

SMPS and the Recourse Function

Prof. Jeff Linderoth

February 5, 2003

Outline

- Formulating Stochastic Program(s).
 - ♦ SMPS format
 - $\diamond\,$ Jacob & MIT
- Two stage problems with recourse Expected value function

Please don't call on me!

- What are the KKT conditions?
- Who is Karmarkar?
- The simplex method is a polynomial time algorithm for linear programming.
- True or False: MPS format is a concise, new format for expressing linear and integer programs?
- Explain two ways to model "your favorite eight letter word"?

Multistage Formulation—Implicit Nonanticipativity

maximize

$$\sum_{s \in S} p_s(qy_s - rw_s)$$

subject to

$$\sum_{i \in N} x_{i1} = b$$

$$\sum_{i \in N} \omega_{il} x_{i,A(l)} = \sum_{i \in N} x_{il} \quad \forall l \in \mathcal{L} \setminus 1$$

$$\sum_{i \in N} \omega_{iA(s)} x_{iA(s)} - y_s + w_s = G \quad \forall s \in S$$

L

• Multistage problems are based on the "event-decision" model

• All random "stuff" must be in the stage associated with the decision.

ω in "Wrong" Stage

- To get SMPS to "work". Let's rewrite the problem so that the ω_{it} are associated with variables in stage t
- Let x_{it} : Amount of money invested in i in time t
- Let y_{it} : Amount of money you have in i at time t
- $(1/\omega_{it})y_{it} = x_{i,t-1}$

An Equivalent (Longer) Formulation

maximize

qE + rU

subject to

$$\sum_{i \in N} x_{i1} = b$$

$$\omega_{it}^{-1} y_{it} - x_{i,t-1} = 0 \qquad \forall i \in N, \forall t \in \mathcal{T} \setminus 1$$

$$\sum_{i \in N} x_{it} - \sum_{i \in N} y_{it} = 0 \qquad \forall t \in \mathcal{T} \setminus 1$$

$$\sum_{i \in N} y_{iT} - E + B = G$$

$$x_{it} \geq 0 \qquad \forall i \in N, t \in \mathcal{T}$$

$$y_{it} \geq 0 \qquad \forall i \in N, t \in \mathcal{T} \setminus 1$$

$$E, U \geq 0$$

The Matrix

•
$$N = \{S, B\}$$

• T=4

x_{S1}	x_{B1}	y_{S2}	y_{B2}	x_{S2}	x_{B2}	y_{S3}	y_{B3}	x_{S3}	x_{B3}	y_{S4}	y_{B4}	Е	U	
1	1													b
-1		$1/\omega_S$												0
	-1		$1/\omega_B$											0
		-1	-1	1	1									0
				-1		$1/\omega_S$								0
					-1		$1/\omega_B$							0
						-1	-1	1	1					0
								-1		$1/\omega_S$				0
									-1		$1/\omega_B$			0
										1	1	-1	1	\overline{G}

- How do we specify a stochastic programming instance to the solver?
- We could form the deterministic equivalent ourselves, but you saw how unnatural that seems.
 - For *really* big problems, forming the deterministic equivalent is out of the questions.
 - ♦ We need to just specify the random parts of the model.
- We can do this using SMPS format
 - ♦ Actually, other than (explicity) forming the deterministic equivalent in a modeling language, this is the ONLY way.
 - \star There is some recent research work in developed stochastic programming support in an AML.

SMPS Components

- Core file
 - ♦ Like MPS file for "base" instance
- Time file
 - ♦ Specifies the time dependence structure
- Stoch file
 - $\diamond\,$ Specifies the randomness

- The SMPS format is *broad*^a
 - ♦ There are very few (if any) full implementations, that simply read the full format
 - ♦ No solver will solve all instances that can be expressed in the format.
- The SMPS format is (seemingly) being changed.
- A good site...

◇ http://www.mgmt.dal.ca/sba/profs/hgassmann/SMPS2.htm

^a*Too* broad, IMO

Papers

- I handed out to you...
 - ◇ J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King and S.W. Wallace, "A standard input format for multiperiod stochastic linear programs", COAL Newsletter #17 (1987) pp. 1-19.
- There are more. For example...
 - H.I. Gassmann and E. Schweitzer, "A comprehensive input format for stochastic linear programs", Annals of Operations Research 104 (2001) 89-125.
- Any questions?

- Like an MPS file specifying a "base" scenario
- \star Must permute the rows and columns so that the time indexing is sequential

NAM	E	jake			
ROW	S				
Ν	obj				
Е	c1				
Е	c2				
Е	c3				
Е	c4				
Е	c5				
Е	c6				
Е	c7				
Е	c8				
Е	c9				
Е	c10				
COL	UMNS				
	xs1	c1	1	c2	-1
	xb1	c1	1	c3	-1
	ys2	c2	999	c4	-1
	yb2	c3	888	c4	-1
	xs2	c4	1	c5	-1
	xb2	c4	1	c6	-1
	ys3	c5	999	c7	-1
	yb3	c6	888	c7	-1
	xs3	c7	1	c8	-1
	xb3	c7	1	c9	-1
	ys4	c8	999	c10	1
	yb4	c9	888	c10	1
	t	obj	-0.05	c10	-1
	S	obj	1.1	c10	1
RHS					
	rhs	c1	10000	c10	15000
END	ATA				

jake.time

T1

T2

T3

T4

- ♦ Specify which row/column starts each time period.
- \star Must be sequential!

*23456789 123456789 123456789 TIME jake PERIODS IMPLICIT xs1 c1 ys2 c2 ys3 c5 ys4 c8 ENDATA

Stoch File

- BLOCKS
 - ♦ Specify a "block" of parameters that changes together
- INDEP
 - Specify that all the parameters you are specifying are all independent random variables
- SCENARIO
 - ♦ Specify a "base" scenario
 - ♦ Specify what things change and when...

jake.stoch

*23456789 123456789								
STO	СН		jake					
*234	156789	1234	56789	12345	56789	123456789		
BLOO	CKS		DISCRETE					
BL	BLOCK1		T2		0.5			
	ys2		c2		0.8			
	yb2		c3		0.877	72		
BL	BLOCK1		T2		0.5			
	ys2		c2		0.943	34		
	yb2		c3		0.892	29		
BL	BLOCK2	!	ТЗ		0.5			
	ys3		c5		0.8			
	уЪЗ		c6		0.877	72		
BL	BLOCK2	!	ТЗ		0.5			
	ys3		c5		0.943	34		
	уЪЗ		c6		0.892	29		
BL	BLOCK3		T4		0.5			
	ys4		c8		0.8			
	yb4		c9		0.877	72		
BL	BLOCK3		T4		0.5			
	ys4		c8		0.943	34		
	yb4		c9		0.892	29		
ENDATA								

An INDEP Example

*23456789	123456789		
STOCH	jake		
*23456789	123456789	123456789 123456789	
INDEP	DISCRE	STE	
ys2	c2	0.8	0.333
ys2	c2	1.0	0.333
ys2	c2	1.05	0.333
*			
yb2	c3	0.9	0.125
yb2	c3	0.99	0.675
yb2	c3	1.0	0.125
ENDATA			

NEOS

- If we have files in SMPS format, how do we solve the resulting instance?
- We can use NEOS!

http://www.mcs.anl.gov/neos

- There are currently two solvers
 - ♦ CPA—Works for two-stage LP
 - ♦ MSLIP—Works for multistage LP
- I am working on getting others that we can use.
- ★ You will (likely) be asked to solve some an instance on your next homework assignment

Math Time! Two-Stage SLP w/Fixed Recourse

minimize

$$c^T x + \mathbb{E}_{\omega} \left[q^T y \right]$$

subject to

$$Ax = b$$

$$T(\omega)x + Wy(\omega) = h(\omega) \quad \forall \omega \in \Omega$$

$$x \in X$$

$$y(\omega) \in Y$$

•
$$Q(x,\omega) = \min_{y \in Y} \{q^T y : Wy = h(\omega) - T(\omega)x\}$$

Some Notation Review

$$\min_{x \in X: Ax=b} \left\{ c^T x + \mathbb{E}_{\omega} \left[\min_{y \in Y} \{ q^T y : Wy = h(\omega) - T(\omega)x \} \right] \right\}$$

- Second stage value function, or recourse (penalty) function $v: \Re^m \mapsto \Re.$
- $v(z) \equiv \min_{y \in Y} \{q^T y : Wy = z\},$
 - $\diamond\,$ Given "policy" x and realization of randomness $\omega\,$
 - ♦ If z measures the first-stage deviation $z = h(\omega) T(\omega)x$, v(z) is the minimum cost way to "correct" so that the constraints hold again.

•
$$Q(x,\omega) = v(h(\omega) - T(\omega)x)$$

More Notation

• Expected Value Function, or Expected minimium recourse function $\mathcal{Q}: \Re^n \mapsto \Re$.

$$\diamond \ \mathcal{Q}(x) \equiv \mathbb{E}_{\omega}[Q(x,\omega)]$$

♦ For any policy $x \in \Re^n$, it describes the expected cost of the recourse.

The SP Problem

• Using these definitions, we can write our recourse problem in terms only of the x variables:

$$\min_{x \in X} \{ c^T x + \mathcal{Q}(x) : Ax = b \}$$

- This is a (nonlinear) programming problem in \Re^n .
- ⇒ The ease of solving such a problem depends on the properties of $\mathcal{Q}(x)$.
 - ? Does anyone know what Q(x) is?

♦ Linear,(?) Convex,(?) Continuous,(?) Differentiable(?)

• This is what we are going to study for a while...

Here We Go

• For the time being, let $Y = \Re^p_+$.

$$v(z) = \min_{y \in \Re_+^p} \{q^T y : Wy = z\}, z \in \Re^m$$

- Thus, for a fixed z, we solve a linear program to evaluate v(z).
- Assume that LP duality holds $\forall z \in \Re^m$
 - ♦ Only for the time being!
 - \diamond We'll reconsider later...
 - $\diamond -\infty < v(z) < \infty$
- \star This is some notation. Let
 - $\{y \in \Re^p_+ : Wy = z\} = \emptyset \Rightarrow v(z) = \infty$
 - $\exists d \in \Re^n_+ : Wd = 0, q^Td < 0 \Rightarrow v(z) = -\infty.$

Proofs

• So if LP duality holds...

$$v(z) = \min_{y \in \Re_{+}^{p}} \{q^{T}y : Wy = z\} = \max_{t \in \Re^{m}} \{z^{T}t : W^{T}t \le q\}$$

- Let $\Lambda = \{\lambda_1, \lambda_2, \dots, \lambda_{|\Lambda|}\}$ be the set of extreme points of $\{t \in \Re^m | W^T t \le q\}.$
 - ♦ Each of those extreme points λ_k is potentially an optimal solution to the LP.
 - ◇ In fact, we are sure that there is no optimal solution better than one that occurs at an extreme point, so we can write...

$$v(z) = \max_{k=1,\dots,|\Lambda|} \{ z^T \lambda_k \}, z \in \Re^m.$$

What's All This?

$$\begin{aligned} \alpha v(z_{1}) + (1 - \alpha)v(z_{2}) &= \max_{k=1,2,\dots|\Lambda|} z_{1}^{T}\lambda_{k} + (1 - \alpha)\max_{k=1,2,\dots|\Lambda|} z_{2}^{T}\lambda_{k} \\ &\leq \alpha z_{1}^{T}\lambda_{k}^{*} + (1 - \alpha)z_{2}^{T}\lambda_{k}^{*} \\ &= (\alpha z_{1} + (1 - \alpha)z_{2})^{T}\lambda_{k}^{*} \\ &\leq \max_{k=1,2,\dots|\Lambda|} [(\alpha z_{1} + (1 - \alpha)z_{2})^{T}\lambda_{k}] \\ &= v((\alpha z_{1} + (1 - \alpha)z_{2})) \end{aligned}$$

Quite Enough Done

? What did I just prove?

Convex!

- v(z) is convex of $z \in \Re^m$.
- In fact...
 - ◇ Thm: If f₁(x), f₂(x), ... f_q(x) is an arbitrary collection of convex functions, then M(x) = max{f₁(x), f₂(x), ... f_q(x)} is also a convex function.

I Don't Care About v

? What about $Q(x, \omega)$? \diamond Recall $Q(x, \omega) \equiv v(h(\omega) - T(\omega)x)$

$$\lambda Q(x_1,\omega) + (1-\lambda)Q(x_2,\omega)$$

$$= \lambda v(h(\omega) - T(\omega)x_1) + (1 - \lambda)v(h(\omega) - T(\omega)x_2)$$

$$\geq v(\lambda(h(\omega) - T(\omega)x_1) + (1 - \lambda)(h(\omega) - T(\omega)x_2))$$

$$= v(h(\omega) - T(\omega)(\lambda x_1 + (1 - \lambda)x_2))$$

$$= Q(\lambda x_1 + (1 - \lambda)x_2, \omega)$$

Quite Enough Done

Continuing On

- So $Q(x, \omega)$ is convex in x for a fixed ω .
- In fact...
 - ♦ **Thm:** If A is a linear transformation from $\Re^n \mapsto \Re^n$, and f(x) is a convex function on \Re^m , the composite function $(fA)(x) \equiv f(Ax)$ is a convex function on \Re^n .

Almost Done...

- What about $Q(x) \equiv \mathbb{E}_{\omega}Q(x,\omega)$
 - \diamond From the remainder of today, let's assume that ω comes from a probability space with finite support.
 - ♦ This means that there are finite number of discrete values $\{\omega_1, \omega_2, \ldots, \omega_m\}$ that ω can take.

$$Q(x) = \sum_{i=1}^{m} P(\omega = \omega_i) Q(x, \omega_i)$$

Finishing up

- Thm: If f(x) is convex, and $\alpha \ge 0$, $g(x) \equiv \alpha f(x)$ is convex.
- Thm: If $f_k(x), k = 1, 2, ..., K$ are convex functions, so is $g(x) \equiv \sum_{k=1}^{K} f_k(x).$
- Put it all together and you get...
 - ★ $\mathcal{Q}(x)$ is a convex function of x.

What assumptions have we made so far?

- LP duality holds $\forall z = (h(\omega) T(\omega)x) \in \Re^m$
- ω has finite support

Next time

- Discuss these assumptions
- Show more properties of $\mathcal{Q}(x)$
 - ♦ Optimality conditions
- Homework #2. :-(
 - $\diamond\,$ It will be less time consuming that HW#1