IE 495 - Lecture 8

SMPS and the Recourse Function

Prof. Jeff Linderoth

February 5, 2003

Outline

- Formulating Stochastic Program(s).
\diamond SMPS format
\diamond Jacob \& MIT
- Two stage problems with recourse - Expected value function

Please don't call on me!

- What are the KKT conditions?
- Who is Karmarkar?
- The simplex method is a polynomial time algorithm for linear programming.
- True or False: MPS format is a concise, new format for expressing linear and integer programs?
- Explain two ways to model "your favorite eight letter word"?

Multistage Formulation-Implicit Nonanticipativity

maximize

$$
\sum_{s \in S} p_{s}\left(q y_{s}-r w_{s}\right)
$$

subject to

$$
\begin{aligned}
\sum_{i \in N} x_{i 1} & =b \\
\sum_{i \in N} \omega_{i l} x_{i, A(l)} & =\sum_{i \in N} x_{i l} \quad \forall l \in \mathcal{L} \backslash 1 \\
\sum_{i \in N} \omega_{i A(s)} x_{i A(s)}-y_{s}+w_{s} & =G \quad \forall s \in S
\end{aligned}
$$

SMPS

- Multistage problems are based on the "event-decision" model

- All random "stuff" must be in the stage associated with the decision.

ω in "Wrong" Stage

- To get SMPS to "work". Let's rewrite the problem so that the $\omega_{i t}$ are associated with variables in stage t
- Let $x_{i t}$: Amount of money invested in i in time t
- Let $y_{i t}$: Amount of money you have in i at time t
- $\left(1 / \omega_{i t}\right) y_{i t}=x_{i, t-1}$

An Equivalent (Longer) Formulation

maximize

$$
q E+r U
$$

subject to

$$
\begin{aligned}
\sum_{i \in N} x_{i 1} & =b \\
\omega_{i t}^{-1} y_{i t}-x_{i, t-1} & =0 \\
\sum_{i \in N} x_{i t}-\sum_{i \in N} y_{i t} & =0
\end{aligned} \begin{array}{ll}
\\
\sum_{i \in N} y_{i T}-E+B & =G \in N, \forall t \in \mathcal{T} \backslash 1 \\
x_{i t} & \geq 0 \\
y_{i t} & \geq 0 \\
E, U & \geq 0
\end{array}
$$

The Matrix

- $N=\{\mathrm{S}, \mathrm{B}\}$
- $\mathrm{T}=4$

${ }^{x} S_{S 1} \quad{ }^{x} B 1$	$y_{S 2} \quad y_{B 2}$	${ }^{x} S 2 \quad{ }^{x} B 2$	$y_{S 3} \quad y_{B 3}$	${ }^{x}$ S3 $\quad{ }^{x}$ B3	$y_{S 4} \quad y_{B 4}$	E U	
$1 \quad 1$							b
-1 -1	$\begin{array}{ll} \hline 1 / \omega_{S} & \\ & 1 / \omega_{B} \\ \hline \end{array}$						0 0
	$-1 \quad-1$	1					0
		-1 -1	$\begin{aligned} 1 / \omega_{S} & \\ & 1 / \omega_{B} \\ & \end{aligned}$				0 0
			-1 -1	1			0
				$\begin{array}{ll} -1 & -1 \end{array}$	$1 / \omega_{S} \quad 1 \quad 1 / \omega_{B}$		0 0
					11	-1	G

SMPS Format

- How do we specify a stochastic programming instance to the solver?
- We could form the deterministic equivalent ourselves, but you saw how unnatural that seems.
\diamond For really big problems, forming the deterministic equivalent is out of the questions.
\diamond We need to just specify the random parts of the model.
- We can do this using SMPS format
\diamond Actually, other than (explicity) forming the deterministic equivalent in a modeling language, this is the ONLY way.
* There is some recent research work in developed stochastic programming support in an AML.

SMPS Components

- Core file
\diamond Like MPS file for "base" instance
- Time file
\diamond Specifies the time dependence structure
- Stoch file
\diamond Specifies the randomness

SMPS

- The SMPS format is broad ${ }^{\text {a }}$
\diamond There are very few (if any) full implementations, that simply read the full format
\diamond No solver will solve all instances that can be expressed in the format.
- The SMPS format is (seemingly) being changed.
- A good site...
\diamond http://www.mgmt.dal.ca/sba/profs/hgassmann/SMPS2.htm

[^0]
Papers

- I handed out to you...
\diamond J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King and S.W. Wallace, "A standard input format for multiperiod stochastic linear programs", COAL Newsletter \#17 (1987) pp. 1-19.
- There are more. For example...
\diamond H.I. Gassmann and E. Schweitzer, "A comprehensive input format for stochastic linear programs", Annals of Operations Research 104 (2001) 89-125.
- Any questions?

SMPS Core File

- Like an MPS file specifying a "base" scenario
* Must permute the rows and columns so that the time indexing is sequential

NAME	jake			
ROWS				
N obj				
E c1				
E c2				
E c3				
E c4				
E c5				
E c6				
E c7				
E c8				
E c9				
E c10				
COLUMNS				
xs 1	c1	1	c2	-1
xb 1	c1	1	c3	-1
ys2	c2	999	c4	-1
yb2	c3	888	c4	-1
xs 2	c4	1	c5	-1
xb 2	c4	1	c6	-1
ys3	c5	999	c7	-1
yb3	c6	888	c7	-1
xs3	c7	1	c8	-1
xb3	c7	1	c9	-1
ys4	c8	999	c10	1
yb4	c9	888	c10	1
t	obj	-0.05	c10	-1
s	obj	1.1	c10	1
RHS				
rhs	c1	10000	c10	15000
ENDATA				

\diamond Specify which row/column starts each time period.

* Must be sequential!
*23456789 123456789123456789
TIME jake
PERIODS IMPLICIT
xs1 c1 T1
ys2 c2 T2
ys3 c5 T3
ys4 c8 T4
ENDATA

Stoch File

- BLOCKS
\diamond Specify a "block" of parameters that changes together
- INDEP
\diamond Specify that all the parameters you are specifying are all independent random variables
- SCENARIO
\diamond Specify a "base" scenario
\diamond Specify what things change and when...

jake.stoch

*23456789	123456789		
STOCH	jake		
*23456789	123456789	123456789	123456789
BLOCKS	DISCRETE		
BL BLOCK1	T2	0.5	
ys2	c2	0.8	
yb2	c3	0.8772	
BL BLOCK1	T2	0.5	
ys2	c2	0.9434	
yb2	c3	0.8929	
BL BLOCK2	T3	0.5	
ys3	c5	0.8	
yb3	c6	0.8772	
BL BLOCK2	T3	0.5	
ys3	c5	0.9434	
yb3	c6	0.8929	
BL BLOCK3	T4	0.5	
ys4	c8	0.8	
yb4	c9	0.8772	
BL BLOCK3	T4	0.5	
ys4	c8	0.9434	
yb4	c9	0.8929	
ENDATA			

An INDEP Example

$* 23456789$	123456789		
STOCH	jake		
*23456789	123456789	123456789	123456789
INDEP	DISCRETE		
ys2	c2	0.8	0.333
ys2	c2	1.0	0.333
ys2	c2	1.05	0.333
*			
yb2	c3	0.9	0.125
yb2	c3	0.99	0.675
yb2	c3	1.0	0.125

ENDATA

NEOS

- If we have files in SMPS format, how do we solve the resulting instance?
- We can use NEOS!
http://www.mcs.anl.gov/neos
- There are currently two solvers
\diamond CPA-Works for two-stage LP
\diamond MSLIP—Works for multistage LP
- I am working on getting others that we can use.
* You will (likely) be asked to solve some an instance on your next homework assignment

Math Time! Two-Stage SLP w/Fixed Recourse

minimize

$$
c^{T} x+\mathbb{E}_{\omega}\left[q^{T} y\right]
$$

subject to

$$
\begin{aligned}
A x & =b \\
T(\omega) x+W y(\omega) & =h(\omega) \quad \forall \omega \in \Omega \\
x & \in X \\
y(\omega) & \in Y
\end{aligned}
$$

- $Q(x, \omega)=\min _{y \in Y}\left\{q^{T} y: W y=h(\omega)-T(\omega) x\right\}$

Some Notation Review

$$
\min _{x \in X: A x=b}\left\{c^{T} x+\mathbb{E}_{\omega}\left[\min _{y \in Y}\left\{q^{T} y: W y=h(\omega)-T(\omega) x\right\}\right]\right\}
$$

- Second stage value function, or recourse (penalty) function $v: \Re^{m} \mapsto \Re$.
- $v(z) \equiv \min _{y \in Y}\left\{q^{T} y: W y=z\right\}$,
\diamond Given "policy" x and realization of randomness ω
\diamond If z measures the first-stage deviation $z=h(\omega)-T(\omega) x$, $v(z)$ is the minimum cost way to "correct" so that the constraints hold again.
- $Q(x, \omega)=v(h(\omega)-T(\omega) x)$

More Notation

- Expected Value Function, or Expected minimium recourse function $\mathcal{Q}: \Re^{n} \mapsto \Re$.
$\diamond \mathcal{Q}(x) \equiv \mathbb{E}_{\omega}[Q(x, \omega)]$
\diamond For any policy $x \in \Re^{n}$, it describes the expected cost of the recourse.

The SP Problem

- Using these definitions, we can write our recourse problem in terms only of the x variables:

$$
\min _{x \in X}\left\{c^{T} x+\mathcal{Q}(x): A x=b\right\}
$$

- This is a (nonlinear) programming problem in \Re^{n}.
\Rightarrow The ease of solving such a problem depends on the properties of $\mathcal{Q}(x)$.
? Does anyone know what $\mathcal{Q}(x)$ is?
\diamond Linear,(?) Convex,(?) Continuous,(?) Differentiable(?)
- This is what we are going to study for a while...

Here We Go

- For the time being, let $Y=\Re_{+}^{p}$.

$$
v(z)=\min _{y \in \Re_{+}^{p}}\left\{q^{T} y: W y=z\right\}, z \in \Re^{m}
$$

- Thus, for a fixed z, we solve a linear program to evaluate $v(z)$.
- Assume that LP duality holds $\forall z \in \Re^{m}$
\diamond Only for the time being!
\diamond We'll reconsider later...
$\diamond-\infty<v(z)<\infty$
\star This is some notation. Let
- $\left\{y \in \Re_{+}^{p}: W y=z\right\}=\emptyset \Rightarrow v(z)=\infty$
- $\exists d \in \Re_{+}^{n}: W d=0, q^{T} d<0 \Rightarrow v(z)=-\infty$.

Proofs

- So if LP duality holds...

$$
v(z)=\min _{y \in \Re_{+}^{p}}\left\{q^{T} y: W y=z\right\}=\max _{t \in \Re^{m}}\left\{z^{T} t: W^{T} t \leq q\right\}
$$

- Let $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{|\Lambda|}\right\}$ be the set of extreme points of $\left\{t \in \Re^{m} \mid W^{T} t \leq q\right\}$.
\diamond Each of those extreme points λ_{k} is potentially an optimal solution to the LP.
\diamond In fact, we are sure that there is no optimal solution better than one that occurs at an extreme point, so we can write...

$$
v(z)=\max _{k=1, \ldots,|\Lambda|}\left\{z^{T} \lambda_{k}\right\}, z \in \Re^{m} .
$$

What's All This?

$$
\begin{aligned}
\alpha v\left(z_{1}\right)+(1-\alpha) v\left(z_{2}\right) & =\max _{k=1,2, \ldots|\Lambda|} z_{1}^{T} \lambda_{k}+(1-\alpha) \max _{k=1,2, \ldots|\Lambda|} z_{2}^{T} \lambda_{k} \\
& \leq \alpha z_{1}^{T} \lambda_{k}^{*}+(1-\alpha) z_{2}^{T} \lambda_{k}^{*} \\
& =\left(\alpha z_{1}+(1-\alpha) z_{2}\right)^{T} \lambda_{k}^{*} \\
& \leq \max _{k=1,2, \ldots|\Lambda|}\left[\left(\alpha z_{1}+(1-\alpha) z_{2}\right)^{T} \lambda_{k}\right] \\
& =v\left(\left(\alpha z_{1}+(1-\alpha) z_{2}\right)\right)
\end{aligned}
$$

? What did I just prove?

Convex!

- $v(z)$ is convex of $z \in \Re^{m}$.
- In fact...
\diamond Thm: If $f_{1}(x), f_{2}(x), \ldots f_{q}(x)$ is an arbitrary collection of convex functions, then $M(x)=\max \left\{f_{1}(x), f_{2}(x), \ldots f_{q}(x)\right\}$ is also a convex function.

I Don't Care About v

? What about $Q(x, \omega)$?
$\diamond \operatorname{Recall} Q(x, \omega) \equiv v(h(\omega)-T(\omega) x)$

$$
\begin{aligned}
& \quad \lambda Q\left(x_{1}, \omega\right)+(1-\lambda) Q\left(x_{2}, \omega\right) \\
& =\quad \lambda v\left(h(\omega)-T(\omega) x_{1}\right)+(1-\lambda) v\left(h(\omega)-T(\omega) x_{2}\right) \\
& \geq v\left(\lambda\left(h(\omega)-T(\omega) x_{1}\right)+(1-\lambda)\left(h(\omega)-T(\omega) x_{2}\right)\right) \\
& =v\left(h(\omega)-T(\omega)\left(\lambda x_{1}+(1-\lambda) x_{2}\right)\right) \\
& = \\
& Q\left(\lambda x_{1}+(1-\lambda) x_{2}, \omega\right)
\end{aligned}
$$

Quite Enough Done

Continuing On

- So $Q(x, \omega)$ is convex in x for a fixed ω.
- In fact...
\diamond Thm: If A is a linear transformation from $\Re^{n} \mapsto \Re^{n}$, and $f(x)$ is a convex function on \Re^{m}, the composite function $(f A)(x) \equiv f(A x)$ is a convex function on \Re^{n}.

Almost Done...

- What about $\mathcal{Q}(x) \equiv \mathbb{E}_{\omega} Q(x, \omega)$
\diamond From the remainder of today, let's assume that ω comes from a probability space with finite support.
\diamond This means that there are finite number of discrete values $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{m}\right\}$ that ω can take.

$$
\mathcal{Q}(x)=\sum_{i=1}^{m} P\left(\omega=\omega_{i}\right) Q\left(x, \omega_{i}\right)
$$

Finishing up

- Thm: If $f(x)$ is convex, and $\alpha \geq 0, g(x) \equiv \alpha f(x)$ is convex.
- Thm: If $f_{k}(x), k=1,2, \ldots K$ are convex functions, so is $g(x) \equiv \sum_{k=1}^{K} f_{k}(x)$.
- Put it all together and you get...
$\star \mathcal{Q}(x)$ is a convex function of x.

What assumptions have we made so far?

- LP duality holds $\forall z=(h(\omega)-T(\omega) x) \in \Re^{m}$
- ω has finite support

Next time

- Discuss these assumptions
- Show more properties of $\mathcal{Q}(x)$
\diamond Optimality conditions
- Homework \#2. :-(
\diamond It will be less time consuming that HW\#1

[^0]: ${ }^{\text {a }}$ Too broad, IMO

