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Outline

• Homework – questions?

¦ (I haven’t started it yet either)...

¦ I won’t be in my office after class today...

• Modeling Examples

¦ Jacob and MIT
– A multi-period planning problem

¦ “Multi-period” production planning

– NOT a multi-period stochastic program

January 29, 2003 Stochastic Programming – Lecture 6 Slide 2



Please don’t call on me!

• Give an example of a function that is not differentiable.

• What is the “subgradient inequality”?

• What are the KKT conditions (in words)?

¦ x̂ is an optimal solution iff...

¦ Why would we care about them?
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Here they are again....

Thm: For a convex function f : <n 7→ <, and convex functions
gi : Ren 7→ <, i = 1, 2, . . .m, if we have some “regularity
conditions”, x̂ is an optimal solution to

min{f(x) : gi(x) ≤ 0 ∀i = 1, 2, . . . m}

if and only if the following conditions hold:

¦ gi(x̂) ≤ 0 ∀i = 1, 2, . . . m

¦ ∃λ1, λ2, . . . λm ∈ < such that

• 0 ∈ ∂f(x̂) +
∑m

i=1 λi∂gi(x̂).

• λi ≥ 0 ∀i = 1, 2, . . . m

• λigi(x̂) = 0 ∀i = 1, 2, . . . m
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To Be Complete...

• What the heck does
∑m

i=1 λi∂gi(x̂) mean when the
subdifferential is more than a point? (∇)

? What does it mean to add sets?

• Given two sets C1 and C2,

¦ C1 + C2 = {x1 + x2|x1 ∈ C1, x2 ∈ C2}.
• This is sometimes called the Minkowski Sum

• Geometrically, you “slide one set around the other”.
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Example

+
=
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Daddy Has Big Plans!

• MIT costs $39,060/year right now

• In 10 years, when Jacob is ready for MIT, it will cost >

$80000/year. (YIKES!)

• Let’s design a stochastic programming problem to help us out.

• In Y years, we would like to reach a tuition goal of G.

• We will assume that Helen and I rebalance our portfolio every
v years, so that there are T = Y/v times when we need to make
a decision about what to buy.

¦ There are T periods in our stochastic programming problem.
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Details

• We are given a universe N of investment decisions

• We have a set T = {1, 2, . . . T} of investment periods

• Let ωit, i ∈ N, t ∈ T be the return of investment i ∈ N in
period t ∈ T .

• If we exceed our goal G, we get an interest rate of q that Helen
and I can enjoy in our golden years

• If we don’t meet the goal of G, Helen and I will have to borrow
money at a rate of r so that Jacob can go to MIT.

• We have $b now.
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Variables

• xit, i ∈ N, t ∈ T : Amount of money to invest in vehicle i during
period t

• y : Excess money at the end of horizon

• w : Shortage in money at the end of the horizon
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(Deterministic) Formulation

maximize
qy + rw

subject to
∑

i∈N

xi1 = b

∑

i∈N

ωitxi,t−1 =
∑

i∈N

xit ∀t ∈ T \ 1

∑

i∈N

ωiT xiT − y + w = G

xit ≥ 0 ∀i ∈ N, t ∈ T
y, w ≥ 0
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Random returns

• As evidenced by our recent performance, my wife and I are bad
at picking stocks.

¦ In our defense, returns on investments are random variables.

• Imagine that for each there are a number of potential outcomes
R for the returns at each time t.

? We now can (and potentially would) change our portfolio after
observing the (now random) returns ωit
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Pontificating

• An important point about this problem is that we want to take
corrective action TO REACH THE GOAL of G dollars.

• If we were trying to maximize return, there would be no reason
to change from the current strategy at later periods.

⇒ There is no reason to use (multistage) stochastic
programming

• In general, unless you wish to consider the impact of changing
your decision (or correcting for your decision) at later periods
on your decision at the current period (now), you should not
use stochastic programming.
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A Scenario Tree

• We will assume (or approximate) the random returns with
discrete values, each with an associated probability.

• Conceptually, the sequence of random events (returns) can be
arranged into a tree

(Your picture here)
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Scenarios

• The scenarios consist of all possible sequences of outcomes.

Ex. Imagine R = 4 and T = 3. The the scenarios would be...

t = 1 t = 2 t = 3

1 1 1

1 1 2

1 1 3

1 1 4

1 2 1

..

.

4 4 4

• |Ω| = 64

• We can specify any probability

on this outcome space that we

would like

¦ For example, things time pe-

riod outcomes don’t need

to be equally likely, or re-

turns in different time peri-

ods need not be mutually in-

dependent.
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Making it Stochastic

• xits, i ∈ N, t ∈ T , s ∈ S: Amount of money to invest in vehicle i

during period t in scenario s

• ys : Excess money at the end of horizon in scenario s

• ws : Shortage in money at the end of the horizon in scenario s

? Note that the (random) return ωit now is like a function of the
scenario s.

¦ It depends on the mapping of the scenarios to the scenario
tree.
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A Stochastic Version

maximize
qys + rws

subject to
∑

i∈N

xi1 = b

∑

i∈N

ωitsxi,t−1,s =
∑

i∈N

xits ∀t ∈ T \ 1, ∀s ∈ S

∑

i∈N

ωiT xiTs − ys + ws = G ∀s ∈ S

xits ≥ 0 ∀i ∈ N, t ∈ T , ∀s ∈ S

ys, ws ≥ 0 ∀s ∈ S
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Easy, Huh?

• See how easy it is to convert a deterministic model to a
(multistage) stochastic model

• Just one thing wrong

¦ The model is incorrect.

• Imagine the following...

(Your picture here)
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My Favorite Eight Syllable Word

• We need to enforce nonanticipativity.

¦ Other eight-syllable words...

¦ autosuggestibility, incommensurability, electroencephalogram, unidirectionality

• At any point in time, different scenarios “look the same”

¦ We can’t allow different decisions for these scenarios.

¦ We are not allowed to anticipate the outcome of future
random events when making our decision now.

• Let St
s be the set set of scenarios that are identical to scenario

s at time t.

? We must enforce xits = xits′ ∀i ∈ N, ∀t ∈ T, ∀s ∈ S, ∀s′ ∈ St
s.
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Another way

• There’s more than one way to enforce that our policy is
nonanticipative.

• Birge’s way:


 ∑

s′∈St
s

p′s


xits =

∑

s′∈St
s

p′sxits′ ∀i, t, s

• The probability you reach a scenario equivalent to s times the
amount you invest in scenario s must be equal to the expected
amount you would invest in all scenarios equivalent to s

• Which way is best?

January 29, 2003 Stochastic Programming – Lecture 6 Slide 20



Multiperiod Production Planning

• A factory makes several different products

• Resources (e.g. machines and labor) are needed

¦ For each product, these requirements are “known”

• Must meet demand at the end of each period.

? Demand is not known with certainty

• Costs are induced when inventory is too large or too small

¦ (Inventory and purchase costs)

• To satisfy demand, additional labor and machine hours can be
used, but these additions are bounded.

? There is a “hire and fire” cost associated with changing the
workforce level.
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Decision Problem

• Right now, we will decide

¦ The number of each product to be produced in each period

¦ The extra capacity to be used in each period

¦ The hirings and firings to be done in each period

• Then a random demand occurs

¦ Conceptually, this occurs for all periods

• Then after we observe the random demands, we can decide how
to best store product in inventory or purchase from an outside
source.

? In this framework, how many stages are in the stochastic
programming instance?
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Lots of Definitions

Sets

• T : Number of periods. (Also set T ).

• N : Set of products

• M : Set of resources

Variables

• xjt : Product of product j ∈ N in period t ∈ T

• uit : Additional amount of resource i ∈ M to purchase in t ∈ T

• z+
t−1,t, z

−
t−1,t: Planned increase/decrease of work force

• y−jt, y
+
jt: Surplus/Shortage of project j ∈ N at the end of period

t ∈ T .
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Parameters

• All of the above variables have associated costs (α, β, γ, δ).

• ωjt : Demand for product j ∈ N in period t ∈ T .

• Uit : Upper bound on uit.

• aij : Amount of resource i ∈ M needed to produce one unit of
product j ∈ N

• bit : Amount of resource i ∈ M available at time t ∈ T .
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The Model

minimizeX
j∈N

X
t∈T

αjtxjt +
X
i∈M

X
t∈T

βituit +
X

t∈T\1
(γ

+
t−1,tz

+
t−1,t + γ

−
t−1,tz

−
t−1,t) +

Eω

24min

0@X
j∈N

X
t∈T

(δ
+
jty

+
jt + δ

−
jty

−
jt)

1A35
subject to

X
j∈N

aijxjt ≤ bit + uit ∀i ∈ M, ∀t ∈ T

uit ≤ Uit ∀i ∈ M, ∀t ∈ T

z
+
t−1,t − z

−
t−1,t =

X
j∈N

aLj(xjt − xj,t−1) ∀t ∈ T \ 1

xjt + y
−
j,t−1 + y

+
jt − y

−
jt = ωjt ∀j ∈ N, ∀t ∈ T.
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The Stochastic LP/Recourse Model

minimizeX
j∈N

X
t∈T

αjtxjt +
X
i∈M

X
t∈T

βituit +
X

t∈T\1
(γ

+
t−1,tz

+
t−1,t + γ

−
t−1,tz

−
t−1,t) +X

s∈S

X
j∈N

X
t∈T

ps(δ
+
jty

+
jts + δ

−
jty

−
jts)

subject to

X
j∈N

aijxjt ≤ bit + uit ∀i ∈ M, ∀t ∈ T

uit ≤ Uit ∀i ∈ M, ∀t ∈ T

z
+
t−1,t − z

−
t−1,t =

X
j∈N

aLj(xjt − xj,t−1) ∀t ∈ T \ 1

xjt + y
−
j,t−1,s + y

+
jts − y

−
jts = ωjts ∀j ∈ N, ∀t ∈ T, ∀s ∈ S.
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Next time?

• Maybe a little AMPL modeling and show and tell of multistage
problems

• Properties of the resource function

• Tools for modeling and solving (real) (non-toy) stochastic
programs
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