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We discuss an integer linear programming modeling system based on relational algebra. In this system, all modeling related activities, 
such as model formulation, model instantiation, and model and instance management, are done using simple operations such as selection, 
projection, and predicated join. 

1. INTRODUCTION 
Anyone who has ever attempted to apply mathematical pro- 
gramming in practice knows that it is usually not a simple 
and straightforward exercise. The road from a real-life prob- 
lem situation to a satisfactory solution can be quite long and 
full of complications. There are many factors that contribute 
to this, but one of the most important is the large amount of 
data that needs to be handled. 

Because it is standard practice in industry to store in- 
formation in databases, Mitra et al. (1995) argue that for 
mathematical programming to gain better acceptance as a 
modeling tool within corporate decision studies, a unified 
approach that integrates a modeling language with a rela- 
tional database is necessary because it will provide a more 
powerful tool for constructing models that are truly data 
driven. They propose to achieve this by incorporating re- 
lational database structures into the syntax of the algebraic 
modeling language MPL (Maximal Software 1993). 

The goal of our research has been to design an integrated 
modeling environment in which data management plays an 
even more central role and in which all modeling activi- 
ties, such as model formulation, model instantiation, model 
solution, model validation, and solution analysis, are done 
in a common paradigm. Our efforts have resulted in a mod- 
eling environment based on relational algebra. Model for- 
mulation, instance generation, and solution manipulation are 
all done using relational operators such as selection, projec- 
tion, and join. Many other desirable features of modeling 
environments, such as model management, instance man- 
agement, and report writing are facilitated because they can 
be done using available relational database tools. Further- 
more, model builder as well as end-user can work with the 
same system and users can easily share models. A prototype 
has been implemented to provide a "proof of concept." The 
prototype demonstrates that it is possible to develop a mod- 
eling environment for mathematical programming using a 
single paradigm: relational algebra. 

Several other researchers have observed the potential of 
relational algebra for mathematical programming modeling. 

Our research was partly motivated by the ideas presented 
by Johnson (1 989). Choobineh (1 99 1 ) designed SQLMP, 
an extension of SQL (Structured Query Language) (ANS, 
Date 1987) for mathematical programming that uses the 
algebraic paradigm for model conceptualization. We do 
not extend SQL and use the block-schematic paradigm for 
model conceptualization. The block-schematic paradigm is 
described by Baker (1983) and Welch (1987) and forms 
the basis of MathPro (1989) and MIMI (Baker 1992). The 
reason we use the block-schematic paradigm is purely prag- 
matic: The block-schematic approach is easier to embed 
in a relational modeling scheme. We are not claiming that 
the block-schematic paradigm is better than the algebraic 
approach used in systems such as GAMS (Brooke et al. 
1988), AMPL (Fourier et al. 1993), MPL (Maximal Soft- 
ware 1993) and AIMMS (Bisschop and Entriken 1993). 
Which approach to use is largely a matter of taste, although 
it is claimed that many industrial users, particularly those in 
the process industry, prefer the block-schematic paradigm 
as it is closer to their "activity-based" view of the model. 
One disadvantage of the block-schematic paradigm is that 
it is mainly appropriate for linear optimization models. 
Dolk (1988) shows how structured models (as introduced 
by Geoffrion, 1987) can be represented and manipulated 
easily using SQL. Dolk also discusses how SQL might be 
used to facilitate the solution of mathematical programming 
models. He expects that this will require nonstandard SQL 
features. Our research shows that interfacing with an opti- 
mizer can be done completely with the tools used to access 
a relational database system. By using a standard interface 
language like SQL, the interface can be represented in a 
database-independent way, with some minor exceptions. 

The paper is organized as follows. In 52, we present our 
view on the characteristics of good modeling environments. 
In 53, we give a brief introduction to relational operators. 
In 54, we introduce the basic concepts of relational mod- 
eling. In 55, we show how to use these basic concepts to 
model the fleet assignment problem. In 56, we illustrate how 
these concepts can be implemented in a standard database 
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environment. In $7, we present some conclusions. In the 
appendices, we give relational models for several well- 
known planning problems and an overview of the function- 
ality of our prototype. 

2. MODELING ENVIRONMENTS 

A model is an abstraction of a real-life decision situation. 
Therefore, its solution has to be interpreted with care and 
not as the definitive answer to the real-life problem. 

The process of generating a satisfactory solution to a real- 
life problem involves developing a model (which typically 
means making simplifying assumptions), generating an 
instance of the model (which typically involves gathering 
huge amounts of data), solving the instance (which typically 
involves transforming the instance data into a machine-
readable form), validating the solution and the model (which 
involves verifying the appropriateness of the simplifying as- 
sumptions), and if the need arises, repeating these steps. 
In addition, models may have to be modified when changes 
occur in the real-life decision situation or user needs 
become different. This iterative process represents the mod-
eling life-cycle in which a model evolves over time. 

A computer based linear programming modeling environ- 
ment has to nurture the entire modeling life-cycle. Such a 
system must facilitate the ongoing evolution of models and 
support the management of resources used in the modeling 
life-cycle, such as data, models, solvers, solutions. 

Nowadays, highly accurate data gathering and processing 
technologies are widely available in industry. Typically, the 
availability of more and more accurate data leads to the 
development of more detailed models, which means that 
data management facilities in modeling environments are 
crucially important. Most of the data required for an instance 
of a model will be stored in corporate databases and must be 
processed before they can be used to construct an instance 
of the model at hand. 

Typically, it is necessary to solve many instances of one 
model with varying data. Therefore, it is important that data 
and model are separated, i.e., the model should be stated 
independently from any data. Consequently, a modeling en- 
vironment should support, if not enforce, the separation of 
model and instance. 

These are only a few, though very important, features 
that an effective modeling environment should have. Other 
desirable features include support for model documentation 
and report writing, and the availability of different views, 
such as lists, schemas, figures, and charts of the model, the 
instance data, and the solution. The modeling concepts we 
propose are well suited to form the basis of a modeling 
system that has these desired features. 

3. RELATIONAL OPERATORS 

The relational modeling system we propose makes frequent 
use of the relational operators selection, projection, and 
predicated join. Relational operators are part of relational 

algebra and formally operate on relations. However, for 
presentational convince, we think of a relation as a table (as 
is done in relational databases), and discuss these relational 
operators in terms of how they operate on tables. The 
selection operator constructs a new table by taking a 
horizontal subset of an existing table. The projection 
operator constructs a new table by taking a vertical subset of 
an existing table. The predicated join operator constructs a 
new table from two existing tables. Each row in the resulting 
table is formed by concatenating two rows, one from each 
of the original tables. Rows in the resulting table that do 
not satisfy the condition (or predicate) are eliminated. 

SQL is the most popular data manipulation language that 
implements these operators. SQL statements have a natural 
and intuitive interpretation, and we will use SQL to present 
the concepts of our relational modeling system. We briefly 
introduce the SQL statements used in the design and im- 
plementation of our relational modeling system. For more 
detailed explanations on SQL we refer the reader to Date 
(1 987) and Elmasri and Navathe (1 994). 

The CREATE TABLE statement is used to define and create 
a relational data table. 

CREATE TABLE table (attribute attribute-type, 
. . ., attribute attribute-type) ; 

EXAMPLES. 
CREATE TABLEproduction (plant CHAR(IO), 


product CHAR(10), capacity NUMBER, 

cost NUMBER) ; 

CREATE TABLE demand (center CHAR(101, 

product CHAR(10) , amount NUMBER) ; 

The fundamental operation in SQL is the mapping, repre-
sented syntactically as SELECT-FROM-WHERE. The mapping 
operation is effectively a horizontal subsetting (selection 
operator) followed by a vertical subsetting (projection op- 
erator). If the mapping operates on two tables, a predicated 
join is performed before the horizontal and vertical subset- 
ting. More formally, a query to the database is formulated 
as follows: 

SELECT attribute(s1 

FROM table(s1 

WHERE predicate (s) 


In SQL each query is evaluated as follows. First the carte- 
sian product of the tables in the FROM clause is computed. 
Then the result is filtered by the predicate(s) of the WHERE 
clause. The last step is the display of the results which were 
requested through the SELECT clause. 

EXAMPLE. 
SELECT plant, center 

FROM production, demand 

WHERE production.product = demand.product 


An extension to this basic query is obtained by using 
the GROUP B Y  operator. The GROUP BY operator rearranges 
the FROM table into partitions or groups. Within any one 
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group all rows have the same value for the GROUP BY field. 
The SELECT clause is then applied to each group of the 
partitioned table rather than to each row of the original table. 

EXAMPLE. 
SELECT produc t ,  SUM (amount) 
FROM demand 
GROUP BY product ; 

The last SQL construct used in the design and imple-
mentation of our relational modeling system is the view. A 
view is simply a particular look at the database. Although a 
view is a table, it does not exist physically in the database 
as a table; no storage space or data are allocated for it. 
The CREATE VIEW statement is used to define a virtual 
table. 

EXAMPLE. 
CREATE VIEW la rgecap  ( p l a n t ,  p roduc t ,  capac i ty )  AS 
SELECT p l a n t ,  p roduc t ,  capac i ty  
FROM product ion 

WHERE capac i ty  > 1000; 

4. RELATIONAL MODELING 

We will illustrate the basic concepts of relational modeling 
by means of an example. We consider a production distri-
bution problem with single sourcing requirements (Mairs 
et al. 1978). 

4.1. Problem Situation 

The problem is to decide how much of each product to 
produce at plants, how to ship to warehouses and transship 
to demand centers, subject to the constraint that a warehouse 
has to ship all of the demand for all products to any demand 
center to which it ships. In other words, each demand center 
is assigned a single warehouse that must meet all its demand 
for the several products. 

4.2. Instance Data 

The data involved in this model are production cost per 
product per plant, production capacity per product per plant, 
shipping cost from plant to warehouse, shipping cost from 
warehouse to demand center, and demand per product per 
demand center. These data are assumed to be available in 
the database in user data tables: Product ion,  Sh ipcos t ,  
Tranship, and Demand. An instance of the production-
distribution problem is given by the following user data 
tables. This instance will be used throughout our discussion 
of the basic concepts of our approach. 

Table Product ion : 
PLANT PRODUCT CAPACITY COST 
------- ------- -------- ----
topeka ch ips  200 230 
topeka nachos 800 280 
newyork ch ips  600 255 

Table Shipcost  : 
PLANT WHSE COST 
------- ------- ----

topeka topeka 1 
topeka newyork 45 
newyork topeka 45 
newyork newyork 2 

Table Tranship:  
WHSE CENTER COST 
------- ------ ----
topeka e a s t  60 
topeka south 30 
topeka west 40 
newyork e a s t  10 
newyork south 30 
newyork west 80 

Table Demand: 
CENTER PRODUCT 
------ -------
e a s t  ch ips  
e a s t  nachos 
south ch ips  
south nachos 
west ch ips  
west nachos 

AMOUNT 
------
200 

50 
250 
180 
150 
300 

4.3. Column and Row Strips 

In an integer linear program, activities or decisions are mod-
eled as variables, possibly with integrality restrictions on 
some of them, and restrictions and relations among the 
decisions are modeled as linear equations and inequalities 
in terms of the variables. Typically, variables in an integer 
linear program can be grouped into classes with similar 
characteristics, based on what they represent in the un-
derlying problem situation. Similarly, the linear equations 
and inequalities, or constraints, can also be grouped into 
classes with similar characteristics. These classes of vari-
ables and classes of constraints can be used to construct a 
block-schematic view of the integer linear program, see for 
instance Welch (1987). In a block-schematic view, classes 
of variables are called column strips, classes of constraints 
are called row strips, and their intersections, where interac-
tions occur, are called blocks. 

There are three types of decisions (classes of variables) 
in our production distribution model: 

How much to produce of each product at a plant? 
How much of each product to ship from a plant to a 
warehouse? 
Which warehouse to assign to each demand center? 

Each type of decision will be represented by a class of 
variables in the model and by a column strip in the block-
schematic representation. Because there are three types of 
decisions, there will be three column strips: Produce, Ship, 
and Assign. 
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Because each decision is related to a specific subset of the 
data, e.g., we have to determine how much to produce for 
each combination of a plant and a product, we can think of 
column strips as selections of data, and we can thus define 
them using the SQL construct of a view. 

Ultimately, a modeling system has to prepare a machine-
readable form of an instance for an optimizer. Therefore, 
any modeling system has to create a representation of the 
coefficient matrix that is understood by the optimizer. This 
is typically done in the form of triplets, one for each nonzero 
coefficient, consisting of a column (or variable) index, a 
row (or constraint) index, and the value of the coefficient. 
To accommodate the generation of such a representation, 
we store an index with each variable and each constraint. 

Because the relational database paradigm does not 
impose an ordering on the rows of a table, it is nontriv-
ial to create such an index. Fortunately, most commercial 
implementations of SQL provide a pseudo-column that 
contains a number indicating the sequence in which a 
row was selected, and we will make use of this pseudo-
column to create our index. In Oracle this pseudo-column 
is called RowNum, in Informix it is called RowId,whereas in 
Microsoft Access it is called AutoNumber.Because this is not 
a standard SQL feature and different vendors use different 
names for this feature, our relational modeling system has to 
be adapted depending on the database management system 
used for the implementation. In the remainder we assume 
that we are working with Oracle and use the RowNum feature 
to define the unique indices for each row and column strip. 

Throughout the paper, we carry the indices in the 
tables explicitly, because they are important to convey the 
underlying concepts of our relational modeling system. 
However, in a commercial implementation based on the 
relational concepts we present, these indices can be hidden 
from the user because their generation and manipulation 
can be done automatically. 

CREATE VIEW Produce (ix, plant, product) AS 
SELECT RowNum, plant, product 
FROM Production; 

CREATE VIEW Ship (ix, plant, whse, product) AS 
SELECT RowNum, plant, whse , product 
FROM Production, Shipcost 
WHERE Production.plant = Shipcost.plant; 

CREATE VIEW Assign (ix, whse, center) As 
SELECT RowNum, whse, center 
FROM Tranship ; 

The definition of Ship, for example, indicates that there 
will be a variable for each combination of a plant, a ware-
house, and a product and that these combinations can be 
obtained from the user data tables Production and Ship-
cost. Based on the data tables of the instance specified 
above, the column strip Ship defines the following variables 

plus associated indices. 

PLANT WHSE PRODUCT 
- - - - - - - - - - - - - - - - - - - - -
topeka topeka chips 
topeka newyork chips 
topeka topeka nachos 
topeka newyork nachos 
newyork topeka chips 
newyork newyork chips 

Similarly, there are three types of relations and restrictions 
in the model: 

Production at a plant is linked to shipping from the plant 
to a warehouse, i.e., everything that is produced should be 
shipped to some warehouse. 

Enforcement of the product flow balance, i.e., the total 
amount of a product shipped from plants to a warehouse 
should equal the total amount of a product shipped to the 
centers. 

Enforcement of the single sourcing requirement, i.e., 
each center receives all its demand from a single warehouse. 

Each class of constraints will be represented by a row 
strip in the block-schematic representation. Because there 
are three classes of constraints, there will be three row strips: 
Prodrow, Shiprow, andcentrow. 

CREATE VIEW Prodrow (ix, plant, product) AS 
SELECT RowNum, plant, product 
FROM Production; 

CREATE VIEW Shiprow (ix, whse, product) AS 
SELECT RowNum, whse, product 
FROM Tranship, Demand 
WHERE Transhhip.center = Demand.center 
GROUP BY whse, product; 

CREATE VIEW Centrow (ix, center) AS 
SELECT RowNum, center 
FROM Demand; 

Based on the data tables of the instance specified above, 
the row strip ShipRow defines the following constraints plus 
associated indices: 

IX WAREHOUSE PRODUCT 
- - - - - - - - - - - - - - - - - - - - -
1 topeka chips 
2 topeka nachos 
3 newyork chips 
4 newyork nachos 

Observe that we do not specify the number of variables 
in a class or the number of constraints in a class. The size 
of an instance is not part of the model but is determined 
automatically by the number of records in the user data 
tables. 

4.4. Blocks 

So far, we have defined the column strips and row strips 
of the matrix, i.e., the classes of variables and the classes 
of constraints of the model. Next, we have to determine 
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whether a class of variables interacts with a class of con- 
straints, i.e., whether there are nonzero entries in the block 
defined by the associated column and row strips. This gives 
the blocks with the technological coefficients of the matrix. 

CREATE VIEW Block11 (rowix, colix, coef) AS 

SELECTProdrow.ix, Produce.ix, -1 

FROM Prodrow, Produce 

WHERE Prodrow.product = Produce.product 

AND Prodrow.plant = Produce.plant; 


CREATE VIEW Block12 (rowix, colix, coef) AS 

SELECTProdrow.ix, Ship.ix, 1 

FROM Prodrow, Ship 

WHERE Prodrow.product = Ship.product 

AND Prodrow .plant = Produce. plant ; 


CREATE VIEW Block22 (rowix, colix, coef) AS 

SELECT Shiprow.ix, Ship.ix, -1 

FROM Shiprow, Ship 

WHERE Shiprow.product = Ship.product 

AND Shiprow.whse = Ship.whse; 


CREATE VIEW Block23 (rowix, colix, coef) AS 

SELECT Shiprow.ix, Assign.ix, amount 

FROM Shiprow, Assign, Demand 

WHERE Shiprow.product = Demand.product 

AND Shiprow.whse = Assign.whse 

AND Assign.center = Demand.center; 


CREATE VIEW Block33 (rowix, colix, coef) AS 

SELECT Centrow.ix, Assign.ix, 1 

FROM Centrow, Assign 

WHERE Centrow.center = Assign.center; 


The definition of Block23, for example, indicates that 
there will be a nonzero coefficient for each product that is 
shipped from a warehouse to a demand center and that the 
value of this coefficient is equal to the demand at this demand 
center, which can be found in the user data table Demand. 

As an example, we show the intermediate table that is 
implicitly generated during the construction of the virtual 
table Block23 just before the final selection of rowix, colix, 
and coef is made. 

WHSE PRODUCT 


topeka chips 

topeka chips 

topeka chips 

topeka nachos 

topeka nachos 

topeka nachos 

newyork chips 

newyork chips 

newyork chips 

newyork nachos 

newyork nachos 

newyork nachos 


CENTER 


east 

south 

west 

east 

south 

west 

east 

south 

west 

east 

south 

west 


COEF COLIX ROWIX 

-. - - - - - - - - - - - - - - - -

200 1 1 
250 2 1 
150 3 1 
50 1 2 
180 2 2 
300 3 2 
200 4 3 
250 5 3 
150 6 3 
50 4 4 
180 5 4 
300 6 4 

complete matrix all we have to do is impose an ordering on 
the column strips and row strips and add the appropriate off- 
sets to the row and column indices appearing in the triplets. 

It is convenient for us to consider information pertaining 
purely to a class of variables, such as objective coefficients, 
lower, and upper bounds, and information pertaining purely 
to a class of constraints, such as lower and upper bounds, as 
blocks as well. Because this type of information is typically 
referred to as belonging to the rim of the matrix, we will 
sometimes refer to these blocks as rim blocks. Note that 
we specify constraints using lower and upper bounds on the 
activity instead of using a sense and a right-hand side. 

Below are the definitions of the rim blocks. Because these 
blocks will be part of the matrix description that will be 
input to an integer linear programming optimizer, we create 
triplets. 

CREATE VIEWProduceObj (rowix, colix, coef) AS 

SELECT null, ix, cost 

FROM Produce, Production 

WHERE Produce.plant = Production.plant 

AND Produce.product = Production.product; 


CREATE VIEW ShipObj (rowix, colix, coef) AS 

SELECT null, ix, cost 

FROM Ship, Shipcost 

WHERE Ship. plant = Shipcost. plant 

AND Ship.whse = Shipcost.whse; 


CREATE VIEW AssignObj (rowix, colix, coef) AS 

SELECT null, ix, SUM(amount) * cost 

FROM Assign, Demand, Tranship 

WHERE Assign.center = Tranship.center 

AND Assign.whse = Tranship.whse; 

AND Assign.center =Demand.center; 

GROUP BY cost; 


CREATE VIEW Produceup (rowix, colix, coef ) AS 

SELECT ix , null, capacity 

FROM Produce, Production 

WHEREProduce.product = Production.product; 


CREATE VIEW ProdrowLo (rowix, colix, coef) AS 

SELECT ix, null, 0 

FROM Prodrow; 


CREATE VIEW Prodrowup (rowix, colix, coef) AS 

SELECT ix, null, 0 

FROM Prodrow; 


CREATE VIEW ShiprowLo (rowix, colix, coef) AS 

SELECT ix, null, 0 

FROM Shiprow; 


CREATE VIEW Shiprowup (rowix, colix, coef) AS 

SELECT ix, null, 0 

FROM Shiprow ; 


CREATE VIEW Centrowup (rowix, colix, coef) AS 

SELECT ix, null, 1 

FROM Centrow ; 


Observe that each block defines a set of triplets specify- CREATE VIEW CentrowLo (rowix, colix, coef) AS 
ing the nonzero coefficients of that block, and that all triplets SELECT ix, null, 1 
are specified relative to that block. Therefore, to specify the FROM Centrow ; 

http:SELECTProdrow.ix
http:Produce.ix
http:SELECTProdrow.ix
http:Ship.ix
http:Shiprow.ix
http:Ship.ix
http:Shiprow.ix
http:Assign.ix
http:Centrow.ix
http:Assign.ix
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The definition of ProduceObj indicates that for each 
combination of a plant and a product defined in the col- 
umn strip Produce, the objective coefficient can be found 
in the Production user data table in the field COST of the 
row that matches this particular combination. The defini- 
tion of AssignObj shows that it is also possible to have 
computed objective coefficients. This completes the model 
description. A block-schematic view of the model is given 
here. 

1 ROWLO] Produce Ship Assign ROWUF 

objective/ 1 ProduceObj ShipObj AssignObj 
ColumnLo 

Block12 
ShipRow Block22 Block23 < 0 

Columnup Produceup 

Observe that the definition of column strips, row strips, 
and blocks depends only on the structure of the user data 
tables, not on the records contained in those tables. This 
ensures complete separation of model and data. It also means 
that the same model definition can handle instances with 
two plants, two products, two warehouses, and three demand 
centers, as well as instances with hundreds of plants, thou- 
sands of products, hundreds of warehouses, and millions of 
demand centers. Observe that an instance of a model exists 
as a collection of views, i.e., virtual tables. This is a major 
difference from systems in which instances are physically 
stored in a database. 

In defining the column strips, row strips, and blocks of 
the production distribution model, we have presented the 
required SQL statements in full detail. This was done to 
convey how a relational modeling system can be imple- 
mented. However, a lot of information contained in the SQL 
statements does not pertain to the model, but is a result of the 
SQL syntax. In any commercial implementation of a mod- 
eling environment based on relational modeling concepts, a 
user interface needs to be developed that shields a user from 
the underlying SQL syntax and indexing, reducing the effort 
required to specify a model. In such a system, the user would 
specify a block simply by using the names of the column 
and row strips and the corresponding relationship between 
the attributes of the strips. The actual detailed SQL queries 
would be created automatically by the system. 

4.5. Ordered Domains 

An important class of linear programming models involves 
multiperiod production planning. Such models typically con- 
tain a class of balancing constraints that ensure a proper 
transition from one period to the next, e.g., for every period 
except the first, the inventory at the start of period t - 1 
plus the production in period t - 1 minus the sales in period 
t - 1 has to equal the inventory at the start of period t .  Such 
models pose a serious problem for the relational modeling 
approach because it relies on a natural ordering of the data, 
such as weeks, months, and years. 

The relational model that forms the basis of relational 
database implementations does not support the concept of 
ordered domains. There are two ways to deal with this 
dilemma. First, commercial implementations of a relational 
database have special functions related to time and we could 
make use of these. Second, when building a model, we can 
use numerical representations of the ordered domains and 
use SQL constructs to implement ordering concepts such as 
"first," "successor," and "predecessor." 

As an example, consider the following two user data 
tables. The first table is not necessary but mainly serves as 
a table that can be used in the report generation phase. 

Table Date: 

NAME PERIOD 


February 2 
April 4 
June 6 

Table Product ion: 

PRODUCT PERIOD CAPACITY COST 


chips 2 2000 76 

chips 4 1600 78 

chips 6 2000 76 

nachos 2 1200 82 

nachos 4 1200 82 

nachos 6 800 86 


Consider the class of balancing constraints mentioned 
above. The column strip associated with the inventory vari- 
ables can be defined as 

CREATE VIEW Inventory (ix, product, period) AS 


SELECT RowNum, product, period 

FROM production; 


We require a balance constraint for each product in each 
period except for the first. The row strip associated with the 
balancing constraints can be defined as 

CREATE VIEW Balance (ix, product, period) AS 

SELECT RowNum, product, period 

FROM production 

WHERE period > (SELECT rnin(period1 

FROMproduction); 


We have used a subquery to determine the first period ap- 
pearing in the table production. For this class of constraints, 
there are two interactions between the column strip and the 
row strip -there is product flow "into" the period and "out" 
of the period. To accomplish this, we simply define the two 
matrix blocks: 

CREATE VIEW Block-1 (rowix, colix, coef) AS 

SELECTBalance.ix, Inventory.ix, -1 

FROM Balance, Inventory 

WHERE Balance.product=Inventory.product 

AND Balance.period=Inventory.period; 
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- - - - - - - 

- - - - -  - - - - -  

CREATE VIEW Block-2 (rowix, colix, coef) AS 


SELECT Balance.ix, Inventory.ix, 1 

FROM Balance, Inventory 

WHERE Balance.product = 1nventory.product 

AND Inventory .period = 


(SELECT max(period) FROM Inventory 

WHEREperiod < Balance.period); 


Again, we have used a subquery, this time to determine 
the previous period appearing in the production table. This 
concludes our description of the basic concepts of relational 
modeling. In Appendix A, we provide examples of relational 
models for some well-known planning problems. 

5. THE FLEET ASSIGNMENT PROBLEM 

To provide the reader with a real-life application in which 
using the relational modeling scheme is a natural and con- 
venient choice, we discuss an important planning problem 
faced by the airline companies. In thefleet assignmentprob- 
lem, we are given a flight schedule and a set of fleet (aircraft) 
types. The problem is to find a minimum cost assignment of 
the fleet types to the flight legs in the schedule (see Abara 
1989 for a discussion and overview of the fleet assignment 
problem). The flight schedule (time table) of a medium to 
large airline is huge and is typically stored in a relational 
database. Below we show some of the typical information 
found in the database. 

Table Schedule: 

LEG DEPSTA DEPTIM ARRSTA ARRTIM FLEET COST . . .  

101 DFW 745 BOS 1055 734 8270 
101 DFW 745 BOS 1055 757 11088 
101 DFW 745 BOS 1055 767 12098 
102 BOS 1200 DFW 1500 734 8270 
102 BOS 1200 DFW 1500 757 11088 
102 BOS 1200 DFW 1500 767 12098 
201 DFW 745 SF0 1145 734 9653 

In this particular example, we see that there is flight from 
DallasJFort Worth International Airport to Logan Airport in 
Boston departing at 7:45 AM and arriving at 10:55 AM and 
that this flight can be flown by either a Boeing 734 at a cost 
of 8270, a Boeing 757 at a cost of 11088, or a Boeing 767 
at a cost of 12098. 

The information on available fleet types is also stored in 
a relational database and looks somewhat like this: 

Table F l e e t s :  

FLEET AVAIL . . . 

734 6 . . . 
757 2 . . . 
767 9 . . . 

A feasible fleet assignment must assign a fleet type to each 
flight leg, cannot use more aircrafts of a given fleet type than 
are available, and must ensure that aircrafts that arrive at a 
station either depart or stay on the ground and similarly that 
aircrafts depart from a station where they landed earlier. 

To model the fleet assignment problem, we introduce two 
classes of variables: (1) a class of binary variables indicating 
for each combination of flight leg and fleet type whether or 
not the fleet type is assigned to the flight leg, and (2) a class 
of integer variables counting the number of aircrafts of a 
specific fleet type on the ground at a particular station and 
time. 

CREATE VIEW Assign (ix, leg, fleet) AS 

SELECT RowNum, leg, fleet 

FROM Schedule ; 


CREATE VIEW GroundArc (ix, fleet, station, time) AS 

SELECTRowNum, Fleets.fleet, arrsta, arrtime 

FROM Fleets, Schedule 

UNION 

SELECTRowNum, Fleets.fleet, depsta, deptime 

FROM Fleets, Schedule; 


Note that we create a so-called ground arc for each fleet 
type at each station and each event (arrival or departure) at 
that station. Ground arcs, as the name suggests are used to 
model aircrafts that stay on the ground at a station. 

There are three classes of constraints. First, which is at 
the heart of the problem, we have to ensure that each flight 
leg is assigned exactly one fleet type. 

CREATE VIEW Cover (ix, leg) AS 

SELECT RowNum, l e g  

FROM Schedule 

GROUP BY l e g ;  


Second, we have to ensure that the fleet assignments are 
consistent, in the sense that there is flow balance for each 
fleet type at each station and each event occurring at that 
station. That is to say that for each fleet type, the number of 
aircrafts of that fleet type "arriving" at a station (either via 
an incoming flight leg or via a ground arc) is equal to the 
number of aircrafts "departing" from the station (either via 
an outgoing flight leg or a ground arc). 

CREATE VIEW Balance (ix, fleet, station, time) AS 

SELECT ALL 

FROM GroundArc ; 

Finally, we have to ensure for each fleet type that we do 
not use more aircrafts than there are available. 

CREATE VIEW Aircraf tCount (ix, fleet) AS 

SELECT RowNum, fleet 

FROM F l e e t s  ; 

Now we define the blocks of the matrix. Because we have 
to assign exactly one fleet type to each flight leg, we have 
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the following block 

CREATEVIEWCoverBlock (rowix, colix, coef) As 

SELECTCover.ix, Assign.ix, 1 

FROM Cover, Assign 

WHERE Cover.leg=Assign.leg; 


Next, we consider the blocks that define the flow balance 
constraints for each fleet type at each event occurring at a 
station. This involves selecting appropriate incoming and 
outgoing arcs. We create a block handling the outgoing flight 
legs first. 

CREATEVIEW BalanceAssignDep (rowix, colix, coef) AS 

SELECTBalance.ix, Assign.ix, 1 

FROM Balance, Assign 

WHERE Assign.leg =SELECT leg FROM Schedule 


WHERE Balance.fleet = Schedule.fleet 

AND Balance.station = Schedule.depsta 
AND Balance.time = Schedule.deptime; 

Next, we create a block handling the incoming flight 
legs. 

CREATEVIEW BalanceAssignArr (rowix, colix, coef) AS 

SELECTBalance.ix, Assign.ix, -1 

FROM Balance, Assign 


WHERE Assign.leg=SELECT leg FROM Schedule 
WHERE Balance.fleet = Schedule.fleet 
AND Balance.station = Schedule.arrsta 
AND Balance. t ime = Schedule. arrt ime ; 

Now, we switch to ground arcs and start with outgoing 
ground arcs. 

CREATEVIEWBalanceGroundOut (rowix, colix, coef) AS 
SELECTBalance.ix, Ground.ix, 1 
FROM Balance, Ground 
WHERE Balance.fleet = Ground.fleet 
AND Balance. station = Ground. station 
AND Balance. time = Ground. time ; 

We follow with the incoming ground arcs. Selecting the 
incoming arcs is a bit more involved, since it requires the 
identification of the previous event at a station, which is done 
by means of a subquery. Furthermore, we need to distinguish 
the first event at a station from the other events because the 
previous event of the first event actually occurs as the last 
event occurring (of the previous day). 

CREATEVIEW BalanceGroundIn (rowix, colix, coef) AS 

SELECTBalance.ix, Ground.ix, -1 

FROM Balance, Ground 

WHERE Balance.fleet = Ground.fleet 

AND Balance. station = Ground. station 

AND Ground. time= 


SELECT max(Ground.time) FROM Ground 
WHERE Balance.fleet = Ground.fleet 
AND Balance. station = Ground. station 
AND Ground. time < Balance. time; 

CREATEVIEW BalanceGroundInFirst (rowix, colix, coef) AS 

SELECTBalance.ix, Ground.ix, -1 


FROM Balance, Ground 

WHERE Balance.fleet = Ground.fleet 
AND Balance. station = Ground. station 
AND (Balance. t ime = 

SELECT min(Balance.time) FROM Balance 


WHERE Balance.fleet = Ground.fleet 
AND Balance. station = Ground. station) 

AND Ground. time = 

SELECT max(Ground.time) FROM Ground 

WHERE Balance. fleet = Ground. f leet 
AND Balance. station = Ground. station; 

To ensure for each fleet type that we do not use more air- 
crafts than there are available, we take a snapshot at midnight 
and count all the aircrafts of a specific fleet type. Because 
the balancing constraints ensure that the flow is a circulation 
the number of aircrafts in use will be the same throughout 
the day and taking a snapshot at midnight suffices. There 
are two blocks: one to account for the "red eye" flights, i.e., 
flight legs corresponding to flights that are in the air at mid- 
night, and one for the ground arcs that cross midnight. 

CREATEVIEW RedEyeCount (rowix, colix, coef) AS 
SELECTPCount.ix, Assign.ix, 1 
FROM PCount, Assign 
WHERE PCount.fleet = Assign.fleet 

ANDAssign.leg =SELECTleg FROM Schedule 

WHERE Schedule.arrtime<Schedule.deptime; 


CREATEVIEW Groundcount (rowix, colix, coef) AS 

SELECTPCount.ix, Ground.ix, 1 
FROM PCount, Ground 

WHERE PCount.fleet = Ground.fleet 
AND (PCount.station, Ground.time) IN 

SELECT station, MAX(time) FROM Ground 


GROUP BY station; 


Specifying the rim blocks, i.e., objective function coef- 
ficients and lower and upper bounds on variables and con- 
straints is straightforward. 

6. A RELATIONAL MODELING SYSTEM 

The preceding sections have shown the conceptual viabil- 
ity of modeling linear and integer programs using a rela- 
tional scheme. In this section, we describe the design of a 
modeling environment that supports the relational modeling 
paradigm. More specifically, we show how to implement 
model management, instance management, and solver man- 
agement using relational database tools. These management 
tasks are performed by the modeling environment and are 
typically invisible to a user of the system. 

6.1. Model Management 

In the block schematic approach, a mathematical program- 
ming model is specified entirely in terms of row strips, 
column strips, and matrix blocks. In a relational database 
environment we can conveniently manage this information 
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for many models. We create four "system" tables: SysMod-
e l s ,  SysRows, SysCols,  and SysBlocks that contain 
all the information about the views defining the various 
models. 

The SysModels table contains the names of the models 
present in the system. It has attributes Model and ObjSense. 
The Model attribute is the unique name of a model and 
the Obj Sense attribute is MAX or MIN indicating whether 
the specified model is a maximization or minimization 
problem. 

The SysRows table contains the names of the row strips 
present in the system. It has attributes Model and RowStrip. 
The Model attribute is the unique name of a model and the 
RowStrip attribute is the unique name of a view defining a 
row strip of the specified model. 

The SysCols table contains the names of the column 
strips present in the system. It has attributes Model, Row- 
S t r i p ,  and Type. The Model attribute is the unique name 
of a model, the C o l S t r i p  attribute is the unique name of 
a view defining a column strip of the specified model, and 
the Type attribute is CONTINUOUS, BINARY, or INTE- 
GER indicating the variable type associated with the speci- 
fied column strip. 

The SysBlocks table contains the names of the blocks 
present in the system. It has attributes Model, Block, Row- 
S t r i p ,  C o l S t r i p ,  and Type. The Model attribute is the 
unique name of a model, the Block attribute is the unique 
name of a matrix block of the specified model, the Row-
S t r i p  attribute is the unique name of the view defining 
the row strip associated with the specified block, the Col-
S t r i p  attribute is the unique name of the view defining the 
column strip associated with the specified block, and the 
Type attribute is ROWLOWER, ROWUPPER COLOBJ, 
COLLOWER, COLUPPER, or BLOCKDATA indicating 
the type of the specified block. 

The tables below show the relevant entries in the system 
tables pertaining to the production distribution model pre- 
sented in the preceding sections. 

Table SysModels : 

Model Obj Sense 

Prod-Dist MIN 


Table sys~ows: 
Model RowStrip 

Prod-Dist Prodrow 

Prod-Dist Shiprow 

Prod-Dist Centrow 


Table SysCols: 
Model RowStrip Type 


Prod-Dist Produce CONTINUOUS 

Prod-Dist Ship CONTINUOUS 

Prod-Dist Assign BINARY 


Table S ~ S B ~ O C ~ S :  

Model 
------ 

Block 
- - - - - - - 

RowStrip 
------ 

ColStrip 
------ 

Type 
------ 

Prod-Dist Block11 Prodrow Produce BLOCKDATA 

Prod-Dist Block12 Prodrow Ship BLOCKDATA 
Prod-Dist Block22 Shiprow Ship BLOCKDATA 
Prod-Dist Block23 Shiprow Assign BLOCKDATA 

Prod-Dist Block33 Centrow Assign BLOCKDATA 

Prod-Dist ProduceObj Produce COLOBJ 
Prod-Dist ShipObj Ship COLOBJ 

Prod-Dist AssignObj Assign COLOBJ 

Prod-Dist Produceup Produce COLUPPER 

Prod-Dist ProdrowUp Prodrow ROWUPPER 

Prod-Dist ProdrowUp Prodrow ROWLOWER 

.. . . . .  . . . .. . . . . 

6.2. Instance Management 

In the production distribution problem used to illustrate 
the relational modeling scheme, we have used specific 
data tables in the definition of the model-e.g., Produc-
tion, Shipcost, Tranship, and Demand-even though we 
used only the structure of these tables. It is good practice, 
however, to define models completely independent of its 
instances. To do so, we make use of another feature of 
SQL called a synonym. A synonym is an alias assigned to a 
table or view that may thereafter be used to refer to it. For 
each data table required in the definition of a model, we 
introduce a synonym and all references to data tables are 
made through these synonyms. Then, to create a specific 
instance of a model, all that needs to be done is to update 
the synonyms so that they refer to the actual data tables 
defining the instance. 

The relational database environment is well suited to man- 
age many instances of the same model. We create two 
system tables: SysDataTables and SysInstances .  

The SysDataTables table contains the names of the 
active user data tables for a model. It has attributes Model, 
BaseTable, Syn, and ActiveTable. The Model attribute 
is the unique name of a model, the Block attribute is the 
unique name of a matrix block, the BaseTable attribute 
is the unique name of a special data table, called base 
table, having the same structure as an instance data table 
required in the definition of the specified model, the Syn 
attribute is the synonym for the base table used in the 
model definition, and the ActiveTable attribute is the 
name of the current data table associated with the specified 
synonym. 

As mentioned before, the definition of a model depends 
only on the structure of the user data tables, not on the 
records contained in those tables. Therefore, to completely 
separate model and data, we use artificial tables in the model 
definition. The artificial tables, which we call base tables, 
have the same structure as the user tables, but will always be 
empty. The use of base tables also gives the system a level 
of error-checking. When we attempt to associate a synonym 
with a user specified instance data table, we can check if this 
table has the proper structure by comparing it to the base 
table associated with the synonym. 
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In our production distribution example, instead of us- 
ing the tables Production, ShipCost, Tranship, and 
Demand directly in the definition of the model, we create 
(empty) base tables base-Production, base-Shipcost, 
base-Tranship, and baseDemand (with the same 
structure) and synonyms syn9roduct  ion, syn-Shipcost, 
syn-Tranship, and synDemand (initially pointing to the 
base tables), and use the synonyms in the definition of the 
model. Then to instantiate the model, we let the synonyms 
point to the real data tables. 

Table SysDataTables: 


Model BaseTable S Y ~  ActiveTable 


Prod-Dist b a s e 9 r o d u c t i o n  s y n 9 r o d u c t i o n  Production 

Prod-Dist base-ShipCost syn-ShipCost ShipCost 

Prod-Dist base-Tranship syn-Tranship Tranship 

Prod-Dist baseDemand synDemand Demand 

The SysInstances table contains the names of the (user 
data) tables of an instance. It has attributes Model, In- 
stance, Syn, and DataTable. The Model attribute is the 
unique name of a model, the Instance attribute is a unique 
name of an instance of the specified model, the Syn attribute 
is the name of the synonym used in the definition of the 
specified model, and the DataTable attribute is the name 
of the data table associated with the specified synonym in 
the specified instance. 

Table SysInstances:  


Model Ins tance  Syn DataTable 


Prod-Dist PD-January s y n P r o d u c t i o n  J a n p r o d u c t i o n  
Prod-Dist PD-January syn-ShipCost ShipCost 
Prod-Dist PD-January syn-Tranship Tranship 
Prod-Dist PD-January synDemand JanDemand 
Prod-Dist PDJebruary  s y n 9 r o d u c t  i o n  FebProduct ion  
Prod-Dist PDJebruary  syn-ShipCost ShipCost 

Prod-Dist PDJebruary  syn-Tranship Tranship 

Prod-Dist PDPebruary synDemand FebDemand 

Finally, there are two system tables that contain solution 
information: SysRuns and SysSols. The SysRuns table has 
attributes Model, Instance, Solver, Rundate, RunTime, 
Obj, and CpuTime. The Model attribute is the unique name 
of a model, the Instance attribute is a unique name of 
an instance of the specified model, the Solver attribute 
indicates the solver used for the run, the RunDate attribute 
is the date of a particular run of the specified model for the 
specified instance, the RunTime attribute is the time of day 
that the run started, the Obj attribute is the objective function 
value obtained in the run, and the CpuTime attribute is the 
CPU time for the run. 

Table s y s ~ u n s :  
MODEL INSTANCE SOLVER RUNDATE RUNTIME OBJ CPUTIME 


ProdDist PD-January OSL 1/1/98 13: 14: 15 324130 00:02: 14 


... . . . . . . ... . . . . . .  ... 

The SysSols table has attributes Model, Instance, Run- 
Date, RunTime, StripName, and TableName. The Model 
attribute is the unique name of a model, the Instance at-
tribute is a unique name of an instance of the specified 
model, the RunDate attribute is the date of a particular run 
of the specified model for the specified instance, the Run-
Time attribute is the time of day of the run, the StripName 
attribute is a row or a column strip name of the specified 
model, and the TableName attribute is the name of the data 
table containing the solution information for the specified 
row or column strip obtained in the run. 

Prod-Dist PD-January 1/1/98 13: 14: 15 Ship solship 


Table sol-Ship : 

PLANT WHSE PRODUCT VALUE 


topeka topeka ch ips  200 
topeka newyork ch ips  0 
topeka topeka nachos 480 
topeka newyork nachos 50 
newyork topeka ch ips  200 
newyork newyork ch ips  200 

Observe that the solution is put in a collection of tables. 
It is also possible, and in fact very easy, to put the solution 
immediately into the appropriate user data tables. We have 
chosen for the above design because it is more flexible and 
puts control in the hands of the user. 

When the values of the decision variables have been re- 
turned to the user data tables, SQL provides a convenient 
tool for viewing the results of the optimization. In particu- 
lar, one can easily scan subsets of the solution which may 
be of interest. For example, the production facility man- 
ager in Topeka can easily determine his production require- 
ments and the total production cost by the following two 
queries (where we assume that the levels of production de- 
termined by the optimizer, i.e., the values of Produce, have 
been put in an additional field amount in the data table 
Production). 

SELECT produc t ,  amount 

FROM product ion 

WHERE p l a n t  = 'topeka '  ; 


SELECT SUM ( c o s t  *amount ) 

FROM product i o n  

WHERE p l a n t  = ' topeka '  ; 


6.3. Solver Management 

Another feature of the relational modeling environment that 
is easily incorporated is to allow users to vary solver param- 
eters by defining a table SysParams to hold these parame- 
ters. 

The SysParams table has attributes Solver, Parameter, 
and Value. The Solver attribute is the name of a solver, the 



Parameter  attribute is the name of a parameter that can be 
set for the specified solver, and Value is the current value 
of the parameter. 

Table  SysParams: 

Solver  Parameter Value 

............................... 

CPLEX CPXYARAM-CLIQUES 1 
CPLEX CPXYARAMJODELIM 1000000 
OSL r t o l p i n f  0.00001 

The system tables introduced above form the basis of the 
prototype relational modeling system ARMOS described in 
the next section. It should be noted that the system tables 
are created only once at the installation of the system and 
then used by the system as an internal database of existing 
models, instances, and solutions. Maintaining the system 
tables is a responsibility of the system, not of the user of the 
system. 

6.4. A Prototype 

To demonstrate the viability of the ideas and concepts pre- 
sented in the previous sections, we have developed a small 
prototype system called ARMOS, A Relational Modeling 
System. ARMOS offers a simple user interface that is coded 
in Embedded SQL (Oracle Corp. 1992) and that allows a 
user to list the models stored in system, to load a model, to 
list the instances stored in the system for the loaded model, 
to make an instance active, to optimize the active instance, 
and to display solution values. The user can also display the 
model's matrix block structure, and view the coefficients of 
any particular matrix block of an active instance. Currently, 
both linear and mixed integer linear programs can be solved. 
ARMOS is built on top of the commercial software package 
OSL [DSV]. A brief description of its functionality can be 
found in Appendix B. 

As mentioned above, ARMOS is a prototype. It provides 
only the most basic functionality and it only has a simple 
text-based user instance. There is no dedicated graphical ed- 
itor supporting model development. Our goal in developing 
ARMOS was to verify the viability of using the relational 
modeling scheme in an actual implementation. 

7. DISCUSSION 

This paper provides a "proof of concept" demonstration, 
showing that it is possible to develop a modeling envi- 
ronment for mathematical programming using a single 
paradigm: relational algebra. We feel there are several 
advantages to such an approach. It is often observed, see 
for example Hiirliman (1991) that despite recent devel- 
opments, mathematical programming is still not fully ex- 
ploited in practice. By designing a modeling environment 
centered around database management systems that are 
widely used in industry, we believe it is possible to make 
mathematical programming accessible to a wider audience. 
Furthermore, it is easy to set things up in such a way that 

using a model has a "fill-in-the-blank" feel, where solution 
values are immediately imported into the appropriate data 
tables. This will be very appealing to end-users, and will 
increase their acceptance level. (We have all witnessed the 
acceptance of spread-sheet like interfaces!) It has also been 
observed, see for example Mitra et al. ( 1  995), that the data 
in corporate information systems are often regularly revised 
and that it is therefore desirable that a decision-making 
system monitors changes in instance data, notifies users 
that the current solution values are out of date, and allows 
users to update that solution value with a single command. 
Because in the relational modeling system we propose 
an instance exists only through virtual links rather than 
physically, this feature is naturally available. 

Finally, a few words on how the proposed relational 
modeling system compares to other systems based on the 
block-schematic model building paradigm, such as MIMI 
and MathPro. Obviously, both MIMI and MathPro are, at the 
moment, far easier to use than our prototype system because 
of their more sophisticated graphical user interfaces. MIMI 
also has a much larger functionality, because it includes an 
expert system component for rule-based model solution. On 
the other hand, MIMI supports only two-dimensional tables 
and therefore requires a hierarchy of tables to represent 
high-dimensional strips or blocks. Our prototype does not 
impose this restriction because SQL easily handles tables 
with multiple fields. Furthermore, MIMI requires all rele- 
vant data to be in its own private internal database, which 
requires copying/transferring data from the corporate 
database to MIMI's database. Because the relational mod- 
eling system is built on top of the corporate database, it 
eliminates the data transfers and storage duplication. 

Appendix 

Appendices A and B can be found at the Operations 
Research Home Page: (http://or.pubs.informs.org/opsre-
search.htm1) in the Online Collection. 
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