
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

FilMINT: An Outer-Approximation-Based Solver for
Nonlinear Mixed Integer Programs1

Kumar Abhishek, Sven Leyffer, and Jeffrey T. Linderoth

Mathematics and Computer Science Division

Preprint ANL/MCS-P1374-0906

March 28, 2008

1This work was supported in part by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract DE-AC02-06CH11357, and by the National Science and Engineering Research Council
of Canada.

Contents

1 Introduction 2
1.1 LP/NLP-based Branch and Bound .3
1.2 Implementation within the MINTO Framework 7
1.3 Computational Setup and Preliminary Implementation8

2 Exploiting the MILP Framework 10
2.1 Cutting Planes, Preprocessing, and Primal Heuristics11
2.2 Branching and Node Selection Rules .13
2.3 Summary of MILP Features .14

3 Linearization Management 16
3.1 Linearization Addition and Removal .18
3.2 Cut or Branch? .19
3.3 Linearization Generation Methods .20

4 Comparison of MINLP Solvers 23

5 Conclusions 25

FilMINT: An Outer-Approximation-Based Solver
for Nonlinear Mixed Integer Programs∗

Kumar Abhishek†, Sven Leyffer‡, and Jeffrey T. Linderoth§

March 28, 2008

Abstract

We describe a new solver for mixed integer nonlinear programs (MINLPs) that imple-

ments a linearization-based algorithm. The solver is based on the algorithm by Quesada

and Grossmann, and avoids the complete solution of master mixed integer linear pro-

grams (MILPs) by adding new linearizations at open nodes of the branch-and-bound

tree whenever an integer solution is found. The new solver, FilMINT, combines the

MINTO branch-and-cut framework for MILP with filterSQP used to solve the nonlinear

programs that arise as subproblems in the algorithm.

The MINTO framework allows us to easily extend cutting planes, primal heuristics,

and other well-known MILP enhancements to MINLPs. We present detailed computa-

tional experiments that show the benefit of such advanced MILP techniques. We offer

new suggestions for generating and managing linearizations that are shown to be effi-

cient on a wide range of MINLPs. Comparisons to existing MINLP solvers are pre-

sented, that highlight the effectiveness of FilMINT.

Keywords: Mixed integer nonlinear programming, outer approximation, branch-and-

cut.

AMS-MSC2000: 90C11, 90C30, 90C57.

∗Argonne National Laboratory Preprint ANL/MCS-P1374-0906
†Department of Industrial and Systems Engineering, Lehigh University, 200 W. Packer Ave., Bethlehem,

PA 18015,kua3@lehigh.edu
‡Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439,

leyffer@mcs.anl.gov
§Department of Industrial and Systems Engineering, Lehigh University, 200 W. Packer Ave., Bethlehem,

PA 18015,jtl3@lehigh.edu

1

2 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

1 Introduction

We consider the development of a new efficient solver for mixed integer nonlinear programs
(MINLPs). Our interest is motivated by the rich collection of important applications that
can be modeled as MINLPs, including nuclear core reload problems (Quist et al. [1998]),
cyclic scheduling (Jain and Grossmann [1998]), trimloss optimization in the paper industry
(Harjunkoski et al. [1988]), synthesis problems (Kocis and Grossmann [1988]), and layout
problems (Castillo et al. [2005]). MINLP problems are conveniently expressed as

zMINLP = minimize f(x, y)

subject to g(x, y) ≤ 0, (MINLP)

x ∈ X, y ∈ Y ∩ Zp,

wheref : Rn×p → R andg : Rn×p → Rm are twice continuously differentiable functions,
x andy are continuous and discrete variables, respectively, andX andY are compact poly-
hedral subsets ofRn andZp, respectively. In this paper, we focus on the case where the
functionsf andgj are convex, so that by relaxing the restrictiony ∈ Zp, a convex program
is formed. The techniques we suggest may be applied as a heuristic in the case that one or
more of the functions are nonconvex.

Methods for the solution of convex (MINLP) include the branch-and-bound method
(Dakin [1965], Gupta and Ravindran [1985]), branch-and-cut (Stubbs and Mehrohtra [2002]),
outer approximation (Duran and Grossmann [1986]), generalized Benders decomposition
(Geoffrion [1972]), the extended cutting plane method (Westerlund and Pettersson [1995]),
and LP/NLP-based branch-and-bound (Quesada and Grossmann [1992]). We refer the reader
to Grossmann [2002] for a survey of solution techniques for MINLP problems.

Our aim is to provide a solver that is capable of solving MINLPs at a cost that is a small
multiple of the cost of a comparable mixed integer linear program (MILP). In our view, the
algorithm most likely to achieve this goal is LP/NLP-based branch and bound (LP/NLP-BB).
This method is similar to outer approximation; but instead of solving an alternating sequence
of MILP master problems and nonlinear programming (NLP) subproblems, it interrupts the
solution of the MILP master whenever a new integer assignment is found, and solves an
NLP subproblem. The solution of this subproblem provides new outer approximations that
are added to the master MILP, and the solution of the updated MILP master continues. Thus
only a single branch-and-cut tree is created and searched.

Our solver exploits recent advances in nonlinear programming and mixed integer linear
programming to develop an efficient implementation of LP/NLP-BB. Our work is motivated
by the observation of Leyffer [1993] that a simplistic implementation of this algorithm often
outperforms nonlinear branch and bound and outer approximation by an order of magnitude.

FilMINT: An Outer-Approximation-Based MINLP Solver 3

Despite this clear advantage, however, there has been no implementation of LP/NLP-BB
until the recent independent work by Bonami et al. [2008] and this paper. Our implemen-
tation, called FilMINT, is built on top of the mixed integer programming solver MINTO
(Nemhauser et al. [1994]). Through MINTO, we are able to exploit a range of modern
MILP features, such as enhanced branching and node selection rules, primal heuristics, pre-
processing, and cut generation routines. To solve the NLP subproblems, we use filterSQP
(R.Fletcher et al. [2002]), an active set solver with warm-starting capabilities that can take
advantage of good initial primal and dual iterates.

Recently Bonami et al. [2008] have also developed a solver for MINLPs called Bonmin.
While the two solvers share many of the same characteristics, our work differs from Bonmin
in a number of significant ways. First, FilMINT differs from Bonmin in the way in which
linearizations are added, and how these linearizations are managed. We derive additional lin-
earizations at fractional integer points to strengthen the outer approximation, and we exploit
cut management features in MINTO that allow us to keep a much smaller set of lineariza-
tions. Second, FilMINT uses an active-set solver for the NLP subproblems, which allows us
to exploit warm-starting techniques that are not readily available for the interior-point code
IPOPT (Ẅachter and Biegler [2006]) that is used in Bonmin. We also note, that MINTO’s
suite of advanced integer programming techniques is also different from that of CBC (For-
rest [2004]), which is the MILP framework on which Bonmin is based. Finally, Bonmin is a
hybrid between a branch-and-bound solver based on nonlinear relaxations and one based on
polyhedral outer approximations, whereas FilMINT relies solely on linear underestimators.
A comparison of performance of the two solvers is given in Section 5.

The paper is organized as follows: In the remainder of this section, we formally re-
view the LP/NLP-based branch-and-bound algorithm, describe its implementation within
MINTO’s branch-and-cut framework, and outline the computational setup for our experi-
ments. In Section 2, we report a set of careful experiments that show the effect of modern
MILP techniques on an LP/NLP-based algorithm. In Section 3 we consider several ways
to generate additional linearizations for the algorithm and how to use these mechanisms ef-
fectively via a cut management strategy. Section 4 gives a comparison of FilMINT to other
MINLP solvers, and conclusions of the work are offered in Section 5.

1.1 LP/NLP-based Branch and Bound

LP/NLP-BB is a clever extension of outer approximation, which solves an alternating se-
quence of NLP subproblems and MILP master problems. The NLP subproblem (NLP(yk))
is obtained by fixing the integer variables atyk, and the MILP master problem accumulates
linearizations (outer approximations of the feasible set, and underestimators of the objective
function) from the solution of (NLP(yk)).

4 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

LP/NLP-BB avoids solving multiple MILP master problems by interrupting the MILP
tree search whenever an integer feasible solution(x̂, yk) is found to solve the NLP subprob-
lem (NLP(yk)). The outer approximations from (NLP(yk)) are then used to update the MILP
master, and the MILP tree search continues. Thus, instead of solving a sequence of MILPs,
as is the case in the outer-approximation method, only a single MILP tree search is required.

We characterize a noden ≡ (l, u) of the branch-and-bound search tree by the bounds
{(l, u)} enforced on the integer variablesy. Given bounds(l, u) on y, we define the NLP
relaxation as

zNLPR(l,u) = minimize
(x,y)∈X×Y

{f(x, y) | g(x, y) ≤ 0, l ≤ y ≤ u}. (NLPR(l, u))

If l and u are lower and upper bounds on they variables for the original instance, then
the optimal objective function valuezNLPR(l,u) of (NLPR(l, u)) provides a lower bound on
(MINLP); otherwise it provides a lower bound for the subtree whose parent node is{(l, u)}.
In general, the solution to (NLPR(l, u)) may yield one or more nonintegral values for the
integer decision variablesy.

The NLP subproblem for fixed values of the integer decision variablesyk is defined as

zNLP(yk) = minimize
x∈X

{f(x, yk) | g(x, yk) ≤ 0}. (NLP(yk))

If (NLP(yk)) is feasible, then it provides an upper bound to the problem (MINLP). If
(NLP(yk)) is infeasible, then the NLP solver detects the infeasibility and returns the solu-
tion to a feasibility problem. The form of the feasibility problem (NLPF(yk)) that is solved
by filterSQP is a minimization of the scaled`1 norm of the constraint violation:

minimize
x∈X

m∑
j=1

wjgj(x, yk)+ (NLPF(yk))

for some weightswj ≥ 0, not all zero. Here,gj(x, yk)+ = max{0, gj(x, yk)} measures the
violation of the nonlinear constraints.

From the solution to (NLP(yk)) or (NLPF(yk)), we can derive outer approximations for
(MINLP). The convexity of the nonlinear functions imply that the linearizations about any
point (xk, yk)) form an outer approximation of the feasible set and underestimate the ob-
jective function. Specifically, if we introduce an auxiliary variableη in order to replace the
objective by a constraint, changing the objective tominimize η and adding the constraint

FilMINT: An Outer-Approximation-Based MINLP Solver 5

η ≥ f(x, y), then them + 1 inequalities (OA(xk, yk)) are valid for MINLP:

f(xk, yk) +∇f(xk, yk)T

[
x− xk

y − yk

]
≤ η

(OA(xk, yk))

g(xk, yk) +∇g(xk, yk)T

[
x− xk

y − yk

]
≤ 0,

where∇g(xk, yk)T = [∇g1(x
k, yk) : . . . : ∇gm(xk, yk)]T is the Jacobian of the nonlinear

constraints.
The inequalities (OA(xk, yk)) are used to create a master MILP. Given a set of points

K = {(x0, y0), (x1, y1), . . . , (x|K|, y|K|}, letOA(K) be the set of points satisfying the outer
approximations at those points:

OA(K) = {(η, x, y) ∈ R1+n+p | (x, y, η) satisfy OA(xk, yk) ∀(xk, yk) ∈ K}.

An outer approximation master MILP for the original MINLP may be formed as

zMP(K) = minimize
(η,x,y)

{η | (η, x, y) ∈ OA(K) ∩ (R×X × (Y ∩ Zp))}. (MP(K))

If K in (MP(K)) contains an appropriately-defined finite set of points (these points will be
identified by the LP/NLP-BB solution algorithm 1.1), then under mild conditions,zMINLP =

zMP(K) (Fletcher and Leyffer [1994], Bonami et al. [2008]).
LP/NLP-BB relies on solving the continuous relaxation to (MP(K)) and enforcing inte-

grality of they variables by branching. We label this problem as CMP(K, l, u).

minimize
(η,x,y)

{η | (η, x, y) ∈ OA(K) ∩ (R×X × (Y ∩ [l, u]))} (CMP(K, l, u))

The main algorithm underlying our work, LP/NLP-BB, is formally stated in pseudo-code
form in Algorithm 1.1. The indexk is used to track the number of times the relaxed mas-
ter problem (CMP(K, l, u)) is solved, and the indexbk is the value ofk the last time the
(branch) portion of the algorithm was executed. We defer discussion of the(cut) portion of
the LP/NLP-BB algorithm until Section 3.

An important difference between the LP/NLP-BB algorithm and typical branch-and-
bound algorithms is that after finding an integer feasible point in LP/NLP-BB, the corre-
sponding node is resolved. This modification is necessary because the integer point is no
longer feasible in the master problem after adding the linearizations about that point.

6 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

Solve NLPR(yl, yu) and let(η0, x0, y0) be its solution (initialize)
if NLPR(yl, yu) is infeasiblethen

Stop. MINLP is infeasible
else
K ← {(x0, y0)},L ← {(yl, yu, η0)}, UB ←∞, k ← 0, bk ← 0

end if
while L 6= ∅ do

Select and remove node(l, u, η) fromL (select)
ηk ← η, k ← k + 1

Solve CMP(K, l, u) and let(ηk, x̂, yk) be its solution. (evaluate)
if CMP(K, l, u) is infeasibleOR ηk ≥ UB then

Fathom node(l, u, ηk). Goto (select).
end if
if yk ∈ Zp then

Solve NLP(yk). (update master)
if NLP(yk) is feasiblethen

UB ← min{UB, zNLP(yk)}
Remove all nodes inL whose parent objective valueη ≥ UB. (fathom)
Let (xk, yk) be solution to NLP(yk)

else
Let (xk, yk) be solution to NLPF(yk)

end if
K ← K ∪ {(xk, yk)}. Goto (evaluate).

else ifDo additional linearizationsthen
See Algorithm 3.1 (cut)
Goto (evaluate)

else
Selectb such thatyk

b 6∈ Z. bk ← k. (branch)
ûb ← byk

b c, ûj ← uj ∀j 6= b

l̂b ← dyk
b e, l̂j ← lj ∀j 6= b

L ← L ∪ {(l, û, η̂k)} ∪ {(l̂, u, η̂k)}
end if

end while
Algorithm 1.1: LP/NLP-BB algorithm.

FilMINT: An Outer-Approximation-Based MINLP Solver 7

1.2 Implementation within the MINTO Framework

FilMINT is built on top of MINTO’s branch-and-cut framework, using filterSQP to solve the
NLP subproblems. MINTO providesuser application functionsthrough which the user can
implement a customized branch-and-cut algorithm, and FilMINT is written entirely within
these user application functions. No changes are necessary to the core MINTO library in
order to implement the LP/NLP-BB algorithm. MINTO can be used with any LP solver
that has the capability to modify and resolve linear programs and interpret their solutions.
In our experiments, we use theClp linear programming solver that is called through its
OsiSolverInterface . Both Clp and theOsiSolverInterface are open-source
tools available from COIN-OR (http://www.coin-or.org).

FilMINT obtains problem information from AMPL’s ASL interface (Fourer et al. [1993],
Gay [1997]). ASL also provides the user with gradient and Hessian information for nonlinear
functions, which are required by the NLP solver and are used to compute the linearizations
(OA(xk, yk)) required for LP/NLP-BB. FilMINT’s NLP solver, filterSQP, is a sequential
quadratic programming (SQP) method that employs a filter to promote global convergence
from remote starting points. A significant advantage of using an active-set SQP method in
this context is that the method can readily take advantage of good starting points. We use
as the starting point the solution of corresponding the LP node, namely,(ηk, x̂, yk). Another
advantage of using filterSQP for implementing (LP/NLP-BB) is that filterSQP contains an
automatic restoration phase that enables it to detect infeasible subproblems reliably and ef-
ficiently. The user need not create and solve the feasibility problem (NLPF(yk)) explicitly.
Instead, filterSQP returns the solution of (NLPF(yk)) automatically.

The MINTO user application functions used by FilMINT areappl mps, appl feasible ,
appl primal , andappl constraints . A brief description of FilMINT’s use of these
functions is stated next.

• appl mps: The MINLP instance is read. This corresponds to step(initialize) in
Algorithm 1.1.

• appl feasible: This user application function allows the user to verify that a so-
lution to the active formulation satisfying the integrality conditions is feasible. When
we generate an integral solutionyk for the master problem, the NLP subproblem
(NLP(yk)) is solved, and its solution provides an upper bound and a new set of outer
approximation cuts.

• appl constraints . This function allows the user to generate violated constraints.
The solution of (NLP(yk)) or (NLPF(yk)) in appl feasible generates new lin-
earizations. These are stored and added to the master problem (CMP(K, l, u)) by this

http://www.coin-or.org

8 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

method. This function is also used to implement NLP solves at fractional LP solutions,
an enhancement that will be explained in Section 3.

• appl primal . This function allows the user to communicate a new upper bound and
primal solution to MINTO, if the solve of (NLP(yk)) resulted in an improved feasible
solution to (MINLP).

1.3 Computational Setup and Preliminary Implementation

In this section we describe the computational setup and provide an initial comparison of
LP/NLP-BB to a standard MINLP branch-and-bound solver. Our aim is to explore the use-
fulness of the wide range of MILP techniques that MINTO offers in the context of solving
MINLP problems. We believe that this study is of interest beyond the scope of the specific
LP/NLP-BB algorithm since it may provide an indication of which MILP techniques are
likely to be efficient in other methods for solving MINLPs, such as branch and bound using
the relaxation (NLPR(l, u)). We carry out a set of carefully constructed computational ex-
periments to discover the salient features of a MILP solver that have the biggest impact on
solving MINLPs.

The test problems have been collected from the GAMS collection of MINLP problems
(Bussieck et al. [2003]), the MacMINLP collection of test problems (Leyffer [2003]), and
the collection on the website of IBM-CMU research group (Sawaya et al. [2006]). Since
FilMINT accepts only AMPL as input, all GAMS models were converted into AMPL format.
The test suite comprises 222 convex problems covering a wide range of applications.

The experiments have been run on a cluster of (identical) computers at Lehigh Univer-
sity. The cluster consists of 120 nodes of 64-bit AMD Opteron microprocessors. Each of
the nodes has a CPU clockspeed of 1.8 GHz, and 2 GB RAM and runs on Fedora Core 2
operating system. All of the codes we tested were compiled by using the GNU suite of C,
C++, and FORTRAN compilers.

The test suite of convex instances have been categorized as easy, moderate, or hard, based
on the time taken using MINLP-BB, a branch-and-bound solver based on the relaxation
(NLPR(l, u)) (Leyffer [1998]), to solve each instance. The easy convex instances take less
than one minute to solve. Moderate convex instances take between one minute to one hour
to solve. The hard convex instances are not solved in one hour. There are 100 easy, 37
moderate, and 85 hard instances in the test suite, and the names and characteristics of these
instances can be found in the appendix.

Experiments have been conducted by running the test problems using FilMINT (with
various features set on or off) for a time limit of four hours. We create performance profiles
(see Dolan and Moré [2002]) to summarize and compare the runs on the same test suite using
different solvers and options. For the easy and moderate problems, we use solution time as

FilMINT: An Outer-Approximation-Based MINLP Solver 9

a metric for the profiles. For the hard instances, however, the optimal solution is often not
achieved (or even known). For these instances, we use a scaled solution value as the solver
metric. We define the scaled solution value of solvers on instancei asρs

i = 1+(zs
i −z∗i)/z

∗
i ,

wherezs
i is the best solution value obtained by solvers on instancei, andz∗i is the best known

solution value for instancei. The performance profile therefore indicates the quality of the
solution found by a solver within four hours of CPU time.

We start by benchmarking a straightforward implementation of LP/NLP-BB (Algorithm 1.1)
against MINLP-BB, an branch-and-bound algorithm that uses (NLPR(l, u)) to obtain a lower
bound. The straightforward LP/NLP-BB implementation does not use any of MINTO’s ad-
vanced MILP features, such as primal heuristics, cuts, and preprocessing. The algorithm
branches on the the most fractional variable and selects the next node to be solved as the one
with the smallest lower bound. The implementation is thus quite similar to one created in the
Ph.D. work of Leyffer [1993]. We refer to this version of FilMINT as thevanilla version.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla
MINLP−BB

Figure 1: Performance profile comparing vanilla and MINLP-BB for moderate instances.

The performance profiles in Figures 1–2 compare the performance of the vanilla and
MINLP-BB solvers for the moderate and hard instances in the test suite. For easy instances,
the performance of FilMINT and MINLP-BB is quite similar. We drop these instances from
our analysis and do not show any computational results for them (detailed results are avail-
able from the authors on request). The results for the moderate problems show a significant
improvement of LP/NLP-BB compared to MINLP-BB. The results for the hard instances,
however, show that this simplistic implementation of LP/NLP-BB is not competitive with
MINLP-BB for difficult instances, especially for finding high quality feasible solutions. This

10 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla
MINLP−BB

Figure 2: Performance profile comparing vanilla and MINLP-BB for hard instances.

observation motivates us to explore the use of advanced MILP features that can easily be
switched on with MINTO.

The remainder of our computational experiment is divided into two parts. In the first part,
we explore the effect of various MILP features such as cutting planes, heuristics, branching
and node selection rules, and preprocessing. By turning on each feature individually, we
obtain an indication of which MILP techniques have the biggest impact. The IP features that
are found to work well in this part are then included in an intermediate version of our solver
(calledvanIP). In the second part, we build on this improved version of LP/NLP-BB by
adding features that affect the generation and management of cuts and outer approximations.
Each additional feature that appears to improve the performance is included in our final
solver, called FilMINT. Finally, we benchmark FilMINT against to two MINLP solvers,
MINLP-BB (Leyffer [1998]) and Bonmin (Bonami et al. [2008]).

2 Exploiting the MILP Framework

In this section we explore the benefits for the LP/NLP-BB algorithm of including standard
MIP features such as cutting planes, heuristics, branching and node selection rules, and
preprocessing. We conduct careful experiments to assess the impact of these features on the
performance of the algorithm.

FilMINT: An Outer-Approximation-Based MINLP Solver 11

2.1 Cutting Planes, Preprocessing, and Primal Heuristics

Cutting planes have become an important tool in solving mixed integer programs. FilMINT
uses the cut generation routines of MINTO to strengthen the formulation and cut off the
fractional solution. If a fractional solution to the linear program CMP(K, l, u) is obtained,
MINTO tries to exclude this solution with clique inequalities, implication inequalities, lifted
knapsack covers, lifted GUB covers, and lifted simple generalized flow covers. The inter-
ested reader may examine the survey paper [Linderoth and Ralphs, 2005] and the references
therein for a description of these cutting planes.

Another effective technique in modern algorithms for solving MILPs is preprocessing.
By preprocessing the MILP, matrix coefficients and variable bounds can be improved, thereby
increasing the bound obtained from the solution to the problem’s relaxation. Savelsbergh
[1994] explains the variety of preprocessing techniques used for solving MILPs. Many of
these same techniques can be applied to the outer-approximation master problem MP(K).
However, “dual” preprocessing techniques, which rely on inferring characteristics about an
optimal solution, may not be valid when applied to MP(K) unless all integer points inY ∩Zp

are included inK. We therefore deactivate the dual processing features of MINTO in the im-
plementation of FilMINT.

Primal heuristics for MILP aim to find good feasible solutions quickly. A high-quality
solution, and the resultant upper bound on the optimal solution value, that is obtained at the
beginning of the search procedure can significantly reduce the number of nodes that must
be evaluated to solve a MILP. Feasible (integer-valued) solutions to the outer-approximation
master MP(K) are doubly important to the LP/NLP-BB algorithm, since it is at these points
where the problem (NLP(yk)) is solved, resulting in additional linearizations that are added
to MP(K). MINTO uses a diving-based primal heuristic to obtain feasible solutions at nodes
of the branch-and-bound tree. In the diving heuristic, some integer variables are fixed and
the linear program re-solved. The fixing and re-solving is iterated until either the an integral
solution is found or the linear program becomes infeasible. FilMINT uses MINTO’s primal
heuristic to find feasible solutions to (MP(K)).

To quantify the effectiveness of MILP cutting planes, preprocessing, and primal heuris-
tics in the context of solving MINLP, we conducted an experiment in which thevanilla
LP/NLP-BB algorithm was augmented with each of the individual techniques. Figures 3–4
show the performance profiles for this experiment. In the figures, the linesMILPcuts, pre-
process, andprimal-heuristic graph the relative performance of the algorithm with only
that feature enabled. The performance of thevanilla version of the algorithm is also de-
picted.

The results of the experiment indicate that the addition of each individual MILP tech-
nique provides a slight improvement over the vanilla algorithm on moderately difficult in-

12 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla
MILPcuts

primal−heuristics
preprocess

Figure 3: Relative Performance of MILP techniques for moderate instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla
MILPcuts

primal−heuristics
preprocess

Figure 4: Performance profile showing the effect of MILP cuts, preprocessing and heuristics
for hard instances.

FilMINT: An Outer-Approximation-Based MINLP Solver 13

stances. Figure 4 shows that the addition of primal heuristics has a very positive impact when
solving the difficult instances in the test suite. Recall that our solution metric for the difficult
instances was the (scaled) value of the best solution found on that instance, so it is not too
surprising that primal heuristics performed so well in this case. It is, however, encouraging to
note that heuristics designed to find integer feasible solutions to MILP can be applied on the
linear master problem (MP(K)), and are often useful for finding high quality solutions to the
MINLP. An emerging line of research is involved in developing primal heuristics especially
tailored to MINLP [Bonami et al., 2006].

2.2 Branching and Node Selection Rules

Another advantage of building FilMINT within the MINTO framework is that it provides
the same branching and node selection rules that MINTO provides. A branching scheme
is specified by two rules: a branching variable selection rule and a node selection rule,
and MINTO comes equipped with a variety of built-in strategies for each. The branching
rules available in MINTO are are maximum fractionality, penalty-based, strong branching,
pseudocost-based, an adaptive method combining the penalty and pseudocost-based meth-
ods, and SOS branching. The node selection rules available in MINTO are best bound, depth
first, best projection, best estimate, and an adaptive method that searches depth-first until it
is estimated that the current node will not lead to an optimal solution, whereupon the node
with the best estimated solution is searched. The interested reader is referred to the paper
of Linderoth and Savelsbergh [1999] for a description of these rules. The penalty-based and
adaptive branching rules require access to the simplex tableau of the active linear program,
and these methods were not available in MINTO for our specific choice of LP solver. The
SOS-branching strategy is very problem specific, so we excluded it from consideration as a
general branching rule. Thus, the branching rules that are of interest include maximum frac-
tionality, strong-branching, and pseudo-cost based. The node selection rules that we tested
were best bound, depth first, best estimate, and the adaptive rule. Thevanilla algorithm uses
by default maximum fractional branching and the best-bound node selection strategy.

To compare the methods, thevanilla version of the LP-NLP/BB algorithm was run using
each branching variable and node selection method on all instances in the test suite. In this
experiment, when testing the branching variable selection, the best-bound node selection rule
was used, and when testing node selection, the most-fractional variable selection method was
used.

Performance profiles of the computational experiments for the different branching rules
tested are shown in Figures 5 and 6. The results show that pseudocost branching outper-
forms all other rules when used in the LP/NLP-BB algorithm. The performance gains are
quite significant, but not unexpected, since similar performance gains over maximum frac-

14 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

tional branching are also seen for MILP [Linderoth and Savelsbergh, 1999]. The poor perfor-
mance of strong branching was surprising. The default implementation of strong branching
in MINTO can be quite time-consuming, and the time spent seems to be not worth the effort
for our test instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla(max−frac)
e2(strong−branching)

e3(pseudo−cost)

Figure 5: Relative Performance of Branching Rules for Moderate Instances.

Performance profiles of the results for the experiments dealing with node selection are
given in Figures 7 and 8. The experimental results indicate that the adaptive node selection
rule gives the biggest improvement over pure best-bound search, followed closely by the
node selection rule based on best estimates. While the performance gains in terms for the
moderate problem instances is good, the improvement for the hard problems is quite signif-
icant. This can be explained by the fact that feasible solutions are more likely to be found
deep in the branch-and-bound tree, and our metric for hard instances is the scaled value of
the best solution found.

2.3 Summary of MILP Features

The computational experiments helped us identify features from a MILP solver that would
improve the efficiency of the LP/NLP-BB algorithm for solving (MINLP). Based on the ex-
periments, we include MINTO’s cutting planes, preprocessing, primal heuristics, pseudocost-
based branching, and MINTO’s adaptive node selection strategy as part of the default solver
for subsequent experiments. However, since FilMINT is implemented directly in a MILP
branch-and-cut framework, it is a simple matter to implement customized branching rules,
node selection strategies, or cutting planes for specific problem classes instead of these de-

FilMINT: An Outer-Approximation-Based MINLP Solver 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla(max−frac)
e2(strong−branching)

e3(pseudo−cost)

Figure 6: Relative Performance of Branching Rules for Difficult Instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla(best−bound)
E1(depth−first)

E3(best−estimate)
E4(adaptive)

Figure 7: Relative Performance of Node Selection Rules for Moderate Instances.

16 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla(best−bound)
E1(depth−first)

E3(best−estimate)
E4(adaptive)

Figure 8: Relative Performance of Node Selection Rules for Difficult Instances.

fault rules.
Figures 9–10 show the cumulative effect of turning on all selected MILP-based features

for both the moderate and difficult instances. In the performance profiles, the labelvanIP
refers to the solver with the MILP features turned on. The solvervanIP quite significantly
outperforms the straightforward implementation of the LP/NLP-BB solver (vanilla).

3 Linearization Management

In the branch-and-cut algorithm for solving MILP, cuts are used to approximate the con-
vex hull of integer solutions. In the LP/NLP-BB algorithm, linearizations of the constraints
are used to approximate the feasible region of the NLP relaxation. For convex MINLPs,
linearizations may be generated atany point and still give a valid outerapproximation of
the feasible region, so we have at our disposal a mechanism for enhancing the LP/NLP-BB
algorithm by adding many linear inequalities to the master problem (MP(K)). In the branch-
and-cut algorithm for MILP, cutting planes like Gomory cuts, mixed-integer-rounding cuts,
and disjunctive cuts are similar in the sense that it is easy to quickly generate a large number
of linear inequalities to approximate the convex hull of integer solutions. In our implemen-
tation FilMINT, a fundamental design philosophy is to treat linearizations of the nonlinear
feasible region in a manner similar to the way cutting planes are treated by a branch-and-cut
algorithm for MILP.

In this section, we first discuss simple strategies for effectively managing the large num-
ber of inequalities an enhanced LP/NLP-BB algorithm may generate. Key to an effective

FilMINT: An Outer-Approximation-Based MINLP Solver 17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla
vanIP

Figure 9: Relative Performance of MILP-Enabled Solver for Moderate Instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanilla
vanIP

Figure 10: Relative Performance of MILP-Enabled Solver for Difficult Instances.

18 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

management strategy is a policy for deciding when inequalities should be added and re-
moved from the master problem (MP(K)) and also when additional inequalities should be
generated. The section concludes with a discussion of a general mechanism for generating
linearizations that trades off the the quality of approximation of the nonlinear feasible region
with the time required to obtain the linearization.

3.1 Linearization Addition and Removal

Adding linearizations to the master problem (MP(K)) increases the solution time of the lin-
ear program solved at each node and adds to the storage requirements of the algorithm. An
effective implementation must then consider ways to be frugal about adding additional lin-
earizations. Similar implementation issues arise in a branch-and-cut algorithm for MILP,
and our techniques are based on this analogy.

One simple strategy for limiting the number of linear inequalities in the continuous re-
laxation of the master problem (CMP(K, l, u)) is to only add inequalities that are violated
by the current solution to the linear program. Another simple strategy for controlling the
size of (MP(K)) is to remove inactive constraints from the formulation. MINTO has a row-
management feature that automatically performs this reduction. MINTO monitors the values
of the dual variables at the end of every solution to a linear program. If the dual variable for a
constraint is zero, implying that the constraint is inactive, for a fixed number of consecutive
linear program solutions, then MINTO deactivates the constraint and places the inequality
in an auxiliary data structure known as a cut pool. If a constraint in the cut pool later be-
comes violated, it is added back to the active formulation. MINTO has an environment
variable,MIOCUTDELBND, which indicates the number of consecutive solutions for which
a constraint can be inactive before it is removed. After conducting a few small-scale exper-
iments, the value ofMIOCUTDELBNDwas set to 15 in our implementation. Figure 11 is
a performance profiles demonstrating the positive impact of including each of these simple
linearization management features in a LP/NLP-BB algorithm for the moderately difficult
instances in our test suite. The features did not have a significant impact for the difficult
instances.

A more sophisticated approach to managing the size of the master problem (MP(K))
is to aggregate linearizations obtained from earlier points, rather than removing them. An
effective way to perform the aggregation may be based on Benders cuts ([Geoffrion, 1972]).
Summing the objective linearizations and the constraint linearizations weighted with the
optimal NLP multipliersµk from the solution of (NLP(yk)) yields the Benders cut:

η ≥ f(xk, yk) + (∇yf(xk, yk)T + (µk)T∇yg(xk, yk))T (y − yk).

FilMINT: An Outer-Approximation-Based MINLP Solver 19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

p
er

ce
n

t
o

f
in

st
an

ce
s

no worse than x−times of the best

vanIP
violated

row−mgmt

Figure 11: Performance profile showing the effect of row management for moderate in-
stances.

This cut can be simplified by observing that the term

∇yf(xk, yk)T + (µk)T∇yg(xk, yk) = γk

corresponds to the NLP multiplierγk corresponding to fixing the integer variablesy = yk

in (NLP(yk)). The Benders cut is weaker than the outer approximations; on the other hand,
it compresses information fromm + 1 linear inequalities into a single cut. Given MINTO’s
tunable and automatic row management strategy, we did not see any specific need to employ
such aggregation schemes in our first implementation of FilMINT, but we may reinvestigate
this decision in subsequent software releases.

3.2 Cut or Branch?

In branch-and-cut, there is a fundamental implementation choice that must be made when
confronted with an infeasible (fractional) solution: should the solution be eliminated by
cutting or branching? Sophisticated implementations of branch-and-cut for solving MILP
rely on a variety ofcut managementtechniques for answering this question. The interested
reader is directed to Atamtürk and Savelsbergh [2005] to see the options for controlling cut
management in commercial MILP systems.

One cut management approach typically employed is to not add cutting planes at every
node of the search tree. Rather, cutting planes are generated at certain nodes, for example at
a fixed interval, with a bias towards generating cuts at nodes close to the root of the search

20 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

tree. For the LP/NLP-BB algorithm, the branching variable selection provides an additional
motivation for generating linearizations very early in the search process. Most branching
procedures are based on selecting a variable that will increase the objective function of the
two child subproblems significantly. As pointed out by Forrest et al. [1974], branching on a
variable that has little or no effect on the solution at subsequent nodes results in adoubling

of the amount of work necessary to completely process that node. Thus, by the very nature
of the branch and bound process, the branching decisions made at the top of the tree are
the most crucial. In the LP/NLP-BB Algorithm 1.1, if few linearizations (OA(xk, yk)) are
included in the master problem (MP(K)), the problem can be a very poor approximation
of the true problem (MINLP), and branching decisions made based on this master problem
may be very poor. Thus, it is quite important for the LP/NLP-BB algorithm that the master
problem (MP(K)) obtain good linearization information early in the solution process.

A second cut management technique is to add cuts for multiple iterations (typically called
rounds) at a given node. Algorithmic parameters control the number of rounds at a node.

Based on the analogy to cut management in branch-and-cut for MILP, there are three
parameters that we use to control the linearization strategy of our implementation of the
LP/NLP-BB algorithm. The first parameterβ controls the likelihood that linearizations will
be generated at a node. The strategy is biased so that linearizations are more likely to be
generated at nodes high in the search tree. Specifically, the probability that linearizations are
generated at a node ismin{β2−d, 1}. Note that in a complete search tree, there are2d nodes
at leveld, so the parameterβ is the expected number of nodes at leveld at which cuts are
generated, if the search tree was complete. The second parameterK is used for detecting
“tailing off” of the linearization procedure. If the percentage change in the solution value
of the relaxed master problem (CMP(K, l, u)) is not at leastK, then the algorithm decides
to branch rather than to add more linearizations about the current solution point. The final
parameter is responsible for ensuring that there is a reasonable balance between branching
and cutting by constraint linearizations. Linearizations will be taken around at mostM

different points at any one node of the search tree. The parameters(β, K, M) are specific
to the typeof point about which we are generating linearizations, the details of which are
explained next.

3.3 Linearization Generation Methods

A simple observation is that due to the convexity of the functionsf andg in (MINLP), the
outerapproximation inequalities (OA(xk, yk)) are valid regardless of the point(xk, yk) about
which they are taken. This gives the LP/NLP-BB algorithm great flexibility in generating
linearizations to approximate the feasible region of (MINLP). The tradeoff to consider is
the time required to generate the linearization versus the quality/strength of the resulting

FilMINT: An Outer-Approximation-Based MINLP Solver 21

linearization. We examined three different ways to select points about which to add lin-
earizations, spanning the spectrum of this tradeoff.

The first method simply linearizes the functionsf andg about the fractional point(x̂, yk)

obtained as a solution to (CMP(K, l, u)) at theevaluatestep of Algorithm 1.1. This point se-
lection mechanism is called theECP-based method, as it is analogous the Extended Cutting
Plane method for solving (MINLP) proposed by Westerlund and Pettersson [1995], which
is itself an extension of the cutting plane method of Kelley [1960] for solving convex pro-
grams. The ECP-based point selection has the advantage that it is extremely fast to generate
linearizations, requiring only the evaluation of the gradient of the objective function and the
Jacobian of the constraints at the specified point. However, the points about which lineariza-
tions are taken may be far from feasible, so the resulting linearizations may form a poor
approximation of the nonlinear feasible region.

In the second point selection method, we fix the integer decision variables to the values
obtained from the solution of (CMP(K, l, u)) (y = yk), and the nonlinear program (NLP(yk))
is solved to obtain the point about which to linearize. This method is calledfixfrac, as it is
similar in spirit to the original LP/NLP-based algorithm, but now integer decision variables
y may be fixed atfractional values. The fixfrac method has the advantage of generating
linearization about points that are closer to the feasible region than the ECP-based method,
at the expense of solving the nonlinear program (NLP(yk)).

In the third point selection method, no variables are fixed (save those that are fixed by the
nodal subproblem), and the NLP relaxation (NLPR(l, u)) is solved to obtain a point about
which to generate linearizations. This is called theNLPR-based method. The linearizations
obtained from the NLPR-based method are the tightest of the three methods that we employ.
However, it can be time-consuming to compute the linearizations.

The ECP, fixfrac, and NLPR methods differ in the set of variables fixed before solving
a nonlinear program to determine the linearization point. The ECP-based method fixesall

variables from the solution of (CMP(K, l, u)), the fixfrac method fixes only the integer deci-
sion variablesy, and the NLPR-based method fixes no decision variables. Further research
and empirical experiments will be required to determine if more efficient point selection
methodologies exist.

The three classes of linearizations form a hierarchy, with ECP linearizations being the
weakest/cheapest, and NLPR cuts being the strongest/most costly. The manner in which we
generate linearizations in FilMINT exploits this hierarchy. First, ECP linearizations are gen-
erated until it appears that they are no longer useful. Next fixfrac linearizations are generated,
and finally NLPR linearizations are generated. Our final strategy for producing points about
which to generate linearizations combines all three methods and is given in pseudo-code
form in Algorithm 3.1.

22 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

Let d = depth of current node(l, u, η).
Let r ∈ [0, 1] be a uniformly generated random number
if r ≤ βecp2

−d AND (ηk − ηk−1)/|ηk−1| ≥ Kecp AND necp≤Mecp then
K ← K ∪ {(x̂, yk)}. (ecp)
necp← necp+ 1.

else ifr ≤ βff2
−d AND (ηk − ηk−1)/|ηk−1| ≥ Kff AND nff ≤Mff then

Solve NLP(yk). (fixfrac)
if NLP(yk) is feasiblethen

Let (x̃k, yk) be solution to NLP(yk)

else
Let (x̃k, yk) be solution to NLPF(yk)

end if
K ← K ∪ {(x̃k, yk)}.
nff ← nff + 1.

else ifr ≤ βnlpr2
−d AND (ηk − ηk−1)/|ηk−1| ≥ Knlpr AND nnlpr ≤Mnlpr then

Solve NLPR(lk, uk). (nlpr)
Let (x̄k, ȳk) be solution to NLPR(lk, uk)

K ← K ∪ {(x̄k, ȳk)}.
nnlpr← nnlpr + 1.

end if
Algorithm 3.1: Algorithm for generating linearizations.

FilMINT: An Outer-Approximation-Based MINLP Solver 23

Values for the parameters in Algorithm 3.1 to use in the default version of FilMINT
were chosen after careful experimentation and are shown in Table 1. Note thatβnlpr = 0,
so that NLPR linearizations are not added at nodes of the branch-and-cut tree by default in
FilMINT. However, as stated in Algorithm 1.1, linearizations about the solution to the orig-
inal nonlinear programming relaxation NLPR(yl, yu) are added to initialize the algorithm.

Table 1: Default Linearization Parameters

Method β M K

ECP 10 10 0.1%
Fixfrac 1 10 0.1%
NLPR 0 1 0.1%

To demonstrate the effectiveness of the
linearization-point selection methodologies,
an experiment was conducted wherein the
MILP-technique enhanced version of the
LP/NLP-BB algorithm was further aug-
mented with each of the additional lineariza-
tions techniques individually. Runs of the

experiment can be viewed as implementing Algorithm 3.1, withM = 0 for the linearization
point selectiom mechniamsnot under study. The cut management parameters(β, M, K)

for the chosen linearization point selection method were the same as in Table 1, except for
NLPR, in which a value ofβnlpr = 1 was used. Figures 12 and 13 show performance profiles
of this experiment. The solverrow-mgmt on the profile is the MIP-enhanced LP/NLP-BB
algorithm without any additional linearizations, and the solverfilmint is the default version
of the FilMINT solver. The experiment conclusively demonstrates that linearizing about ad-
ditional points is quite advantageous for the LP/NLP-BB algorithm. Also, using multiple
mechanisms for choosing the points about which to generate linearizations, as is done in
FilMINT, helps the algorithm’s performance.

4 Comparison of MINLP Solvers

In this section, we report on an experiment comparing the performance of FilMINT with
two other well-known solvers for MINLPs on our suite of test instances. FilMINT is com-
pared to Bonmin [Bonami et al., 2008] and to MINLP-BB [Leyffer, 1998]. MINLP-BB is
a branch-and-bound solver based that uses the nonlinear programming relaxation NLPR(l,
u) to provide a lower bound onzMINLP . The NLP subproblems in MINLP-BB are solved
by filterSQP, the same solver that is used in FilMINT. The Bonmin solver consists of a suite
of algorithms, and FilMINT is compared against theI-Hyb hybrid algorithm of Bonmin.
The I-Hyb algorithm of Bonmin is an implementation of the LP/NLP-BB algorithm that
has been augmented with two additional features. First, NLP relaxations NLPR(l, u) are
solved occasionally (everyL = 10 nodes) during the branch-and-bound search. Second,
truncated MILP branch-and-bound enumerative procedures are performed in an effort to
find integer-feasible solutions. The enumerative procedure performed by Bonmin is akin to

24 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

p
er

ce
n
t

o
f

in
st

an
ce

s

no worse than x−times of the best

row−mgmt
ecp

fixfrac
nlpr

filmint

Figure 12: Performance Profile Comparing Linearization Point Selection Schemes on Mod-
erate Instances

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1

p
er

ce
n
t

o
f

in
st

an
ce

s

no worse than x−times of the best

row−mgmt
ecp

fixfrac
nlpr

filmint

Figure 13: Performance Profile Comparing Linearization Point Selection Schemes on Diffi-
cult Instances

FilMINT: An Outer-Approximation-Based MINLP Solver 25

the diving-based primal heuristic found in MINTO v3.1 (and used by FilMINT).
Experiments were run using two different versions of the Bonmin software. The first

versionBonmin is a version of the executable built from source code taken from the COIN-
OR code repository during the summer of 2006. The second version,Bonmin-v2 , refers
to a more recent release of the software, (specifically version 0.1.4), available fromhttps:

//projects.coin-or.org/Bonmin/browser/releases .
The parameters in the default version of FilMINT were optimized based on all previous

experiments. Specifically, MINTO v3.1’s default MIP features (preprocessing, pseudocost
branching variable selection, adaptive node selection, cutting planes) were enabled. Lin-
earizations in default FilMINT are generated, added, and removed in a manner described in
Section 3, with the paramaters given in Table 1.

Figures 14 and 15 compare the solvers FilMINT, Bonmin (v1), Bonmin (v2), MINLP-
BB, and thevanilla implementation of the LP/NLP-BB algorithm. The computational setup
used for this experiment is the same that we have used for all our experiments, detailed
in Section 1.3. All solvers were given a time limit of four hours for each instance. The
profile reveals that for the moderate instances, FilMINT and Bonmin-v2 are clearly the most
effective solvers. For the difficult instances, FilMINT and both versions of Bonmin are
the most effective at finding high quality feasible solutions within the four-hour time limit.
Tables showing the exact times taken for each instance are given in the Appendix. A total
of 88 out of the 122 instances in our test suite are solved by one of the 5 solvers to provable
optimality within the 4 hour time limit. Figure 16 is a performance profile (using time as the
performance metric) comparing each solver’s performance on this subset of the instances.

5 Conclusions

FilMINT is an implementation of the Quesada-Grossmann LP/NLP-BB algorithm for solv-
ing convex mixed integer nonlinear programs. By augmenting FilMINT with modern al-
gorithmic techniques found in mixed integer programming software and by enhancing the
linearization procedure of the algorithm, a robust and efficient solver was created. Con-
tinuing work aims an enhancing FilMINT’s effectiveness, including new heuristic tech-
niques and cutting planes. FilMINT is available for use on the NEOS Server athttp:

//neos.mcs.anl.gov/neos/solvers/minco:FilMINT/AMPL.html .

Acknowledgments

The second author is supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

https://projects.coin-or.org/Bonmin/browser/releases
https://projects.coin-or.org/Bonmin/browser/releases
http://neos.mcs.anl.gov/neos/solvers/minco:FilMINT/AMPL.html
http://neos.mcs.anl.gov/neos/solvers/minco:FilMINT/AMPL.html

26 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

p
er

ce
n
t

o
f

in
st

an
ce

s

no worse than x−times of the best

vanilla
filmint

BONMIN
BONMIN−v2

MINLP−BB

Figure 14: Performance Profile Comparing Solvers on Moderate Instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

p
er

ce
n
t

o
f

in
st

an
ce

s

no worse than x−times of the best

vanilla
filmint

BONMIN
BONMIN−v2

MINLP−BB

Figure 15: Performance Profile Comparing Solvers on Difficult Instances

FilMINT: An Outer-Approximation-Based MINLP Solver 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

p
er

ce
n
t

o
f

in
st

an
ce

s

no worse than x−times of the best

vanilla
filmint

BONMIN
BONMIN−v2

MINLP−BB

Figure 16: Performance Profile Comparing Solvers on Solved Instances

References

A. Atamtürk and M. Savelsbergh. Integer-programming software systems.Annals of Oper-

ations Research, 140:67–124, 2005.

P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Ẅachter. An algorithmic framework for convex
mixed integer nonlinear programs.Discrete Optimization, 2008. to appear.

P. Bonami, G. Cornúejols, A. Lodi, and F. Margot. A feasibility pump for mixed integer
nonlinear programs. Research Report RC23862 (W0602-029), IBM, 2006.

M. R. Bussieck, A. S. Drud, and A.Meeraus. MINLPLib - a collection of test models for
mixed-integer nonlinear programming.INFORMS Journal on Computing, 15(1), 2003.

I. Castillo, J. Westerlund, S. Emet, and T. Westerlund. Optimization of block layout deisgn
problems with unequal areas: A comparison of milp and minlp optimization methods.
Computers and Chemical Engineering, 30:54–69, 2005.

R. J. Dakin. A tree search algorithm for mixed programming problems.Computer Journal,
8:250–255, 1965.

E. Dolan and J. Moŕe. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91:201–213, 2002.

28 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

M. A. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs.Mathematical Programming, 36:307–339, 1986.

R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approxima-
tion. Mathematical Programming, 66:327–349, 1994.

J. Forrest. CBC, 2004. Available fromhttp://www.coin-or.org/ .

J. J. H. Forrest, J. P. H. Hirst, and J. A. Tomlin. Practical solution of large scale mixed integer
programming problems with UMPIRE.Management Science, 20:736–773, 1974.

R. Fourer, D. M. Gay, and B. W. Kernighan.AMPL: A Modeling Language for Mathematical

Programming. The Scientific Press, 1993.

D. M. Gay. Hooking your solver to AMPL. Technical Report 97-4-06, Computing Sciences
Research Center, Bell Laboratories, 1997.

A. Geoffrion. Generalized Benders decomposition.Journal of Optimization Theory and

Applications, 10(4):237–260, 1972.

I. E. Grossmann. Review of nonlinear mixed–integer and disjunctive programming tech-
niques.Optimization and Engineering, 3:227–252, 2002.

O. K. Gupta and A. Ravindran. Branch and bound experiments in convex nonlinear integer
programming.Management Science, 31:1533–1546, 1985.

I. Harjunkoski, T. Westerlund, R. P̈orn, and H. Skrifvars. Different transformations for
solving non–convex trim loss problems by MINLP.European J. Operational Research,
105:594–603, 1988.

V. Jain and I. E. Grossmann. Cyclic scheduling of continuous parallel-process units with
decaying performance.AIChE Journal, 44(7):1623–1636, 1998.

J. E. Kelley. The cutting plane method for solving convex programs.Journal of SIAM, 8(4):
703–712, 1960.

G. R. Kocis and I. E. Grossmann. Global optimization of nonconvex mixed–integer nonlinear
programming (MINLP) problems in process synthesis.Industrial Engineering Chemistry

Research, 27:1407–1421, 1988.

S. Leyffer. Deterministic Methods for Mixed Integer Nonlinear Programming. PhD thesis,
University of Dundee, Dundee, Scotland, UK, 1993.

http://www.coin-or.org/

FilMINT: An Outer-Approximation-Based MINLP Solver 29

S. Leyffer. User manual for MINLP-BB, 1998. University of Dundee.

S. Leyffer. MacMINLP: Test problems for mixed integer nonlinear programming, 2003.
http://www-unix.mcs.anl.gov/˜leyffer/macminlp .

J. Linderoth and T. Ralphs. Noncommercial software for mixed-integer linear programming.
In Integer Programming: Theory and Practice, pages 253–303. CRC Press Operations
Research Series, 2005.

J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies in
mixed integer programming.INFORMS Journal on Computing, 11:173–187, 1999.

G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO, a Mixed INTeger
Optimizer.Operations Research Letters, 15:47–58, 1994.

I. Quesada and I. E. Grossmann. An LP/NLP based branch–and–bound algorithm for con-
vex MINLP optimization problems.Computers and Chemical Engineering, 16:937–947,
1992.

A. J. Quist, R. van Gemeert, J. E. Hoogenboom, T.Ílles, C. Roos, and T. Terlaky. Application
of nonlinear optimization to reactor core fuel reloading.Annals of Nuclear Energy, 26:
423–448, 1998.

R.Fletcher, S. Leyffer, and P. Toint. On the global convergence of a Filter-SQP algorithm.
SIAM Journal on Optimization, 13:44–59, 2002.

M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems.ORSA Journal on Computing, 6:445–454, 1994.

N. W. Sawaya, C. D. Laird, and P. Bonami. A novel library of non-linear mixed-integer and
generalized disjunctive programming problems. In preparation, 2006.

R. Stubbs and S. Mehrohtra. Generating convex polynomial inequalities for mixed 0-1 pro-
grams.Journal of Global Optimization, 24:311–332, 2002.

A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line
search algorithm for large-scale nonlinear programming.Mathematical Programming,
106(1):25–57, 2006.

T. Westerlund and F. Pettersson. An extended cutting plane method for solving convex
MINLP problems. Computers and Chemical Engineering, 19(Supplement 1):131–136,
1995.

http://www-unix.mcs.anl.gov/~leyffer/macminlp

30 Kumar Abhishek, Sven Leyffer & Jeffrey T. Linderoth

The submitted manuscript has been created by UChicago Argonne, LLC, operator of Argonne National Laboratory (“Argonne”). Argonne,
a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

	Introduction
	LP/NLP-based Branch and Bound
	Implementation within the MINTO Framework
	Computational Setup and Preliminary Implementation

	Exploiting the MILP Framework
	Cutting Planes, Preprocessing, and Primal Heuristics
	Branching and Node Selection Rules
	Summary of MILP Features

	Linearization Management
	Linearization Addition and Removal
	Cut or Branch?
	Linearization Generation Methods

	Comparison of MINLP Solvers
	Conclusions

