IE 495 — Lecture 5'

Stochastic Programming — Math Review and
MultiPeriod Models

Prof. Jeff Linderoth

January 27, 2003
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Outline I

e Homework — questions?

¢ I would start on it fairly soon if I were you...

e A fairly lengthy math (review?) session
¢ Differentiability
¢ KKT Conditions

e Modeling Example
o Jacob and MIT

&
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Yucky Math Review — Derivative'

e Let f be a function from R™ — R. The directional derivative f’

of f with respect to the direction d is

P o) = i L2420 =512

e If this direction derivative exists and has the same value for all

d € R", then f is differentiable.

e The unique value of the derivative is called the gradient of f at

X

o We denote its value as V f(x).
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Not Everything is Differentiable'

e Probably, everything you have ever tried to optimize has been
differentiable.

* This will not be the case in this class!

e Even nice, simple, convex functions may not be differentiable
at all points in their domain.
o Examples?

e A vector n € R" is a subgradient of a convex function f at a
point x iff (if and only if)
o f(2) > f@) +aT(z—2) Ve R
o The graph of the (linear) function h(z) = f(z) +nl(z — x)

is a supporting hyperplane to the convex set epi(f) at the
point (z, f(x)).

January 27, 2003 Stochastic Programming — Lecture 5 Slide 4



More Definitions I

e The set of all subgradients of f at x is called the subdifferential
of f at x.

o Denoted by 0f(x)

? Is f(x) a convex set?

e Thm: n € 0f(x) iff
o f'l(x,d)>ntd VdeR"
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Optimality Conditions I

e We are interested in determining conditions under which we

can verify that a solution is optimal.
e To KISS, we will (for now) focus on minimizing functions that
are
¢ One-dimensional
o Continuous (|f(a) — f(b)| < Lla — b))
¢ Differentiable

e Recall: a function f(x) is convex on a set S if for all a € S and

be S, f(ha+ (1—M\b) < Af(a)+ (1 —\b.
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Why do we care?'

e Because they are important
e Because Prof. Linderoth says so!

e Many optimization algorithms work to find points that satisty

these conditions

e When faced with a problem that you don’t know how to
handle, write down the optimality conditions

e Often you can learn a lot about a problem, by examining the

properties of its optimal solutions.
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Preliminaries '

Call the following problem P:

2 =min f(x):xz €S

e Def: Any point x* € S that gives a value of f(z*) = 2* is the
global minimum of P.

&

*

r* = argmingcg f(x).

o Def: Local minimum of P: Any point 2! € S such that
f(z!) > f(y) for all y “in the neighborhood” of x'.
(y € SN N (xh)).

e Thm: Assume S is convex, then if f(z) is convex on S, then

any local minimum of P is a global minimum of P.
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Oh No — A Proof! '

! is a local minimum, IN,(x!) around ! such that

e Since x
o f(z) > f(z) Vo €SN N(xh).
e Suppose that z! is not a global minimum, so 3 & € S such that
f(@) < f(zh).
e Since f is convex, VA € [0, 1],
o fFOE+ (1= N2') SA(@) + (1 = Nf (') <Af(z') + (1 =N ') = f(=')
e For A\ > 0 and very small A& + (1 — \)z! € SN N (2}).

e But this contradicts f(z) > f(z') Vo € SN N.(2'). Q. E.D.
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Starting Simple — Optimizing 1-D functions'

Consider optimizing the following function (for a scalar variable

r e R:

2" = min f(x)

*

Call an optimal solution to this problem z*. (z* = argmin f(x)).

What is necessary for a point  to be an optimal solution?
* fi(x) =0

Ex. f(z) = (z—1)?
o fllx)=2(x—-1)=0z=1
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Is That All We Need?'

e Is f'(x) = 0 also sufficient for x to be a (locally) optimal

solution?
Ex. f(z)=1-(z—1)?
o flley==-2x-1)=0=z=1
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Obviously Not I

e Since z = 1 is a local minimum of f(z) =1 — (z — 1)?, the
f'(x) = 0 condition is obviously not all we need to ensure that

we get a local minimum

? What s the sufficient condition for a point & to be (locally)
optimal?
= f"(z) > 0!
o This is equivalent to saying that f(x) is conver at .

? Who has heard of the following terms?

o “Hessian Matrix”?
o “Positive (Semi)-definite”?

o If f(x) is convex for all z, then (from the previous Thm.) any

local minimum is also a global minimum.
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(1-D) Constrained Optimization'

Now we consider the following problem for scalar variable z € 3!,

.
z —Orgnwlguf(w)

e There are three cases for where an optimal solution might be

o x=20
o 0<r<u
O T =
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Breaking it down'

e If 0 < x < u, then the necessary and sufficient conditions for

optimality are the same as the unconstrained case

e If z =0, then we need f'(z) > 0 (necessary), f”/ > 0 (sufficient)

o If x = u, then we need f/(x) < 0 (necessary), f”/ > 0 (sufficient)
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KKT Conditions '

e How do these conditions generalize to optimization problems

with more than one variable?

e The intuition — if a constraint holds with equality (is binding),
then the gradient of the objective function must be pointing in
a way that would improve the objective.

e Formally — The negative gradient of the objective function
must be a linear combination of the gradients of the binding
constraints.

e The “KKT” stands for Karush-Kuhn-Tucker.
¢ Story Time!

* Remember the “Optimality Conditions” from linear
programming? These are just the KK'T conditions!
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Example (z € i°)

minimize A
r1 + To
subject to
2 2
V4
— X9 S /,

e You see at the optimal solution z = (—v/2,0),
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The Canonical Problem'

minimize
f(z)
subject to
gi(z) < by
g2(z) < b9
dm (ZC) < by
— X1 S 0
— X2 S 0
—x, < 0
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KKT Conditions '

e Geometrically, if () is an optimal solution, then we must be

able to write —V f(Z) as a nonnegative linear combination of
the binding constraints.

e If a constraint is not binding, it’s “weight” must be 0.

m

V-f@) = Z)\z‘v%(j) — M

Ai=0 if gi(2)<b (V1)
py = if Z%j >0 (V])
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KKT Conditions '

If £ is an optimal solution to P, then there exists multipliers

1=1

2%
Ai(bi — gi(2))

HiTj

IA A

AVARRAY,

bi

o O o O

, L, that satisfy the following conditions:

Vi=1,2,....,m
Vi=1,2,....n

Vi=1,2,...n

Vi=1,2,...,m

Vi=1,2,....n
Vi=1,2,....m
Vi=1,2,...n
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Returning to example'

minimize
T1 + T2

subject to

9 9
Tl + T35

|

8

[\

IA A
S N
= >

January 27, 2003 Stochastic Programming — Lecture 5 Slide 22



KKT Conditions '

Primal Feasible:

s <2
— X2 S 0
Dual Feasible:
A >0
o> 0
-1 = )\(25131)
—1 = A2x2) —pu
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KKT Conditions, cont.'

Complementary Slackness:
A2 —xf —x35) =

pry =
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Generalizing to Nondifferentiable Functions'

e In full generality, this would require some fairly heavy duty

convex analysis.

¢ Convex analysis is a great subject, you should all study it!

e Instead, I first want to show that when passing to

nondifferentiable functions, we would replace V f(x) = 0 with

0e€df(x).

e [ am sorry for all the theorems, but all little more math never

hurt anyone. (At least as far as I know).
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Theorem '

e Let f:R" — R be a convex function and let S be a nonempty
convex set. £ = argmingcg f(«) if (and only if) n is a
subgradient of f at & such that n’(x —2) >0Vx € S

Proof. (Duh!)

e [ will prove only the very, very easy direction.

e If 5 is a subgradient of f at & such that n’(z — %) >0Vz € S,
o flz) > f(&)+n'(z—2) > f(&) VzeS.
o So & = argmingcg f(x) Q.E.D.
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Theorem '

e Let f:R" — R be a convex function. £ = argmingcpn f(x) if
(and only if) 0 € Of ().

Proof.

e T = argmingcx~ f(x) if and only if (<) 7 is a subgradient
where n!' (z — &) > 0 Vo € R".
e Choose x =2 —n.

e (Z—n—2)=-n'n>0.

e This can only happen when n =0
o (=>nF=0&mn=0 Vi.
e Son=0¢€af(z) Q.E.D.
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Now in Full Generality'

e Thm: For a convex function f : R"™ — R, and convex functions
g; : Re™ — R,1=1,2,...m, if we have some nice “regularity
conditions” (which you should assume we have unless I tell you
otherwise), & is an optimal solution to

min{ f(x) : g;(z) < 0Vi=1,2,...m} if and only if the
following conditions hold:
o gi(x) <OVi=1,2,...m
o dA1, Aa, ... Ay € R such that
e 0€0f(2)+> ", Ni0gi(&).
e \;, >0Vi=1,2,...m
e \gi(z)=0Vi=1,2,...m
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Daddy Has Big Plans'

e MIT costs $39,060/year right now

e In 10 years, when Jacob is ready for MIT, it will cost >
$80000/year. (YIKES!)

e Let’s design a stochastic programming problem to help us out.
e In Y years, we would like to reach a tuition goal of GG.

e We will assume that Helen and I rebalance our portfolio every
v years, so that there are T' = Y /v times when we need to make
a decision about what to buy.

¢ There are T" periods in our stochastic programming problem.
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Detalils I

e We are given a universe N of investment decisions
e We have a set 7 = {1,2,...T} of investment periods

o Let wj,2 € N,t €T be the return of investment ¢ € N in
period t € 7.

e If we exceed our goal G, we get an interest rate of ¢ that Helen
and I can enjoy in our golden years

e If we don’t meet the goal of G, Helen and I will have to borrow
money at a rate of r so that Jacob can go to MIT.

e We have $b now.
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Variables I

e x,:,0 € N,t €7T: Amount of money to invest in vehicle ¢ during
period t

e 1y : Excess money at the end of horizon

e w : Shortage in money at the end of the horizon

January 27, 2003 Stochastic Programming — Lecture 5 Slide 31



(Deterministic) Formulation'

maximize
qy + rw
subject to
D _wi = b
iEN
Z Witl; t—1 — Z Tt Vt € T \ 1
1EN €N
ZwiTCIfiT —y+w = G
1€N
rie > 0 Vie N,teT
y,w = 0
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Random returns '

e As evidenced by our recent performance, my wife and I are bad
at picking stocks.

¢ In our defense, returns on investments are random variables.

e Imagine that for each there are a number of potential outcomes
R for the returns at each time t.
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Scenarios '

e The scenarios consist of all possible sequences of outcomes.

Fx. Imagine R =4 and T' = 3. The the scenarios would be...

t=1 t=2 t=3

1 1 1
1 1 2
1 1 3
1 1 4
1 2 1
4 4 4
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Making it Stochastic'

e Ti1s,0 € Nt €7T,s € .5: Amount of money to invest in vehicle 2

during period t in scenario s
e 1, : Excess money at the end of horizon in scenario s
e w, : Shortage in money at the end of the horizon in scenario s

x Note that the (random) return w;; now is like a function of the

scenario s.

¢ It depends on the mapping of the scenarios to the scenario

tree.
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A Stochastic Version'

maximize
qYs + TWs
subject to
S =
iEN
Z WitsTit—1,5 = Z Tits vieT\1,Vse S
iEN iEN
ZwiT:EiTS—yS—FwS = G Vs e S
iEN
Tits > 0 Vie Nyte T Vse S
Yys,ws > 0 Vs e S

January 27, 2003 Stochastic Programming — Lecture 5 Slide 36



Next time '

? Is this correct?

e Answer the question above...

e Writing the deterministic equivalent of multistage problems
e (Maybe) one more modeling example

e Properties of the recourse function. (Starting BL 3.1)
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