

Properties of the Recourse Function

Prof. Jeff Linderoth

February 10, 2003

Outline^a

- Two-stage stochastic LP
 - Convexity
 - Continuity
 - Differentiability
 - Optimality Conditions
- ★ L-Shaped Method!

A Bit of Review

minimize

$$c^T x + \mathbb{E}_{\omega} \left[q^T y \right]$$

subject to

$$Ax = b$$

$$T(\omega)x + Wy(\omega) = h(\omega) \quad \forall \omega \in \Omega$$

$$x \in \Re^n_+$$

$$y(\omega) \in \Re^p_+$$

•
$$Q(x,\omega) = \min_{y \in \Re^p_+} \{q^T y : Wy = h(\omega) - T(\omega)x\}$$

All the Same

$$\min_{x \in \Re_+^n : Ax = b} \left\{ c^T x + \mathbb{E}_{\omega} \left[\min_{y \in \Re_+^p} \{ q^T y : Wy = h(\omega) - T(\omega)x \} \right] \right\}$$

$$\min_{x \in \Re^n_+ : Ax = b} \left\{ c^T x + \mathbb{E}_{\omega} v(h(\omega) - T(\omega)x) \right\}$$

$$\min_{x \in \Re^n_+ : Ax = b} \left\{ c^T x + \mathbb{E}_{\omega} Q(x, \omega) \right\}$$

$$\min_{x \in \Re^n_+} \{ c^T x + \mathcal{Q}(x) : Ax = b \}$$

Proofs

• If LP duality holds...

$$v(z) = \min_{y \in \Re_{+}^{p}} \{q^{T}y : Wy = z\} = \max_{t \in \Re^{m}} \{z^{T}t : W^{T}t \le q\}$$

- Let $\Lambda = \{\lambda_1, \lambda_2, \dots, \lambda_{|\Lambda|}\}$ be the set of extreme points of $\{t \in \Re^m | W^T t \le q\}.$
 - ♦ Each of those extreme points λ_k is potentially an optimal solution to the LP.
 - ◇ In fact, we are sure that there is no optimal solution better than one that occurs at an extreme point, so we can write...

$$v(z) = \max_{k=1,\dots,|\Lambda|} \{ z^T \lambda_k \}, z \in \Re^m.$$

What's All This?

$$\begin{aligned} \alpha v(z_{1}) + (1 - \alpha)v(z_{2}) &= \max_{k=1,2,\dots|\Lambda|} z_{1}^{T}\lambda_{k} + (1 - \alpha) \max_{k=1,2,\dots|\Lambda|} z_{2}^{T}\lambda_{k} \\ &\leq \alpha z_{1}^{T}\lambda_{k}^{*} + (1 - \alpha)z_{2}^{T}\lambda_{k}^{*} \\ &= (\alpha z_{1} + (1 - \alpha)z_{2})^{T}\lambda_{k}^{*} \\ &\leq \max_{k=1,2,\dots|\Lambda|} [(\alpha z_{1} + (1 - \alpha)z_{2})^{T}\lambda_{k}] \\ &= v((\alpha z_{1} + (1 - \alpha)z_{2})) \end{aligned}$$

Quite Enough Done????

? What did I just prove?

I'm an Idiot!

- The above proof is hopelessly wrong
- Take $z_1, z_2 \in \operatorname{dom}(v)$

$$v((\alpha z_{1} + (1 - \alpha)z_{2})) = \max_{k=1,...,|\Lambda|} \{ (\alpha z_{1} + (1 - \alpha)z_{2})^{T}\lambda_{k} \}$$

$$= (\alpha z_{1} + (1 - \alpha)z_{2})^{T}\lambda_{k^{*}}$$

$$= (\alpha z_{1}^{T}\lambda_{k}^{*} + (1 - \alpha)z_{2}^{T}\lambda_{k}^{*}$$

$$\leq \alpha \max_{k=1,...,|\Lambda|} z_{1}^{T}\lambda_{k} + (1 - \alpha) \max_{k=1,...,|\Lambda|} z_{2}^{T}\lambda_{k}$$

$$= \alpha v(z_{1}) + (1 - \alpha)v(z_{2})$$

Quite Enough Done

What if LP duality doesn't hold. We Make It Hold!

- $K_1 = \{x \in \Re^n_+ : Ax = b\}$
- $K_2 = \{x | \mathcal{Q}(x) < \infty\}$

So problem is

$$\min\{c^T x + \mathcal{Q}(x) : x \in K_1 \cap K_2\}$$

- A problem is said to have relatively complete recourse if K₁ ⊆ K₂.
- ? Why is this good?
 - ★ Because we never have to worry about the case $Q(x, \omega) = \infty$.

More Definitions

- $K_2(\omega) = \{x | Q(x, \omega) < \infty\}$
 - $\diamond\,$ The set of all feasible points for a given realization $\omega\,$

•
$$K_2 = \cap_{\omega \in \Omega} K_2(\omega)$$

- A problem is said to have complete recourse if $\forall z \in \Re^m$, $v(z) < \infty$. That is $\forall z \in \Re^m, \exists y \in \Re^p_+ : Wy = z$.
- This implies that $\forall x, T(\omega), h(\omega), Q(x, \omega) < \infty$, since z = h Tx.
 - \star Complete recourse is a property of W.
 - ♦ Namely if the columns of W span \Re^m , then $\forall z \in \Re^m, \exists y \in \Re^p : Wy = z$, and we have complete recourse.

Enforcing Duality — Up to the Modeller!

- Suppose $Q(x, \omega) = \min_{y \in \Re^p_+} \{q^T y : Wy = h(\omega) T(\omega)x\}$ is infeasible for some x. (i.e. LP duality doesn't hold).
- In practice, we don't allow this.
- Add additional slack (deviation) variables so that the columns of W span \Re^m .
 - ♦ Adding [I, -I] will do the trick.

Simple Example

What About $-\infty$

- Suppose $Q(x,\omega) = \min_{y \in \Re^p_+} \{q^T y : Wy = h(\omega) T(\omega)x\}$ is unbounded.
- $Q(x,\omega) = -\infty$.
- We just don't allow this!!
- $q \ge 0$ is sufficient to ensure it.

Other Highlights from Last Time

- Thm: If $f_1(x), f_2(x), \dots f_q(x)$ is an arbitrary collection of convex functions, then $M(x) = \max\{f_1(x), f_2(x), \dots f_q(x)\}$ is also a convex function.
- $Q(x,\omega) \equiv v(h(\omega) T(\omega)x)$ is convex.
- $\mathcal{Q}(x) \equiv \mathbb{E}_{\omega}Q(x,\omega)$ is convex
 - ♦ We only showed this for discrete ω , but the arguments based on sums also carry over to integrals. In fact...
- If g(x, y) is convex in x, then ∫ g(x, y)dy is convex.
 Q(x) = ∫_Ω Q(x, t)dF(t)
 - $\Rightarrow \mathcal{Q}(x)$ is convex

Other Properties—Continuity

- $\mathcal{Q}(x)$ is Lipschitz-continuous.
 - $\diamond\,$ In fact, all convex functions on the interior of their domain.
 - ♦ Some of you proved this on the homework.
- With some care to the technical details, you can also show continuity holds on exterior points as well.

Differentiability

Thm: Suppose LP duality holds, and the dual problem

$$v(z) = \max_{t \in \Re^m} \{ z^T t : W^T t \le q \}$$

has a unique optimal solution λ^* . Then $\nabla v(z) = \lambda^*$

Proof:

$$v(z) = \max_{k=1,\dots,|\Lambda|} \{ z^T \lambda_k \}, z \in \Re^m.$$

Suppose that λ_{k^*} is the unique optimal solution to the problem. Then $\lambda_{k^*} > \lambda_k \forall k \in \Lambda \setminus k^*$. Consider

$$\lim_{h \to 0} \frac{v(z + he_j) - v(z)}{h}$$

Proof, Cont...

• By uniquesness of λ_{k^*} and properties of LP,

$$\lim_{h \to 0} \frac{v(z + he_j) - v(z)}{h} = \lim_{h \to 0} \frac{\lambda_{k^*}^T(z + he_j) - \lambda_{k^*}^T z}{h}$$

By L'Hôpital's rule^a, this is $\lambda_k^* e_j$. Do this for all directions and you get $\nabla v(z) = \lambda^*$

Quite enough done.

^a(Yikes – what the heck is that?!?!?)

Cal-cool-us

- Just a refresher on L'Hôpital's rule...
- Under some conditions on f and g
 - ♦ Both differentiable
 - \diamond Derivative of g nonzero
 - ♦ Both limits go to zero

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

- Anyone remember the Chain rule?
 - ♦ Here's the 1-D version...

$$D(g(f(x)) = g'(f(x))f'(x))$$

What about Q

D(g(f(x)) = g'(f(x))f'(x)

- Not necessarily so interested in $\nabla v(x)$
- We're really interested in $\nabla Q(x, \omega)$ and the chain rule gives it to is...
- Apply chain rule with f(x) = h Tx

$$\nabla v(h(\omega) - T(\omega)x) = \nabla Q(x,\omega) = -T\lambda^*$$

More Justification (if time permits)

Subdifferential Characterization

Let D(z) be the "dual problem": $\max_{t \in \Re^m} \{z^T t : W^T t \leq q\}$ whose optimal value is v(z).

Thm: Suppose v(z) is finite $\forall z \in \Re^m$. (LP duality holds). Then

$$\partial v(z) = \Lambda^*(z) \qquad \forall z \in \Re^m,$$

where Λ^* is the set of all optimal solutions to the dual problem D(z).

Proof:

(You'll probably need lots of space)

Out of Our League

- What we really care about are $\nabla Q(x)$ if it exists or $\partial Q(x)$ if it doesn't.
- ? What is $\partial \mathcal{Q}(x) = \partial \mathbb{E}_{\omega} Q(x, \omega)$?
- With much fancy convex analysis, we can show in our case that we can exchange \mathbb{E} and ∂ .
 - ♦ Yeah! This means that we can compute $\partial Q(x)$ by decomposing it into subgradients for each $\partial Q(x, \omega)$.

$$\partial \mathcal{Q}(x) = \mathbb{E}_{\omega} \partial Q(x, \omega)$$

• In particular, if ω comes from a discrete distribution,

$$\partial \mathcal{Q}(x) = \sum_{s \in S} p_s Q(x, \omega_s)$$

If
$$\eta_s = -T(\omega_s)\lambda_s^* \in \partial Q(x, \omega_s)$$
, then

$$\eta = \sum_{s \in S} p_s \eta_s \in \partial Q(x)$$

Summary

- If ω comes from a finite distribution
 - ♦ K_2 is polyhedral. $(K_2 = \cap_{\omega \in \Omega} K_2(\omega))$
 - $\diamond \mathcal{Q}(x)$ is piecewise linear and convex on K_2
 - \star (We are going to focus on this case for a while)
- If ω comes from a continuous distribution with finite second moments.
 - ◊ (i.e. it has a bounded variance Strange things can happen if you don't – I'll try to find a little example to give you on the homework).
 - $\diamond \mathcal{Q}(x)$ is differentiable and convex

Discussion

- Computing $Q(x) = \int_{\Omega} Q(x,t) dF(t)$ in general requires numerical integration for a given value of x
- Computing $\nabla Q(x)$ also would require numerical integration.
- ★ This is only possible when ω is a vector of very small dimensionality.
- Typically people (and we will too) discretize the continuous distribution.
 - \diamond We'll talk about this...

KKT Conditions

Here, again for your convenience are the KKT conditions (in their non-differentiable extension).

• Thm: For a convex function $f : \Re^n \mapsto \Re$, and convex functions $g_i : Re^n \mapsto \Re, i = 1, 2, ..., m$, if we have some nice "regularity conditions" (which we have in this case), \hat{x} is an optimal solution to $\min_{x \in \Re^n_+} \{f(x) : g_i(x) = 0 \ \forall i = 1, 2, ..., m\}$ if and only if the following conditions hold:

$$\begin{array}{l} \diamond \ g_i(x) = 0 \quad \forall i = 1, 2, \dots m \\ \diamond \ \exists \lambda_1, \lambda_2, \dots \lambda_m \in \Re, \mu_1, \mu_2, \dots \mu_n \in \Re_+ \text{ such that} \\ \bullet \ 0 \in \partial f(\hat{x}) + \sum_{i=1}^m \lambda_i \partial g_i(\hat{x}) - \sum_{j=1}^n \mu_j. \\ \bullet \ \mu_j \ge 0 \ \forall j = 1, 2, \dots n \\ \bullet \ \mu_j \hat{x}_j = 0 \ \forall j = 1, 2, \dots n \end{array}$$

Apply to Our Problem

$$\min_{x \in \Re^n_+} \{ c^T x + \mathcal{Q}(x) : Ax = b \}$$

Thm: $\hat{x} \in K_1$ is optimal if and only if

•
$$\exists \lambda \in \Re^m, \mu \in \Re^n_+$$
 such that
 $\diamond \ 0 \in c + \partial \mathcal{Q}(\hat{x}) + A^T \lambda - \mu$
 $\diamond \ \mu^T \hat{x} = 0$

Or

$$-c - A^T \lambda + \mu \in \partial \mathcal{Q}(\hat{x})$$

Next time

- Algorithms!
 - \diamond The lshaped method.
 - ♦ Examples and (maybe) some of its variants...
- If I don't know what you're doing for a project, please come speak to me.
- Homework #2. :-(