditions, cont.

Complementary Slackness:

λ(2− x2
1 − x2

2) = 0

µx2 = 0
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Generalizing to Nondifferentiable Functions

• In full generality, this would require some fairly heavy duty
convex analysis.

¦ Convex analysis is a great subject, you should all study it!

• Instead, I first want to show that when passing to
nondifferentiable functions, we would replace ∇f(x) = 0 with
0 ∈ ∂f(x).

• I am sorry for all the theorems, but all little more math never
hurt anyone. (At least as far as I know).
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Theorem

• Let f : <n 7→ < be a convex function and let S be a nonempty
convex set. x̂ = arg minx∈S f(x) if (and only if) η is a
subgradient of f at x̂ such that ηT (x− x̂) ≥ 0 ∀x ∈ S

Proof. (Duh!)

• I will prove only the very, very easy direction.

• If η is a subgradient of f at x̂ such that ηT (x− x̂) ≥ 0 ∀x ∈ S,

¦ f(x) ≥ f(x̂) + ηT (x− x̂) ≥ f(x̂) ∀x ∈ S.

¦ So x̂ = arg minx∈S f(x) Q.E.D.
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Theorem

• Let f : <n 7→ < be a convex function. x̂ = arg minx∈<n f(x) if
(and only if) 0 ∈ ∂f(x̂).

Proof.

• x̂ = arg minx∈<n f(x) if and only if (⇔) η is a subgradient
where ηT (x− x̂) ≥ 0 ∀x ∈ <n.

• Choose x = x̂− η.

• ηT (x̂− η − x̂) = −ηT η ≥ 0.

• This can only happen when η = 0

¦ (−∑
η2

i = 0 ⇔ ηi = 0 ∀i).
• So η = 0 ∈ ∂f(x̂) Q.E.D.
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Now in Full Generality

• Thm: For a convex function f : <n 7→ <, and convex functions
gi : Ren 7→ <, i = 1, 2, . . . m, if we have some nice “regularity
conditions” (which you should assume we have unless I tell you
otherwise), x̂ is an optimal solution to
min{f(x) : gi(x) ≤ 0 ∀i = 1, 2, . . . m} if and only if the
following conditions hold:

¦ gi(x) ≤ 0∀i = 1, 2, . . . m

¦ ∃λ1, λ2, . . . λm ∈ < such that
• 0 ∈ ∂f(x̂) +

∑m
i=1 λi∂gi(x̂).

• λi ≥ 0 ∀i = 1, 2, . . . m

• λigi(x̂) = 0 ∀i = 1, 2, . . . m
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Daddy Has Big Plans

• MIT costs $39,060/year right now

• In 10 years, when Jacob is ready for MIT, it will cost >

$80000/year. (YIKES!)

• Let’s design a stochastic programming problem to help us out.

• In Y years, we would like to reach a tuition goal of G.

• We will assume that Helen and I rebalance our portfolio every
v years, so that there are T = Y/v times when we need to make
a decision about what to buy.

¦ There are T periods in our stochastic programming problem.
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Details

• We are given a universe N of investment decisions

• We have a set T = {1, 2, . . . T} of investment periods

• Let ωit, i ∈ N, t ∈ T be the return of investment i ∈ N in
period t ∈ T .

• If we exceed our goal G, we get an interest rate of q that Helen
and I can enjoy in our golden years

• If we don’t meet the goal of G, Helen and I will have to borrow
money at a rate of r so that Jacob can go to MIT.

• We have $b now.
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Variables

• xit, i ∈ N, t ∈ T : Amount of money to invest in vehicle i during
period t

• y : Excess money at the end of horizon

• w : Shortage in money at the end of the horizon
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(Deterministic) Formulation

maximize
qy + rw

subject to
∑

i∈N

xi1 = b

∑

i∈N

ωitxi,t−1 =
∑

i∈N

xit ∀t ∈ T \ 1

∑

i∈N

ωiT xiT − y + w = G

xit ≥ 0 ∀i ∈ N, t ∈ T
y, w ≥ 0
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Random returns

• As evidenced by our recent performance, my wife and I are bad
at picking stocks.

¦ In our defense, returns on investments are random variables.

• Imagine that for each there are a number of potential outcomes
R for the returns at each time t.
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Scenarios

• The scenarios consist of all possible sequences of outcomes.

Ex. Imagine R = 4 and T = 3. The the scenarios would be...

t = 1 t = 2 t = 3

1 1 1

1 1 2

1 1 3

1 1 4

1 2 1
...

4 4 4
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Making it Stochastic

• xits, i ∈ N, t ∈ T , s ∈ S: Amount of money to invest in vehicle i

during period t in scenario s

• ys : Excess money at the end of horizon in scenario s

• ws : Shortage in money at the end of the horizon in scenario s

? Note that the (random) return ωit now is like a function of the
scenario s.

¦ It depends on the mapping of the scenarios to the scenario
tree.
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A Stochastic Version

maximize
qys + rws

subject to
∑

i∈N

xi1 = b

∑

i∈N

ωitsxi,t−1,s =
∑

i∈N

xits ∀t ∈ T \ 1, ∀s ∈ S

∑

i∈N

ωiT xiTs − ys + ws = G ∀s ∈ S

xits ≥ 0 ∀i ∈ N, t ∈ T , ∀s ∈ S

ys, ws ≥ 0 ∀s ∈ S
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Next time

? Is this correct?

• Answer the question above...

• Writing the deterministic equivalent of multistage problems

• (Maybe) one more modeling example

• Properties of the recourse function. (Starting BL 3.1)
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