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Outlinea

• Two-stage stochastic LP

• Convexity

• Continuity

• Differentiability

• Optimality Conditions

? L-Shaped Method!
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A Bit of Review

minimize
cT x + Eω

[
qT y

]

subject to

Ax = b

T (ω)x + Wy(ω) = h(ω) ∀ω ∈ Ω

x ∈ <n
+

y(ω) ∈ <p
+

• Q(x, ω) = miny∈<p
+
{qT y : Wy = h(ω)− T (ω)x}
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All the Same

min
x∈<n

+:Ax=b

{
cT x + Eω

[
min
y∈<p

+

{qT y : Wy = h(ω)− T (ω)x}
]}

min
x∈<n

+:Ax=b

{
cT x + Eωv(h(ω)− T (ω)x)

}

min
x∈<n

+:Ax=b

{
cT x + EωQ(x, ω)

}

min
x∈<n

+

{cT x +Q(x) : Ax = b}
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Proofs

• If LP duality holds...

v(z) = min
y∈<p

+

{qT y : Wy = z} = max
t∈<m

{zT t : WT t ≤ q}

• Let Λ = {λ1, λ2, . . . , λ|Λ|} be the set of extreme points of
{t ∈ <m|WT t ≤ q}.
¦ Each of those extreme points λk is potentially an optimal

solution to the LP.

¦ In fact, we are sure that there is no optimal solution better
than one that occurs at an extreme point, so we can write...

v(z) = max
k=1,...,|Λ|

{zT λk}, z ∈ <m.

February 5, 2003 Stochastic Programming – Lecture 9 Slide 5



What’s All This?

αv(z1) + (1− α)v(z2) = max
k=1,2,...|Λ|

zT
1 λk + (1− α) max

k=1,2,...|Λ|
zT
2 λk

≤ αzT
1 λ∗k + (1− α)zT

2 λ∗k
= (αz1 + (1− α)z2)T λ∗k
≤ max

k=1,2,...|Λ|
[(αz1 + (1− α)z2)T λk]

= v((αz1 + (1− α)z2))
Quite Enough Done????

? What did I just prove?
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I’m an Idiot!

• The above proof is hopelessly wrong

• Take z1, z2 ∈ dom(v)

v((αz1 + (1− α)z2)) = max
k=1,...,|Λ|

{(αz1 + (1− α)z2)T λk}

= (αz1 + (1− α)z2)T λk∗

= (αzT
1 λ∗k + (1− α)zT

2 λ∗k
≤ α max

k=1,...,|Λ|
zT
1 λk + (1− α) max

k=1,...,|Λ|
zT
2 λk

= αv(z1) + (1− α)v(z2)
Quite Enough Done
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What if LP duality doesn’t hold. We Make It Hold!

• K1 = {x ∈ <n
+ : Ax = b}

• K2 = {x|Q(x) < ∞}
So problem is

min{cT x +Q(x) : x ∈ K1 ∩K2}

• A problem is said to have relatively complete recourse if
K1 ⊆ K2.

? Why is this good?

? Because we never have to worry about the case
Q(x, ω) = ∞.

February 5, 2003 Stochastic Programming – Lecture 9 Slide 8



More Definitions

• K2(ω) = {x|Q(x, ω) < ∞}
¦ The set of all feasible points for a given realization ω

• K2 = ∩ω∈ΩK2(ω)

• A problem is said to have complete recourse if ∀z ∈ <m,
v(z) < ∞. That is ∀z ∈ <m, ∃y ∈ <p

+ : Wy = z.

• This implies that ∀x, T (ω), h(ω), Q(x, ω) < ∞, since
z = h− Tx.

? Complete recourse is a property of W .

¦ Namely if the columns of W span <m, then
∀z ∈ <m, ∃y ∈ <p : Wy = z, and we have complete recourse.
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Enforcing Duality — Up to the Modeller!

• Suppose Q(x, ω) = miny∈<p
+
{qT y : Wy = h(ω)− T (ω)x} is

infeasible for some x. (i.e. LP duality doesn’t hold).

• In practice, we don’t allow this.

• Add additional slack (deviation) variables so that the columns
of W span <m.

¦ Adding [I,−I] will do the trick.
Simple Example
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What About -∞

• Suppose Q(x, ω) = miny∈<p
+
{qT y : Wy = h(ω)− T (ω)x} is

unbounded.

• Q(x, ω) = −∞.

• We just don’t allow this!!

• q ≥ 0 is sufficient to ensure it.
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Other Highlights from Last Time

• Thm: If f1(x), f2(x), . . . fq(x) is an arbitrary collection of
convex functions, then M(x) = max{f1(x), f2(x), . . . fq(x)} is
also a convex function.

• Q(x, ω) ≡ v(h(ω)− T (ω)x) is convex.

• Q(x) ≡ EωQ(x, ω) is convex

¦ We only showed this for discrete ω, but the arguments
based on sums also carry over to integrals. In fact...

• If g(x, y) is convex in x, then
∫

g(x, y)dy is convex.

¦ Q(x) =
∫
Ω

Q(x, t)dF (t)

⇒ Q(x) is convex
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Other Properties—Continuity

• Q(x) is Lipschitz-continuous.

¦ In fact, all convex functions on the interior of their domain.

¦ Some of you proved this on the homework.

• With some care to the technical details, you can also show
continuity holds on exterior points as well.
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Differentiability

Thm: Suppose LP duality holds, and the dual problem

v(z) = max
t∈<m

{zT t : WT t ≤ q}

has a unique optimal solution λ∗. Then ∇v(z) = λ∗

Proof:

v(z) = max
k=1,...,|Λ|

{zT λk}, z ∈ <m.

Suppose that λk∗ is the unique optimal solution to the problem.
Then λk∗ > λk∀k ∈ Λ \ k∗. Consider

lim
h→0

v(z + hej)− v(z)
h
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Proof, Cont...

• By uniquesness of λk∗ and properties of LP,

lim
h→0

v(z + hej)− v(z)
h

= lim
h→0

λT
k∗(z + hej)− λT

k∗z

h

By L’Hôpital’s rulea, this is λ∗kej . Do this for all directions and you
get ∇v(z) = λ∗

Quite enough done.

a(Yikes – what the heck is that?!?!?)
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Cal-cool-us

• Just a refresher on L’Hôpital’s rule...

• Under some conditions on f and g

¦ Both differentiable

¦ Derivative of g nonzero

¦ Both limits go to zero

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

• Anyone remember the Chain rule?

¦ Here’s the 1-D version...

D(g(f(x)) = g′(f(x))f ′(x)
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What about Q

D(g(f(x)) = g′(f(x))f ′(x)

• Not necessarily so interested in ∇v(x)

• We’re really interested in ∇Q(x, ω) and the chain rule gives it
to is...

• Apply chain rule with f(x) = h− Tx

∇v(h(ω)− T (ω)x) = ∇Q(x, ω) = −Tλ∗

More Justification (if time permits)
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Subdifferential Characterization

Let D(z) be the “dual problem”: maxt∈<m{zT t : WT t ≤ q} whose
optimal value is v(z).

Thm: Suppose v(z) is finite ∀z ∈ <m. (LP duality holds). Then

∂v(z) = Λ∗(z) ∀z ∈ <m,

where Λ∗ is the set of all optimal solutions to the dual problem
D(z).
Proof: (You’ll probably need lots of space)
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Out of Our League

• What we really care about are ∇Q(x) if it exists or ∂Q(x) if it
doesn’t.

? What is ∂Q(x) = ∂EωQ(x, ω)?

• With much fancy convex analysis, we can show in our case that
we can exchange E and ∂.

¦ Yeah! This means that we can compute ∂Q(x) by
decomposing it into subgradients for each ∂Q(x, ω).

∂Q(x) = Eω∂Q(x, ω)
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Happy News

• In particular, if ω comes from a discrete distribution,

∂Q(x) =
∑

s∈S

psQ(x, ωs)

If ηs = −T (ωs)λ∗s ∈ ∂Q(x, ωs), then

η =
∑

s∈S

psηs ∈ ∂Q(x)
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Summary

• If ω comes from a finite distribution

¦ K2 is polyhedral. (K2 = ∩ω∈ΩK2(ω))

¦ Q(x) is piecewise linear and convex on K2

? (We are going to focus on this case for a while)

• If ω comes from a continuous distribution with finite second
moments.

¦ (i.e. it has a bounded variance – Strange things can happen
if you don’t – I’ll try to find a little example to give you on
the homework).

¦ Q(x) is differentiable and convex
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Discussion

• Computing Q(x) =
∫
Ω

Q(x, t)dF (t) in general requires
numerical integration for a given value of x

• Computing ∇Q(x) also would require numerical integration.

? This is only possible when ω is a vector of very small
dimensionality.

• Typically people (and we will too) discretize the continuous
distribution.

¦ We’ll talk about this...
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KKT Conditions

Here, again for your convenience are the KKT conditions (in their
non-differentiable extension).

• Thm: For a convex function f : <n 7→ <, and convex functions
gi : Ren 7→ <, i = 1, 2, . . . m, if we have some nice “regularity
conditions” (which we have in this case), x̂ is an optimal
solution to minx∈<n

+
{f(x) : gi(x) = 0 ∀i = 1, 2, . . . m} if and

only if the following conditions hold:

¦ gi(x) = 0 ∀i = 1, 2, . . . m

¦ ∃λ1, λ2, . . . λm ∈ <, µ1, µ2, . . . µn ∈ <+ such that
• 0 ∈ ∂f(x̂) +

∑m
i=1 λi∂gi(x̂)−∑n

j=1 µj .
• µj ≥ 0 ∀j = 1, 2, . . . n

• µj x̂j = 0 ∀j = 1, 2, . . . n
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Apply to Our Problem

min
x∈<n

+

{cT x +Q(x) : Ax = b}

Thm: x̂ ∈ K1 is optimal if and only if

• ∃λ ∈ <m, µ ∈ <n
+ such that

¦ 0 ∈ c + ∂Q(x̂) + AT λ− µ

¦ µT x̂ = 0

Or
−c−AT λ + µ ∈ ∂Q(x̂)
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Next time

• Algorithms!

¦ The lshaped method.

¦ Examples and (maybe) some of its variants...

• If I don’t know what you’re doing for a project, please come
speak to me.

• Homework #2. :-(
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