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Outline

• Formulating Stochastic Program(s).

¦ SMPS format

¦ Jacob & MIT

• Two stage problems with recourse – Expected value function
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Please don’t call on me!

• What are the KKT conditions?

• Who is Karmarkar?

• The simplex method is a polynomial time algorithm for linear
programming.

• True or False: MPS format is a concise, new format for
expressing linear and integer programs?

• Explain two ways to model “your favorite eight letter word”?
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Multistage Formulation—Implicit Nonanticipativity

maximize ∑

s∈S

ps(qys − rws)

subject to
∑

i∈N

xi1 = b

∑

i∈N

ωilxi,A(l) =
∑

i∈N

xil ∀l ∈ L \ 1

∑

i∈N

ωiA(s)xiA(s) − ys + ws = G ∀s ∈ S
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SMPS

• Multistage problems are based on the “event-decision” model

D

E E E

D D D

T=1 T=2 T=3 T=4

• All random “stuff” must be in the stage associated with the
decision.
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ω in “Wrong” Stage

• To get SMPS to “work”. Let’s rewrite the problem so that the
ωit are associated with variables in stage t

• Let xit : Amount of money invested in i in time t

• Let yit : Amount of money you have in i at time t

• (1/ωit)yit = xi,t−1
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An Equivalent (Longer) Formulation

maximize

qE + rU

subject to X
i∈N

xi1 = b

ω−1
it yit − xi,t−1 = 0 ∀i ∈ N, ∀t ∈ T \ 1X

i∈N

xit −
X
i∈N

yit = 0 ∀t ∈ T \ 1X
i∈N

yiT − E + B = G

xit ≥ 0 ∀i ∈ N, t ∈ T
yit ≥ 0 ∀i ∈ N, t ∈ T \ 1

E, U ≥ 0
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The Matrix

• N = {S, B}
• T=4

xS1 xB1 yS2 yB2 xS2 xB2 yS3 yB3 xS3 xB3 yS4 yB4 E U

1 1 b

-1 1/ωS 0

-1 1/ωB 0

-1 -1 1 1 0

-1 1/ωS 0

-1 1/ωB 0

-1 -1 1 1 0

-1 1/ωS 0

-1 1/ωB 0

1 1 -1 1 G
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SMPS Format

• How do we specify a stochastic programming instance to the
solver?

• We could form the deterministic equivalent ourselves, but you
saw how unnatural that seems.

¦ For really big problems, forming the deterministic equivalent
is out of the questions.

¦ We need to just specify the random parts of the model.

• We can do this using SMPS format

¦ Actually, other than (explicity) forming the deterministic
equivalent in a modeling language, this is the ONLY way.

? There is some recent research work in developed stochastic
programming support in an AML.
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SMPS Components

• Core file

¦ Like MPS file for “base” instance

• Time file

¦ Specifies the time dependence structure

• Stoch file

¦ Specifies the randomness
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SMPS

• The SMPS format is broada

¦ There are very few (if any) full implementations, that
simply read the full format

¦ No solver will solve all instances that can be expressed in
the format.

• The SMPS format is (seemingly) being changed.

• A good site...

¦ http://www.mgmt.dal.ca/sba/profs/hgassmann/SMPS2.htm

aToo broad, IMO
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Papers

• I handed out to you...

¦ J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn,
A.J. King and S.W. Wallace, “A standard input format for
multiperiod stochastic linear programs”, COAL Newsletter
#17 (1987) pp. 1-19.

• There are more. For example...

¦ H.I. Gassmann and E. Schweitzer, “A comprehensive input
format for stochastic linear programs”, Annals of
Operations Research 104 (2001) 89-125.

• Any questions?
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SMPS Core File

• Like an MPS file specifying a “base” scenario

? Must permute the rows and columns so that the time indexing
is sequential
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NAME jake

ROWS

N obj

E c1

E c2

E c3

E c4

E c5

E c6

E c7

E c8

E c9

E c10

COLUMNS

xs1 c1 1 c2 -1

xb1 c1 1 c3 -1

ys2 c2 999 c4 -1

yb2 c3 888 c4 -1

xs2 c4 1 c5 -1

xb2 c4 1 c6 -1

ys3 c5 999 c7 -1

yb3 c6 888 c7 -1

xs3 c7 1 c8 -1

xb3 c7 1 c9 -1

ys4 c8 999 c10 1

yb4 c9 888 c10 1

t obj -0.05 c10 -1

s obj 1.1 c10 1

RHS

rhs c1 10000 c10 15000

ENDATA
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jake.time

¦ Specify which row/column starts each time period.

? Must be sequential!

*23456789 123456789 123456789

TIME jake

PERIODS IMPLICIT

xs1 c1 T1

ys2 c2 T2

ys3 c5 T3

ys4 c8 T4

ENDATA
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Stoch File

• BLOCKS

¦ Specify a “block” of parameters that changes together

• INDEP

¦ Specify that all the parameters you are specifying are all
independent random variables

• SCENARIO

¦ Specify a “base” scenario

¦ Specify what things change and when...
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jake.stoch

*23456789 123456789

STOCH jake

*23456789 123456789 123456789 123456789

BLOCKS DISCRETE

BL BLOCK1 T2 0.5

ys2 c2 0.8

yb2 c3 0.8772

BL BLOCK1 T2 0.5

ys2 c2 0.9434

yb2 c3 0.8929

BL BLOCK2 T3 0.5

ys3 c5 0.8

yb3 c6 0.8772

BL BLOCK2 T3 0.5

ys3 c5 0.9434

yb3 c6 0.8929

BL BLOCK3 T4 0.5

ys4 c8 0.8

yb4 c9 0.8772

BL BLOCK3 T4 0.5

ys4 c8 0.9434

yb4 c9 0.8929

ENDATA
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An INDEP Example

*23456789 123456789

STOCH jake

*23456789 123456789 123456789 123456789

INDEP DISCRETE

ys2 c2 0.8 0.333

ys2 c2 1.0 0.333

ys2 c2 1.05 0.333

*

yb2 c3 0.9 0.125

yb2 c3 0.99 0.675

yb2 c3 1.0 0.125

ENDATA
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NEOS

• If we have files in SMPS format, how do we solve the resulting
instance?

• We can use NEOS!

http://www.mcs.anl.gov/neos

• There are currently two solvers

¦ CPA—Works for two-stage LP

¦ MSLIP—Works for multistage LP

• I am working on getting others that we can use.

? You will (likely) be asked to solve some an instance on your
next homework assignment
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Math Time! Two-Stage SLP w/Fixed Recourse

minimize
cT x + Eω

[
qT y

]

subject to

Ax = b

T (ω)x + Wy(ω) = h(ω) ∀ω ∈ Ω

x ∈ X

y(ω) ∈ Y

• Q(x, ω) = miny∈Y {qT y : Wy = h(ω)− T (ω)x}
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Some Notation Review

min
x∈X:Ax=b

{
cT x + Eω

[
min
y∈Y

{qT y : Wy = h(ω)− T (ω)x}
]}

• Second stage value function, or recourse (penalty) function
v : <m 7→ <.

• v(z) ≡ miny∈Y {qT y : Wy = z},
¦ Given “policy” x and realization of randomness ω

¦ If z measures the first-stage deviation z = h(ω)− T (ω)x,
v(z) is the minimum cost way to “correct” so that the
constraints hold again.

• Q(x, ω) = v(h(ω)− T (ω)x)
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More Notation

• Expected Value Function, or Expected minimium recourse
function Q : <n 7→ <.

¦ Q(x) ≡ Eω[Q(x, ω)]

¦ For any policy x ∈ <n, it describes the expected cost of the
recourse.
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The SP Problem

• Using these definitions, we can write our recourse problem in
terms only of the x variables:

min
x∈X

{cT x +Q(x) : Ax = b}

• This is a (nonlinear) programming problem in <n.

⇒ The ease of solving such a problem depends on the properties
of Q(x).

? Does anyone know what Q(x) is?

¦ Linear,(?) Convex,(?) Continuous,(?) Differentiable(?)

• This is what we are going to study for a while...
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Here We Go

• For the time being, let Y = <p
+.

v(z) = min
y∈<p

+

{qT y : Wy = z}, z ∈ <m

• Thus, for a fixed z, we solve a linear program to evaluate v(z).

• Assume that LP duality holds ∀z ∈ <m

¦ Only for the time being!

¦ We’ll reconsider later...

¦ −∞ < v(z) < ∞
? This is some notation. Let

• {y ∈ <p
+ : Wy = z} = ∅ ⇒ v(z) = ∞

• ∃d ∈ <n
+ : Wd = 0, qT d < 0 ⇒ v(z) = −∞.
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Proofs

• So if LP duality holds...

v(z) = min
y∈<p

+

{qT y : Wy = z} = max
t∈<m

{zT t : WT t ≤ q}

• Let Λ = {λ1, λ2, . . . , λ|Λ|} be the set of extreme points of
{t ∈ <m|WT t ≤ q}.
¦ Each of those extreme points λk is potentially an optimal

solution to the LP.

¦ In fact, we are sure that there is no optimal solution better
than one that occurs at an extreme point, so we can write...

v(z) = max
k=1,...,|Λ|

{zT λk}, z ∈ <m.
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What’s All This?

αv(z1) + (1− α)v(z2) = max
k=1,2,...|Λ|

zT
1 λk + (1− α) max

k=1,2,...|Λ|
zT
2 λk

≤ αzT
1 λ∗k + (1− α)zT

2 λ∗k
= (αz1 + (1− α)z2)T λ∗k
≤ max

k=1,2,...|Λ|
[(αz1 + (1− α)z2)T λk]

= v((αz1 + (1− α)z2))
Quite Enough Done

? What did I just prove?
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Convex!

• v(z) is convex of z ∈ <m.

• In fact...

¦ Thm: If f1(x), f2(x), . . . fq(x) is an arbitrary collection of
convex functions, then M(x) = max{f1(x), f2(x), . . . fq(x)}
is also a convex function.
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I Don’t Care About v

? What about Q(x, ω)?

¦ Recall Q(x, ω) ≡ v(h(ω)− T (ω)x)

λQ(x1, ω) + (1− λ)Q(x2, ω)

= λv(h(ω)− T (ω)x1) + (1− λ)v(h(ω)− T (ω)x2)

≥ v(λ(h(ω)− T (ω)x1) + (1− λ)(h(ω)− T (ω)x2))

= v(h(ω)− T (ω)(λx1 + (1− λ)x2))

= Q(λx1 + (1− λ)x2, ω)

Quite Enough Done
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Continuing On

• So Q(x, ω) is convex in x for a fixed ω.

• In fact...

¦ Thm: If A is a linear transformation from <n 7→ <n, and
f(x) is a convex function on <m, the composite function
(fA)(x) ≡ f(Ax) is a convex function on <n.
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Almost Done...

• What about Q(x) ≡ EωQ(x, ω)

¦ From the remainder of today, let’s assume that ω comes
from a probability space with finite support.

¦ This means that there are finite number of discrete values
{ω1, ω2, . . . , ωm} that ω can take.

Q(x) =
m∑

i=1

P (ω = ωi)Q(x, ωi)
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Finishing up

• Thm: If f(x) is convex, and α ≥ 0, g(x) ≡ αf(x) is convex.

• Thm: If fk(x), k = 1, 2, . . . K are convex functions, so is
g(x) ≡ ∑K

k=1 fk(x).

• Put it all together and you get...

? Q(x) is a convex function of x.
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What assumptions have we made so far?

• LP duality holds ∀z = (h(ω)− T (ω)x) ∈ <m

• ω has finite support
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Next time

• Discuss these assumptions

• Show more properties of Q(x)

¦ Optimality conditions

• Homework #2. :-(

¦ It will be less time consuming that HW#1

February 5, 2003 Stochastic Programming – Lecture 8 Slide 33


