
Digital Object Identifier (DOI) 10.1007/s101070100209

Math. Program., Ser. A 91: 307–348 (2002)

P. Bauer · J.T. Linderoth · M.W.P. Savelsbergh

A branch and cut approach to the cardinality constrained
circuit problem

Received: April 1998 / Accepted: October 2000
Published online October 26, 2001 –  Springer-Verlag 2001

Abstract. The Cardinality Constrained Circuit Problem (CCCP) is the problem of finding a minimum cost
circuit in a graph where the circuit is constrained to have at most k edges. The CCCP is NP-Hard. We present
classes of facet-inducing inequalities for the convex hull of feasible circuits, and a branch-and-cut solution
approach using these inequalities.

Key words. cardinality constrained circuit problem – circuit polytope – branch and cut

1. Introduction

In the knapsack constrained circuit problem (KCCP), we are given an undirected graph
G = (V, E), a cost ce for each edge e ∈ E, a weight wv ≥ 0 for each vertex v ∈ V ,
and an integer k. The objective is to find a minimum cost circuit (i.e., a simple cycle)
subject to the constraint that the sum of the weights on the vertices in the circuit is at
most k. The KCCP is easily seen to be NP-hard, because when we subtract a sufficiently
large constant from the cost of each edge and set k = ∑

v∈V wv, we obtain a traveling
salesman problem.

Although the KCCP is an interesting optimization problem, its importance to us
stems from the fact that it can be used to model the pricing problem in branch-and-
price algorithms for the vehicle routing problem. For a comprehensive discussion of
branch-and-price algorithms for vehicle routing problems the reader is referred to [12].

In branch-and-price algorithms for vehicle routing problems, the pricing problem
is usually solved by dynamic programming, i.e., multi-label shortest path algorithms.
Solving the pricing problem by a branch-and-cut algorithm, rather than a dynamic pro-
gramming algorithm, may have several computational advantages. First, good feasible
solutions, corresponding to columns with a negative reduced cost, may be found quicker
because multi-label shortest path algorithms find feasible solutions only when the sink
node is labeled, which may take a long time if the underlying network is large. Secondly,
using a branch-and-cut algorithm, it is not necessary to solve the problem to optimality
to show that no negative reduced column exists. As soon as the global lower bound be-
comes nonnegative, we know the optimal solution will be nonnegative as well. Finally,

P. Bauer: Siemens AG, Corporate Research and Development, ZT SE 4, 81730 Munich, Germany
e-mail: Petra.Bauer@mchp.siemens.de

J.T. Linderoth: Axioma, Inc., 501-F Johnson Ferry Road, Marietta, GA 30068, USA
e-mail: jlinderoth@axiomainc.com

M.W.P. Savelsbergh: School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332-0205, USA, e-mail: mwps@isye.gatech.edu

308 P. Bauer et al.

if the state space cannot be pruned by restrictions such as time windows, a dynamic
programming approach begins to resemble exhaustive search.

We are interested in investigating the advantages and disadvantages of using a branch-
and-cut algorithm, rather than using dynamic programming, to solve the pricing problem
within a branch-and-price algorithm for vehicle routing problems.

Developing a branch-and-cut algorithm for the KCCP is also interesting from another
perspective. The polytope defining the set of feasible solutions to the KCCP is the
intersection of two other polyhedra, namely the knapsack polytope and the circuit
polytope. We know a lot about the structure of both these polyhedra, and it is interesting
to learn more about the value of this knowledge when it comes to developing a branch-
and-cut algorithm for the KCCP.

To facilitate our investigation, we have decided to start with the special case of unit
weights, i.e., the cardinality constrained circuit problem (CCCP). The CCCP models
the pricing problem that arises in branch-and-price algorithms for the vehicle routing
problem with unit demands.

Before we discuss problems that are related to the KCCP and the CCCP, we first
present a transformation that converts node related information to edge related informa-
tion. This transformation allows us to look at the problems from different perspectives.
The weight wv for v ∈ V can be placed on the edges by introducing an edge weight
we = 0.5(wu +wv) for all e = {u, v} ∈ E and requiring that the sum of the weights on
the edges in the circuit be at most k.

In the capacitated prize collecting traveling salesman problem (CPCTSP) [9], we are
given an undirected graph G = (V, E), a travel cost te for e ∈ E, a reward pv and weight
wv for v ∈ V , a depot node v0 ∈ V , and a capacity W ∈ � � � � +. The objective is to find
a route, or set of edges, R starting and ending in v0 that maximizes the collected rewards
minus the incurred travel costs, i.e.,

∑
v∈V(R) pv − ∑

e∈R te, subject to the constraint
that the total weight on the route, i.e.,

∑
v∈V(R) wv, does not exceed the capacity W .

In the orienteering problem (OP), we are given a graph G = (V, E), rewards pv for
v ∈ V , a depot node v0 ∈ V , travel costs te for e ∈ E, and an upper bound Q ∈ � � � � +. The
objective is to find a route R starting and ending at v0 that maximizes the total collected
reward (

∑
v∈V(R) pv) subject to the constraint that the total travel cost (

∑
e∈R te) is less

than Q. Heuristics for solving the OP are given by Golden et al. [17] and Ramesh et
al. [34]; and polyhedral approaches for OP are given by Fischetti et al. [14] and Leifer
and Rosenwein [26].

Applying the transformation presented above, we see that the CPCTSP and OP are
equivalent problems. Furthermore, if we remove the requirement that the route goes
through the depot node, then the CPCTSP and OP are also equivalent to the KCCP.

In the prize collecting traveling salesman problem (PCTSP) [3], there is a reward
for visiting a node and penalty for not visiting a node. The objective is to minimize the
sum of the penalties and the travel costs subject to the constraint that the total collected
reward should be greater than or equal to a given minimum. A heuristic for the PCTSP in
which the prize requirement is not considered is given by Bienstock et al. [8]. Polyhedral
based approaches to the PCTSP are presented by Balas [3] and Pillai [32].

If we remove the knapsack constraint from the KCCP, we are left with the weighted
girth problem (WGP) or circuit problem (CP), where we are trying to find a minimum
cost circuit in a graph. Bauer [5,6] studies the WGP problem in great detail, presents

A branch and cut approach to the cardinality constrained circuit problem 309

facet defining inequalities for its underlying polyhedron, and provides a branch-and-
cut approach for its solution. Wang [39] examines both the CP and the closely related
Eulerian subtour problem.

Nguyen and Maurras [28,29] study the k-cycle polyhedron. Given a complete undi-
rected graph, the k-cycle polyhedron is the the convex hull of the incidence vectors of
the cycles of length exactly k. The k-cycle polyhedron is a face of the CCCP polyhedron.
Hartmann and Ozluk [21] give a polyhedral analysis of the directed variant of the k-cycle
polyhedron.

The remainder of the paper is organized as follows. In Sect. 2, we give two integer
programming formulations for the CCCP and present basic results on the facial struc-
ture of the polyhedra associated with the convex hulls of feasible solutions for both
formulations. In Sect. 3, we show that many facet inducing inequalities for the WGP
polyhedron are also facet inducing for the CCCP polyhedron. In Sect. 4, we derive new
classes of facets for the CCCP polyhedron. Section 5 discusses the complexity of the
separation problem for the various classes of facet inducing inequalities and presents
separation algorithms and heuristics. In Sect. 6, we provide details and computational
results of a branch-and-cut algorithm for the CCCP.

2. Integer programming formulations of the CCCP

In order to ease the exposition, we will first introduce a few definitions. For V ′ ⊆ V ,
define

E(V ′) ≡ {(i, j) ∈ E : i ∈ V ′, j ∈ V ′}, and

δ(V ′) ≡ {(i, j) ∈ E : i ∈ V ′, j �∈ V ′}.

In addition, we will write δ(v) instead of δ({v}) for v ∈ V . For a given subset of edges
E′ ⊆ E, we use the notation

V(E′) ≡ {v ∈ V : E′ ∩ δ(v) �= ∅}

to define the set of nodes spanned by E ′.
To formulate the CCCP, we use decision variables xe, e ∈ E, and yv, v ∈ V , to

describe a circuit C with the following meanings:

xe =
{

1 if e ∈ C,

0 otherwise,

and

yv =
{

1 if v ∈ V(C),

0 otherwise.

For notational convenience, we often write x(E ′) to denote
∑

e∈E′ xe for a set of
edges E′ ⊆ E, and y(V ′) to denote

∑
v∈V ′ yv for a set of vertices V ′ ⊆ V . Also, for two

310 P. Bauer et al.

subsets S, T ⊆ E, S ∩ T = ∅, we let

x(S : T) =
∑

s∈S,t∈T

xs,t .

An integer programming formulation of the CCCP can be given as follows:

Minimize ∑
e∈E

cexe (2.1)

subject to

x(δ(v))=2yv ∀v ∈ V, (2.2)

x(δ(S))≥ 2(yu + yv − 1) ∀S ⊂ V, 3 ≤ |S| ≤ n − 3,

u ∈ S, v ∈ V \ S, (2.3)

x(E)≥ 3, (2.4)

x(E)≤ k, (2.5)

xe ∈ {0, 1} ∀e ∈ E, (2.6)

yv ∈ {0, 1} ∀v ∈ V . (2.7)

In this formulation, the degree equations (2.2) ensure that a feasible solution goes
exactly once through each visited node, and the disjoint circuit elimination constraints
(2.3) make sure that our solution is a connected circuit. Constraint (2.4) eliminates the
null circuit, constraint (2.5) is the cardinality constraint, and constraints (2.6) and (2.7)
give the integrality conditions on our variables.

Let Cn be the set of circuits of Kn , the complete graph on n nodes, and let χC be the
incidence vector of a circuit C. We are interested in studying the cardinality constrained
circuit polytope

Pn,k
C = conv{(χC, χV(C))T ∈ IR|E|+|V ||C ∈ Cn, |C| ≤ k}

= conv{(x, y)T ∈ IR|E|+|V ||(x, y) satisfies (2.2) − (2.7)}.
Pn,k

C is contained in the intersection of the two polytopes:

Pn
C = conv{(x, y) ∈ IR|E|+|V ||(x, y) satisfies (2.2) − (2.4), (2.6) − (2.7)} and

Pn
k = conv{x ∈ IR|E||x satisfies (2.5) and (2.6)}.

Hence, any valid inequality for Pn
C or Pn

k is also valid for Pn,k
C . We will show that in

many cases facet defining inequalities for Pn
C and Pn

k are also facet defining for Pn,k
C .

By substituting out the node variables yv(v ∈ V) using (2.2), we obtain a formulation
of the CCCP that uses only edge variables xe (e ∈ E).
Minimize ∑

e∈E

cexe

A branch and cut approach to the cardinality constrained circuit problem 311

subject to

x(δ(v))≤2 ∀v ∈ V, (2.8)

x(δ(v) \ e) − xe ≥0 ∀v ∈ V, e ∈ δ(v), (2.9)

xe + x((u : T)) + x((v : S))

−x((S : T))≤2 ∀e = (u, v) ∈ E such that

S, T is a partition of

V \ {u, v}, |S|, |T | ≥ 2, (2.10)

x(E)≥3, (2.11)

x(E)≤ k, (2.12)

xe ∈ {0, 1} ∀e ∈ E. (2.13)

The degree constraints (2.8) and the parity constraints (2.9) ensure that every vertex
has degree zero or two. The disjoint circuit elimination constraints (2.10) ensure our
circuit is connected. Since there are no node variables in this formulation, the associated
cardinality constrained circuit polytope and circuit polytope have different definitions:

P̃n,k
C = conv{χC ∈ IR|E| | C ∈ Cn, |C| ≤ k}

= {x ∈ IR|E||x satisfies (2.8) − (2.13)}
and

P̃n
C = conv{χC ∈ IRE | C ∈ Cn}.

Bauer [5,6] and Wang [39] have studied the facial structure of P̃n
C and we will

frequently use their results.
Our next goal is to show some properties of the polytopes introduced above and to

establish relations between them. Similar proofs appear in [9].

Theorem 1. For 4 ≤ k ≤ n, dim(P̃n
C) = dim(Pn

C) = dim(P̃n,k
C) = dim(Pn,k

C) = |E| =
n(n − 1)/2.

Proof. Bauer [5] and Wang [39] establish that dim(P̃n
C) = |E|. Their proofs use cir-

cuits of at most length four, so dim(P̃n,k
C) = |E|. The rank of the set of equalities

(x(δ(v)) = 2yv ∀v ∈ V) is |V |; thus, dim(Pn
C) ≤ |E| and dim(Pn,k

C) ≤ |E|. The proofs
of Bauer and Wang show that there are |E| + 1 circuits (of length at most 4) whose
incidence vectors x ∈ IR|E| are affinely independent. For these same circuits, the inci-
dence vectors in terms of edge and node variables (x, y)T ∈ IR|E|+|V | are also affinely
independent, so dim(Pn

C) ≥ |E| and dim(Pn,k
C) ≥ |E|.

��
Since the two formulations of the CCCP describe the same set of feasible circuits,

we would also suspect that their polyhedra have the same facets.

Theorem 2. If the inequality aT x ≤ a0 is facet defining for P̃n,k
C , it is also facet

defining for Pn,k
C . If bT x + dT y ≤ b0 is facet defining for Pn,k

C , then hT x ≤ b0, where

h = (h)i j ≡ bi j + 1
2 (di + d j) is facet defining for P̃n,k

C .

312 P. Bauer et al.

Proof. If aT x ≤ a0 is facet defining for P̃n,k
C , there are |E| affinely independent circuits

that satisfy aT x = a0. These same |E| circuits written in terms of edge and node
variables are also affinely independent and satisfy the equality aT x = a0. If bT x +
dT y ≤ b0 is facet defining for Pn,k

C , then there are |E| affinely independent circuits
(x1, y1)T , (x2, y2)T , . . . , (x|E|, y|E|)T ∈ IR|E|+|V | such that bT x j + dT y j = b0 ∀ j =
1, 2, . . . |E|. As yv = x(δ(v))/2 ∀v ∈ V , we find by substitution that these circuits also
satisfy hT x = b0. Further, the incidence vectors of circuits x1, x2, . . . x|E| are affinely
independent, for if not, we would have

|E| > rank
[

x1 x2 . . . x|E|
−1 −1 . . . −1

]
= rank


 x1 x2 . . . x|E|

y1 y2 . . . y|E|
−1 −1 . . . −1


 (2.14)

which would imply that the original circuits (x1, y1)T , (x2, y2)T , . . . , (x|E|, y|E|)T ∈
IR|E|+|V | were not affinely independent.

��
Since the polyhedra are the same, we use only the notation Pn,k

C when referencing
either polyhedron for the remainder of the paper.

Let us introduce the following two polytopes which are closely related to Pn
C and

Pn,k
C . For a node set K ⊆ V , we let

PK
C = conv{(χC, χV(C))T ∈ IR|E(K)|+|K | | C is a circuit in G(K) = (K, E(K))}

and

Pn,K
C = conv{(χC, χV(C))T ∈ IR|E|+|V | | C ∈ Cn, C covers only nodes in G(K)}

= conv{(χC, χV(C))T ∈ IR|E|+|V | | C ∈ Cn, xe = 0 for all e /∈ E(K),

yv = 0 for all v /∈ K}.
The following lemma will be useful in helping us characterize when facet defining

inequalities for Pn
C are also facet defining for Pn,k

C .

Lemma 1. Let 4 ≤ k < n and let ax + fy ≤ a0 be facet defining for Pn
C. Suppose there

is a set K ⊆ V with |K | ≤ k such that the restriction ãx + f̃ y ≤ a0 of ax + fy ≤ a0
to G(K) = (K, E(K)) is facet defining for PK

C . Moreover, assume that for every
e ∈ E \ E(K) there is a circuit C ∈ Cn with e ∈ C, |C| ≤ k and aχC + fχV(C) = a0.
Then ax + fy ≤ a0 is facet defining for Pn,k

C .

Proof. Since ãx + f̃ y ≤ a0 defines a facet of PK
C , we can conclude that ax + fy ≤ a0

defines a facet of Pn,K
C . With Pn,K

C = Pn,k
C ∩ {(x, y)T ∈ IRE+V | xe = 0 for all e ∈

E \ E(K), yv = 0 for all v ∈ K}, the claim follows from the existence of a circuit
C ∈ Cn with e ∈ C, |C| ≤ k, and aχC + fχV(C) = a0 ∀e ∈ E \ E(K).

��
Bauer [5] has characterized when the basic inequalities defining Pn

C are facet in-
ducing. Because of Theorem 2 and the fact the proofs require only circuits of lengths 3
and 4, we have

A branch and cut approach to the cardinality constrained circuit problem 313

Theorem 3.

(i) The trivial inequalities xe ≥ 0, e ∈ E, define facets of Pn,k
C for n ≥ 5 and k ≥ 4.

(ii) The degree constraints x(δ(v)) ≤ 2, v ∈ V, define facets of Pn,k
C for n ≥ 5 and

k ≥ 4.
(iii) The parity constraints x(δ(v) \ xe) − xe ≥ 0, v ∈ V, e ∈ δ(v), define facets of

Pn,k
C , n ≥ 5 and k ≥ 4.

(iv) Let e = (u, v) ∈ E, and let S, T be a partition of V \ {u, v} with S, T ≥ 2. Then
the disjoint circuit elimination constraint

xe + x((u : T)) + x((v : S)) − x((S : T)) ≤ 2

define facets of Pn,k
C , n ≥ 6 and k ≥ 4.

(v) The inequality x(E) ≥ 3 defines a facet of Pn,k
C , n ≥ 5 and k ≥ 4.

Next, we show that the cardinality constraint, which is facet inducing for Pn
k is also

facet inducing for Pn,k
C .

Theorem 4. Let 4 ≤ k < n. Then the cardinality constraint

x(E) ≤ k

is facet defining for Pn,k
C .

Proof. Assume that there is an inequality bx ≤ b0, b ∈ IR|E|, b �= 0, which is valid for
Pn,k

C and satisfies {x ∈ Pn,k
C | x(E) = k} ⊆ {x ∈ Pn,k

C | bx = b0}.
Let f = (u, v) and g = (w, z) be any two nonadjacent edges in E, define h = (v,w),

l = (u, z), and let C be a circuit of cardinality k containing the edges f and h, but not
the node z. With C′ = C \ { f, h} ∪ {g, l}, we have bχC = bχC′ = b0 and thus

b f + bh = bg + bl.

Analogously, we can derive
bg + bh = bl + b f

and get bg = b f . Since for any two adjacent edges, we can find an edge which is
not adjacent to either of them, we get the same coefficient for all edges e ∈ E. This
immediately yields that bx ≤ b0 is a positive multiple of x(E) ≤ k.

��
In the next sections, we introduce valid inequalities and facets for the polyhderon

Pn,k
C that do not explicitly appear as inequalities in the integer programmingformulation.

In Sect. 3, we give conditions under which some facets of Pn
C are also facets of Pn,k

C . In

Sect. 4, we derive valid inequalities and facets for Pn,k
C which are not valid inequalities

for Pn
C . Some of the these are obtained from lifting facets of Pn

C that define only lower

dimensional faces of Pn,k
C , and others are obtained independently.

314 P. Bauer et al.

3. Inequalities from the circuit polytope

This section, included for completeness, notes some known facets of Pn
C that are also

facets for Pn,k
C . The cut inequalities are facet inducing for both Pn

C and Pn,k
C for n ≥ 7.

The forest inequalities are facet defining for Pn
C for n ≥ 7, and facet inducing for Pn,k

C
if an easy to check condition is satisfied.

3.1. The cut inequalities

The cut inequalities, introduced by Seymour [38], generalize the parity constraints (2.9).
They are shown to be facet defining for Pn

C , n ≥ 2, by Bauer [5]. Her proof involves
only circuits of length 3 and 4 and thus immediately yields the following theorem.

Theorem 5. Let n ≥ 7 and k ≥ 4. For S ⊆ V, 3 ≤ |S| ≤ n − 3, and e ∈ δ(S), the cut
inequality

x(δ(S) \ e) − xe ≥ 0

is facet defining for Pn,k
C .

3.2. The forest inequalities

Bauer [5,6] gives several classes of facet defining inequalities for Pn
C that are derived

using the fact that the traveling salesman polytope is a face of the circuit polytope.
Among them are the forest inequalities, which are obtained from the facet inducing
clique tree inequalities of Grötschel and Pulleyblank [19]. It turns out that, if an easy to
check condition on the “size” of the inequality is satisfied, the inequality is also a facet
for Pn,k

C .
A clique tree is a connected graph composed of cliques which satisfy the following

properties (in the following a clique tree is always considered a subgraph of Kn):

(1) The cliques are partitioned into two sets, the set of handles and the set of teeth.
(2) No two teeth intersect.
(3) No two handles intersect.
(4) Each tooth contains at least two nodes, at most n − 2 nodes, and at least one node

not belonging to any handle.
(5) For each handle, the number of teeth intersecting it is odd and at least three.
(6) If a tooth and a handle intersect, then their intersection is an articulation set of the

clique tree.

Suppose we are given a clique tree with handles H1, . . . , Hr and teeth T1, . . . , Ts . For
every tooth Tj , we denote by t j the number of handles which intersect Tj . Choose from
every tooth Tj , 1 ≤ j ≤ t, a node r(j) not belonging to any handle, referred to as the
root of Tj . Choose from every nonempty intersection Hi ∩ Tj , 1 ≤ i ≤ r, 1 ≤ j ≤ s,
of a tooth and a handle a node u(i, j), which we call the link of Hi and Tj . Define R
to be the set of all roots r(j), 1 ≤ j ≤ s, and U to be the set of all links u(i, j), where
1 ≤ i ≤ r, 1 ≤ j ≤ s, and Hi ∩ Tj �= ∅. Using the result of Bauer [5] and performing
the substitution x(δ(v)) = 2yv ∀v ∈ V , the following can be shown to be true.

A branch and cut approach to the cardinality constrained circuit problem 315

Theorem 6. Let a clique tree of Kn, n ≥ 6, be given by a set of handles H1, . . . , Hr,
r ≥ 1, and a set of teeth T1, . . . , Ts. Let R be a set of roots and U a set of links. Then
the forest inequality

r∑
i=1

x(E(Hi))+
s∑

j=1

x(E(Tj)) ≤
r∑

i=1

y(Hi)+
s∑

j=1

(y(Ti)− ti)− y(U)− y(R)+ 3

2
(s − 1)

is facet defining for Pn
C.

Using Lemma 1, we can find a sufficient condition for a forest inequality to be facet
defining for Pn,k

C .

Theorem 7. Let n ≥ 9, 4 ≤ k < n, and let ax + fy ≤ a0 be a forest inequality with set
of roots R and set of links U. Then ax + fy ≤ a0 is facet defining for Pn,k

C whenever
|R| + |U| + 2 ≤ k.

Proof. We let K = U ∪ R and apply Lemma 1. Let e = (u, v) be any edge not
contained in E(K). The inequality ãx + f̃ y ≤ a0, where (ã, f̃) is the restriction of
(a, f) to Guv

K = (K ∪ {u, v}, E(K ∪ {u, v})) is also a forest inequality and hence
there is a circuit C of length at most |K ∪ {u, v}| ≤ k containing e and satisfying
ãχC + f̃ χV(C) = aχC + fχV(C) = a0.

��
If r = 1 and |Tj ∩ H1| = 1 ∀ j = 1, . . . , s, we call the inequality a simple forest

inequality. Simple forest inequalities correspond to the simple comb inequalities of the
TSP polytope. If, in addition, |Tj | = 2 ∀ j = 1, . . . , s, we call the resulting inequality
a 2-forest inequality. The 2-forest inequalities correspond to 2-matching inequalities of
the TSP polytope.

4. Inequalities specific to the cardinality constrained circuit polytope

In this section, we derive valid inequalities for Pn,k
C that are not valid for Pn

C . The
first two, the cardinality-path inequalities and the k-partition inequalities are derived
from first principles. The second two, the cardinality-tree inequalities and the maximal
set inequalities are obtained by strengthening inequalities known to be valid and facet
inducing for Pn

C .
All classes of inequalities presented are facet inducing under certain conditions.

However, the proofs are standard, tedious, and long. Therefore, in the text, we discuss
only the validity of the classes of inequalities and refer the interested reader to the
technical report for details on the facet proofs [7].

4.1. The cardinality-path inequalities

If P is a path with k edges and C is a circuit of cardinality at most k, then the cardinality-
path inequality corresponding to P says that C never uses more edges of P than inner
nodes of P.

316 P. Bauer et al.

Theorem 8. Let 4 ≤ k < n, P be a path in Kn consisting of k edges, and Ṗ denote the
set of inner nodes of P. Then the cardinality-path inequality

x(P) ≤ y(Ṗ)

defines a facet of Pn,k
C .

Proof of validity. To see that the cardinality-path inequalities are valid for Pn,k
C , suppose

for a contradiction that C is a feasible circuit satisfying x(P) ≥ y(Ṗ)+ 1 for some path
P consisting of k edges. By definition y(Ṗ) = k − 1, so x(P) ≥ k. Since C is a circuit,
x(C \ P) ≥ 1, but then x(C) = x(C \ P) + x(P) > k, so C was not feasible.

��

4.2. The k-partition inequalities

The k-partition inequalities ensure that we use enough edges across a partition of V into
sets of size k − 1.

Theorem 9. Let 4 ≤ k < n, s = � n
k−1� and V = ⋃s

i=1 Vi be a partition of V with
|Vi | = k − 1 for 1 ≤ i ≤ s − 1 and |Vs| ≤ k − 1. Then

2
s∑

i=1

x(E(Vi)) +
s−1∑
i=1

s∑
j=i+1

x((Vi : Vj)) ≤ 2(k − 1)

is facet defining for Pn,k
C .

Proof of validity. To see that the k-partition inequalities are valid, note that all circuits
of length at most k − 1 satisfy the inequality. Further, a circuit of length k must use at
least two edges in ∪s−1

i=1 ∪s
j=i+1 (Vi : Vj), so the inequality is satisfied in this case as

well.
��

4.3. Maximal set inequalities

Wang [39] introduces a class of inequalities he calls the multipartition inequalities and
shows them to be facet defining for Pn

C . His theorem is stated below.

Theorem 10 (Wang). Let Kn = (V, E), 4 ≤ k < n and a partition of V be given by
V = ⋃s

i=1 Vi where |Vi | ≥ 2 for all 1 ≤ i ≤ s. Moreover, let Ti ⊆ E(Vi), 1 ≤ i ≤ s,
be a spanning tree of the complete graph induced by Vi and T i be its complement with
respect to E(Vi). Then a facet of Pn

C is induced by the inequality

2
s∑

i=1

x(Ti) +
s−1∑
i=1

s∑
j=i+1

x((Vi : Vj)) ≥ 2.

A branch and cut approach to the cardinality constrained circuit problem 317

These inequalities do not in general induce facets of Pn,k
C but can be strengthened

by replacing the sets T i , which are the complements of maximal sets in E(Vi) not
containing any circuit, by complements of maximal sets in E(Vi) not containing any
circuit of cardinality less than or equal to k.

Theorem 11. Let Kn = (V, E), 4 ≤ k < n, and let a partition of V be given by
V = ⋃s

i=1 Vi where |Vi | ≥ 2 for all 1 ≤ i ≤ s. Moreover, let Mi ⊆ E(Vi), 1 ≤ i ≤ s,
be a maximal edge set with respect to E(Vi) not containing any circuit of cardinality
less than or equal to k. Let Mi = E(Vi) \ Mi be its complement with respect to E(Vi).
Then a facet of Pn,k

C is induced by the maximal set inequality

2
s∑

i=1

x(Mi) +
s−1∑
i=1

s∑
j=i+1

x((Vi : Vj)) ≥ 2.

Proof of validity. The inequality is valid, since every feasible circuit either uses at least
one edge in ∪s

i=1 Mi or two edges in ∪s−1
i=1 ∪s

j=i+1 (Vi : Vj).
��

4.4. The cardinality-tree inequalities

Wang [39] introduces the following generalization of the degree inequalities.

Theorem 12 (Wang). Let T be a spanning tree of Kn. For each e = (u, v) ∈ E \ T,
define lT

e as the length of the unique (u, v) path in T . The tree inequality

∑
e∈T

xe +
∑
e�∈T

(2 − lT
e)xe ≤ 2

is a valid inequality for Pn
C. If T is such that every edge e ∈ T is in a star K1,3 ⊆ T,

then the inequality is also facet defining for Pn
C.

Using the fact that all circuits must be of length at most k, this inequality can be
strengthened.

Theorem 13. Let T be a spanning tree of Kn. For each e = (u, v) ∈ E \ T, define lT
e

as the length of the unique (u, v) path in T . Define

wT
le =




2 − lT
e if 2 ≤ lT

e ≤ k − 1,

4 − 2k + lT
e if k ≤ lT

e ≤ �3k/2� − 2,

2 − k/2 if k is even and lT
e ≥ 3k/2 − 1,

(3 − k)/2 if k is odd and lT
e = �3k/2� − 1 + 2i for some i ∈ �� � � +,

(5 − k)/2 if k is odd and lT
e = �3k/2� + 2i for some i ∈ �� � � +.

318 P. Bauer et al.

The cardinality-tree inequality∑
e∈T

xe +
∑

e∈E\T

wT
le xe ≤ 2

is a valid inequality for Pn,k
C .

If n ≥ 5, k ≥ 4, and T is a spanning tree of Kn with the following properties:

– If v is a leaf node of T with adjacent node u, then |δ(u)| ≥ 3,
– If e ∈ E \ T is such that lT

e ≥ �3k/2�− 1, then there exists and edge f ∈ E \ T with
lT

f = lT
e − 1, and a circuit C, |C| = k, consisting of e, f and edges of T ,

then the inequality ∑
e∈T

xe +
∑

e∈E\T

wT
le xe ≤ 2

is facet inducing for Pn,k
C .

Proof of validity. The proof of validity of the cardinality-tree inequalities relies on the
concept of coefficient improvement and is fairly long. We sketch the proof here and
refer the interested reader to the appendix for a complete proof.

We will improve the coefficients of the variables corresponding to edges e ∈ E \ T .
These coefficients we start out at their initial values 2 − lT

e , and it is our goal to show
that they can be increased to at least wT

le
, thereby strengthening the inequality. Note

first that the coefficients of edges f ∈ E \ T with lT
f ≤ k − 1 are not changed, so the

“new” coefficients wT
l f

are certainly valid in this case. For an edge f ∈ E \ T , define
the coefficient improvement problem (CIP) for f as

max
x

z f ≡
∑
e∈T

xe +
∑

e∈E\T

wexe

subject to: x is the incidence vector of a circuit C,

|C| ≤ k,

x f = 1.

With the above definitions, the coefficient wT
f = 2 − lT

f can be increased by 2 − z f .
Now, suppose for a contradiction that the coefficient for edge f ∈ E \ T cannot be
increased to wT

l f
. This implies that

2 − lT
f + 2 − z f ≤ wT

l f
− 1. (4.15)

We now proceed to prove the validity of the coefficient improvements on a case by case
basis by considering an optimal circuit C defined by an incidence vector x and showing
that inequality (4.15) does not hold.

��
Using techniques found in the proof of Theorem 13, we can show that the condition

that if v is a leaf node of T with adjacent node u, then |δ(u)| ≥ 3 is both necessary

A branch and cut approach to the cardinality constrained circuit problem 319

and sufficient for the tree inequalities to be facet defining for Pn
C , thus strengthening

Theorem 12 of Wang [39].

5. Separation results

In this section, we investigate the complexity of the separation problems associated with
the classes of facet inducing inequalities discussed above. Given an arbitrary point, the
separation problem associated with a class of inequalities is to determine an inequality
in the class that is violated by this point, or to show that no violated inequality in the
class exists.

5.1. Parity constraints

Given a point (x∗, y∗)T ∈ IR|E|+|V |, we can determine if it violates any of the parity
constraints

x∗(δ(v) \ xe) − x∗
e ≥ 0, v ∈ V, e ∈ δ(v)

by simple substitution. This requires computation time O(n2).

5.2. Disjoint circuit elimination constraints

For e = (u, v) ∈ E and a partition S, T of V \ {u, v}, we have a disjoint circuit
elimination constraint

xe + x((u : T)) + x((v : S)) − x((S : T)) ≤ 2.

This constraint is equivalent to

x((S ∪ v) : (T ∪ u)) ≥ x(δ(u)) + x(δ(v)) − 2.

We can therefore solve the separation problem for the disjoint circuit elimination con-
straints by finding a minimum (u, v)-cut for all pairs of nodes u, v ∈ V .

This can be done efficiently by creating a Gomory-Hu cut tree T for G. A Gomory-
Hu cut tree T of G is a weighted tree T on the same node set as G with the property
that for any two nodes u and v of G, the value of the minimum (u, v)-cut is equal
to the smallest weight of an edge e on the path from u to v in T . The cut with this
minimum value is given by the components of T \ e. Gomory-Hu cut trees can be
built by performing n − 1 maximum flow computations. If the shortest augmenting
path algorithm of Edmonds and Karp [13] is used to compute the maximum flows, the
cut tree can be built and the check for violated inequalities can be performed in time
O(|V |3|E|). For a description of an algorithm to build a Gomory-Hu cut tree, the reader
is refered to Gusfield [20].

320 P. Bauer et al.

5.3. Cut inequalities

A point (x∗, y∗)T ∈ IR|E|+|V | satisfies all the cut inequalities of Theorem 5 if and only
if for all ∅ �= S ⊆ V, e ∈ δ(S), we have

x∗(δ(S)) ≥ 2x∗
e .

We can therefore solve the separation problem for the cut inequalities by calculating
a minimum (s, t)-cut for each edge e = (s, t) ∈ E and checking whether the corres-
ponding cut inequality is satisfied. This can be done efficiently using a Gomory-Hu cut
tree.

5.4. Forest inequalities

Bauer [5] shows that the forest inequalities are valid for Pn
C by subtracting appropriate

positive multiples of the degree constraints from the clique tree inequalities. Therefore,
if we solve the separation problem for the class of clique tree inequalities and find
a violated inequality, it must be the case that the corresponding forest inequality is also
violated. This gives us a heuristic for separating for forest inequalities.

Little is known about the separation problem for clique tree inequalities. Carr [10]
has shown that it is possible to separate clique tree inequalities having a fixed number
of handles and teeth in polynomial time, and Fleischer and Tardos [15] have shown
that separating comb inequalities in planar graphs can also be done in polynomial time.
We separate only for the 2-matching and simple comb subclasses of the clique tree
inequalities. The corresponding forest inequalities are the 2-forest and simple forest
inequalities, respectively.

For the 2-matching inequalities, an exact separation procedure is known [30], but it
requires solving an odd minimum cut problem, which is very time consuming. Instead,
we use a heuristic presented by Padberg and Rinaldi [31] to find violated 2-matching
(2-forest) inequalities. The procedure is given as Procedure 4.10 in [31] and has worst
case complexity of O(n4). In general, the running time is much faster.

We also heuristically identify violated simple forest inequalities using the Procedure
5.3 of Padberg and Rinaldi [31] for finding violated simple comb inequalities.

5.5. Cardinality-path inequalities

Consider the separation problem for the cardinality-path inequalities.
PROBLEM: Cardinality-path separation problem (CPSEP)
INSTANCE: Complete graph G=(V, E), weights x∗ ∈ Q|E|

+ , y∗ ∈ Q|V |
+ , k ∈ � � � � +.

QUESTION: Does there exist a path P of cardinality k in G such that
x∗(P) − y∗(Ṗ) > 0?

Theorem 14. CPSEP is NP-Complete.

A branch and cut approach to the cardinality constrained circuit problem 321

Proof. CPSEP is obviously in NP. We show it is NP-Complete by a reduction from the
longest path problem (LPP) [16]:

PROBLEM: Longest Path Problem (LPP)
INSTANCE: Complete graph G = (V, E), weights we ∈ Q|E|

+ , B ∈ Q.
QUESTION: Does there exist a path P with w(P) > B in G?

Since we ≥ 0, it suffices to consider paths P of cardinality |V | − 1 with w(P) > B
in LPP. Given an instance of LPP, we construct an instance of CPSEP by letting the
two graphs be the same, x∗ = w, k = |V | − 1, and y∗v = B/(|V | − 2) ∀v ∈ V . This is
a polynomial transformation.

By construction there exists a path P with w(P) > B for LPP if and only if there
exists a path P of cardinality |V | − 1 such that x∗(P) − y∗(Ṗ) > 0 for CPSEP.

��
Since the separation problem is NP-Complete, we look for violated cardinality-path

inequalities by enumerating the paths of length k and checking if x(P) − y(Ṗ) > 0
for each path. The effectiveness of this approach can be greatly enhanced by a simple
observation. During the enumeration, we will be considering (partial) paths P′ (of length
< k). Suppose we orient the path so that vertex b is the first in the path. Then, whenever
the partial path P′ is such that x(P′)− (y(V(P′))− yb) ≤ −1, the path needs no longer
to be considered, since it will never lead to a violated cardinality-path constraint.

With this simple device, we have greatly reduced the amount of work from simple
total enumeration. We may even ask whether the resulting algorithm has polynomial
running time. The following theorem shows that the number of paths considered may
still be exponential.

Theorem 15. The enumeration algorithm with the pruning condition described for
solving CPSEP has a nonpolynomial running time.

Proof. Let n = |V | and consider an instance of CPSEP with yv = 3/n ∀v ∈ V ,
xe = 6n/(n − 1) ∀e ∈ E, and k = n. The weights satisfy all the necessary conditions in
an LP-solution to the CCCP.

Let b ∈ V be the vertex from which we begin the path enumeration procedure. For
a (partial) path Pl of length l, x(Pl) = 6l/n(n − 1) and y(V(Pl)) − yb = 3l/n. In this
instance, the value of x(Pl)−(y(V(Pl))−yb) depends only on l, and x(Pl)−(y(Pl)−yb)

≤ −1 only when

6l

n(n − 1)
− 3l

n
≤ −1 ⇔ l ≥ n(n − 1)

3(n − 3)
.

Thus, our enumeration algorithm will consider all paths until

l =
⌈

n(n − 1)

6(n − 2)

⌉
.

The number of such paths is

N = (n − 1)!
(n − 1 −

⌈
n(n − 1)

3(n − 3)

⌉
)!

.

322 P. Bauer et al.

As n grows large this value approaches

N = (n − 1)!
(2

3 (n − 1))! ,

which is not polynomially bounded.
��

5.6. k-partition inequalities

Given a point x∗ ∈ IR|E|
+ , the separation problem for the k-partition inequalities is to

find a partition of the vertices V = ⋃s
i=1 Vi , with |Vi | = k − 1 for i = 1, . . . , s and

|Vs| ≤ k − 1 such that

2
s∑

i=1

x∗(E(Vi)) +
s−1∑
i=1

s∑
j=i+1

x∗((Vi : Vj)) > 2(k − 1).

Through some simple algebraic manipulation, this condition can be shown to be equiva-
lent to finding a partition of the prescribed form with

s∑
i=1

s∑
j=i+1

x∗((Vi : Vj)) < 2(x∗(E) − (k − 1)).

Theorem 16. The separation problem for the k-partition inequalities is NP-Complete.

Proof. The separation problem is clearly in NP. We will show that the separation
problem for k-partition inequalities is at least as hard as the following NP-Complete
graph partitioning problem (GPP) [23]:

PROBLEM: Graph Partitioning Problem (GPP)
INSTANCE: Graph G = (V, E), weights l(e) ∈ Q+ ∀e ∈ E, and positive

integers K , J .
QUESTION: Is there a partition of V = ⋃s

i=1 Vi such that |Vi | ≤ K
∀i = 1, . . . , s and such that

∑s
i=1

∑s
j=i+1 l((Vi : Vj)) ≤ J?

Given an instance of GPP, we construct an instance of the separation problem for
k-partition inequalities by letting the graphs be the same, k = K + 1, and

xe = 2(k − 1)

2l(E) − J
l(e).

We may, without loss of generality, assume that 2l(E) − J ≥ 0 and hence xe ≥ 0
∀e ∈ E. With these definitions, there exists a partition V = ⋃s

i=1 Vi with |Vi | ≤ K
and

∑s
i=1

∑s
j=i+1 l((Vi : Vj)) ≤ J in GPP if and only if there exists a partition

A branch and cut approach to the cardinality constrained circuit problem 323

V = ⋃s
i=1 Vi with |Vi | = k − 1 and

∑s
i=1

∑s
j=i+1 x((Vi : Vj)) ≤ 2(x(E) − (k − 1))

in the corresponding k-partition inequalities separation problem.

s∑
i=1

s∑
j=i+1

x((Vi : Vj)) ≤ 2(x(E) − (k − 1)) ⇔

2(k − 1)

2l(E) − J

s∑
i=1

s∑
j=i+1

l((Vi : Vj)) ≤ 2
(

2(k − 1)

2l(E) − J
l(E) − (k − 1)

)
⇔

s∑
i=1

s∑
j=i+1

l((Vi : Vj)) ≤ 2l(E) − (2l(E) − J) ⇔

s∑
i=1

s∑
j=i+1

l((Vi : Vj)) ≤ J.

��
Since the separation problem is NP-Complete, in order to search for violated k-

partition inequalitites, we use a heuristic. The heuristic begins by greedily partitioning
the vertices, followed by two-exchanges.

5.7. Maximal set inequalities

Given x∗ ∈ IR|E|
+ , and an integer s, the separation problem for the maximal set inequalities

is to find a partition of the vertices V = ⋃s
i=1 Vi and in each Vi a maximal edge set Mi

not containing any circuit of cardinality less than or equal to k such that

2
s∑

i=1

x∗(Mi) +
s−1∑
i=1

s∑
j=i+1

x∗((Vi : Vj)) < 2.

In Vi , there may be many types of maximal sets not containing a circuit of cardinality
less than or equal to k. One example is a spanning tree, where all fundamental circuits
in the tree have cardinality at most k. If we choose such a tree for all 1 ≤ i ≤ s, we get
an inequality of the type given in Theorem 10.

For the special case s = 1, the separation problem for this particular maximal set is
the following.

PROBLEM: Maximal set separation problem (MAXSEP1):
INSTANCE: Graph G = (V, E), weights xe ∈ Q+ ∀e ∈ E, positive integer k.
QUESTION: Does there exist a spanning tree T of G such that x(T) > x(E) − 1

and the longest path in T has at most k − 1 edges?

Theorem 17. MAXSEP1 is NP-Complete.

Proof. MAXSEP1 is obviously in NP. We will prove that MAXSEP1 is at least as hard
as the NP-Complete bounded diameter spanning tree problem [16]:

324 P. Bauer et al.

PROBLEM: Bounded diameter spanning tree (BDST):
INSTANCE: Graph G = (V, E), weight we ∈ Q+ ∀e ∈ E, positive integer

D ≤ |V |, positive integer B.
QUESTION: Does there exist a spanning tree T of G such that w(T) < B and

the longest path in T has at most D edges?
Let w∗ ≡ maxe∈E we. Given an instance of BDST, we construct an instance of

MAXSEP1 by letting the graphs be the same, k − 1 = D, and

xe = w∗ − we

(|E| − |V | + 1)w∗ − w(E) + B
∀e ∈ E.

We may assume that our constructed instance has (|E| − |V | + 1)w∗ − w(E) + B > 0
(and hence xe ≥ 0 ∀e ∈ E), for if

(|E| − |V | + 1)w∗ − w(E) + B ≤ 0,

we have

(|E| − |V | + 1)w∗ − w(E \ T) − w(T) + B ≤ 0,

which implies that w(T) ≥ B.
With these definitions, a tree T is such that x(T) > x(E)−1 if and only if w(T) < B:

x(T) > x(E) − 1 ⇔
(|V | − 1)w∗ − w(T)

(|E| − |V | + 1)w∗ − w(E) + B
>

|E|w∗ − w(E)

(|E| − |V | + 1)w∗ − w(E) + B
− 1 ⇔

(|V | − 1)w∗ − w(T) > |E|w∗ − w(E) − (|E| − |V | + 1)w∗

+w(E) − B ⇔
w(T) < B,

which completes the proof.
��

Since the separation problem is NP-Complete, we consider a heuristic to find violated
maximal set inequalities of this form. The heuristic has the following steps:

0. s = 1.
1. Find a partition ∪s

i=1Vi of the vertices such that
∑s−1

i=1
∑s

j=i+1 x∗((Vi : Vj)) is
small.

2. For each Vi , i = 1, . . . , s, construct a spanning tree Ti of large weight such that all
paths in T have length at most k − 1.

3. If s = |V |/2, then stop. Else s = s + 1. Go to 1.

Note that in our heuristic, we do not require that |Vi | ≥ 2, i = 1, . . . , s. The
inequality is still valid in this case, but may not be facet defining. Step 1 of the heuristic is
equivalent to finding a minimum s-cut. This problem is NP-Complete for arbitrary s [18].
Saran and Vazirani [36] show how to compute s-cuts within a factor of 2−2/s of optimal
using a Gomory-Hu cut tree. Our separation heuristic uses this method to find a light
weight partition for each s ∈ {1, 2, . . . |V |/2}. Step 2 of the heuristic is equivalent to

A branch and cut approach to the cardinality constrained circuit problem 325

solving the NP-Complete problem BDST. To construct trees of large weight which
have no paths of length more than k, we use a heuristic modification of Prim’s greedy
algorithm to find a maximum weight spanning tree [33]. At each step of the algorithm,
we add the heaviest edge to the tree that will not create a circuit and will not induce
a path of length k in the tree.

5.8. Cardinality-tree inequalities

Given some fractional LP solution x∗, the separation problem seeks a violated cardinal-
ity-tree inequality, that is a tree T such that∑

e∈T

x∗
e +

∑
e∈E\T

wT
le x∗

e > 2. (5.16)

Since the cardinality-tree inequalities are a strengthening of the tree inequalities, if
we are able to find a violated tree inequality, then the corresponding cardinality-tree
inequality must also be violated. Now we show how to solve the separation problem for
tree inequalities.

In the Optimum Requirement Spanning Tree problem (ORST), we are given a com-
plete graph Kn = (V, E) and “requirements” re ∈ Q+ ∀e ∈ E, and we ask for
a spanning tree T that minimizes the quantity

∑
e∈E lT

e re. (Recall that for e = (u, v),
lT
e is the length of the unique (u, v) path in T). The ORST problem was introduced by

Hu [22]. He also shows that the optimal solution to ORST is a Gomory-Hu cut tree
using the “requirements” re as weights.

Theorem 18. Tree inequalities can be separated in polynomial time.

Proof. Let x∗ be the solution to the linear programming relaxation. We first show that∑
e∈T

x∗
e +

∑
e∈E\T

(2 − lT
e)x∗

e > 2 ⇔
∑
e∈E

lT
e x∗

e < 2
∑
e∈E

x∗
e − 2.

∑
e∈T

x∗
e + 2

∑
e∈E\T

x∗
e −

∑
e∈E\T

lT
e x∗

e > 2 ⇔
∑
e∈E

x∗
e +

∑
e∈E\T

x∗
e −

∑
e∈E\T

lT
e x∗

e > 2 ⇔
∑

e∈E\T

lT
e x∗

e −
∑

e∈E\T

x∗
e <

∑
e∈E

x∗
e − 2 ⇔

∑
e∈E\T

lT
e x∗

e −
∑

e∈E\T

x∗
e +

∑
e∈T

x∗
e +

∑
e∈E\T

x∗
e < 2

∑
e∈E

x∗
e − 2 ⇔

∑
e∈E

lT
e x∗

e < 2
∑
e∈E

x∗
e − 2.

Thus, using the result of Hu for the ORST problem, we solve the separation problem for
tree inequalities by computing a Gomory-Hu tree using the solution x∗ as requirements
and comparing the optimal objective value to the constant 2

∑
e∈E x∗

e − 2.
��

326 P. Bauer et al.

Wang does not discuss the separation problem for the tree inequalities, so Theorem 18
is a new result. The complexity of separating the cardinality-tree inequalities is unknown.
If the “weights” wT

le
in (5.16) are arbitrary, then the problem is equivalent to the NP-

Complete Optimum Communication Spanning Tree problem [24].

5.9. Summary

In the preceeding sections, six classes of valid inequalities for Pn,k
C have been presented.

Table 5.1 shows a summary of relevant information for each of these classes.

Table 5.1. Characteristics of the classes of inequalities for Pn,k
C

Inequality Class Facet Defining? Separation Complex-
ity

Separation Routine

cut Yes Polynomial min (s, t) cut ∀e = (s, t) ∈ E.
forest If |R| + |U| + 2 ≤ k NP-Complete (poly-

nomial for certain
clique trees)

Heuristic procedures of Padberg
and Rinaldi [31]

cardinality-path Yes NP-Complete Limited enumeration heuristic
k-partition Yes NP-Complete Greedy and 2-opt heuristic

maximal set If |Vi | ≥ 2 ∀i NP-Complete Heuristic combining min s-cut and
max bounded diameter spanning
tree

cardinality-tree For certain trees Unknown (polynomial
for tree inequalities)

Exact separation for tree inequali-
ties. Uses Gomory-Hu tree

6. Computations

In this section, we describe the design and implementation of a branch-and-cutalgorithm
for the CCCP based on the classes of valid inequalities introduced in the previous sec-
tions. The initial formulation consists of the degree constraints, the constraint x(E) ≥ 3,
and the cardinality constraint x(E) ≤ k. The other classes of valid inequalities are
handled implicitly, i.e., constraints are added on-the-fly only when they are violated.

Our current implementation of the branch-and-cut algorithm does not use any sparse
graph representation or column generation techniques. Therefore, the size of the in-
stances we are able to solve is limited by the amount of memory on our computer. We
had to restrict ourselves to instances with graphs of up to 100 vertices. Fortunately,
these instances are large and difficult enough to thoroughly investigate the performance
of the algorithm. Furthermore, as mentioned in the introduction, the main motivation
for studying branch-and-cut algorithms for the CCCP is to see if they might provide
a viable alternative to dynamic programming to solve the pricing problems arising in
branch-and-price algorithms for the vehicle routing problem. In that context, being able
to solve pricing problems with up to a 100 customers is more than enough.

We have used the integer programming software MINTO v2.0 [27] to manage the
branch-and-bound tree and to interface with the linear programming solver. The linear
progams were solved with CPLEX v4.0 [11].

A branch and cut approach to the cardinality constrained circuit problem 327

6.1. A primal heuristic for the CCCP

In order for a branch-and-cut algorithm to be effective, good upper as well as lower
bounds on the value of the optimal solution must be obtained. Upper bounds are obtained
by finding feasible solutions to the problem. LP-based heuristics have been shown to be
quite effective [25,37]. Such heuristics are based on the intuition that the solution to the
LP relaxation of an integer program is suggestive of what good feasible solutions look
like. For example, if the value of an edge variable in the LP solution is large, then it is
likely that feasible solutions containing this edge are of good quality. An edge-oriented
LP-based heuristic for the CCCP is given in Algorithm 1.

Algorithm 1 LP Edge-value based heuristic for the CCCP
1. Using the LP values x∗ as weights, greedily create a set of paths P = {P1, P2, . . . , P|P|} (with index

set P) such that | ∪ j∈P V(Pj)| ≤ k.
2. For each of P1, P2, . . . , P|P|, find the edge that, when added, creates the cheapest circuit. The edge

need not connect the endpoints of the path; if it does not, the superflous edges are removed. Let the
cheapest circuit created this way be the current incumbent C∗.

3. Let t = arg min j∈P {c(Pj)}. Find the cheapest way to connect a path in P to Pt and call the resulting
path P′

t .
4. If P′

t can be closed as in Step 2 creating a circuit C′ such that c(C′) < c(C∗), let C∗ = C′,
P = P ∪ P′

t \ Pt , and goto 3. Else output C∗ and end.

6.2. A branching scheme

If we are unable to generate violated inequalities, then we branch on a fractional integer
variable. Because fixing a node variable has a much stronger impact than fixing an edge
variable, we choose to branch on the most fractional node variable. If no fractional node
variable can be found, we use the default branching scheme in MINTO v2.0. We note
that this may not be the most efficient branching scheme for this problem class. For
example, the strong branching method introduced by Applegate et al. [1] may very well
be effective for the CCCP. We leave such investigations as a line of future computational
research.

6.3. A cut management scheme

When designing a branch-and-cut algorithm, a number of choices have to be made
regarding when to generate cuts and how to use generated cuts. Recent studies have
shown that these choices can significantly impact the overall effectiveness of the branch-
and-cut algorithm [4].

Some of the choices that need to be considered are the following:

– Should we generate cuts at every node of the search tree?
– When we decide to generate cuts at a node, should we keep generating cuts as long

as we can find them?

328 P. Bauer et al.

– Should we add all the generated violated cuts for a given fractional LP point?
– Should we try to generate violated cuts for all classes of cuts?
– Should we delete inactive cuts from the active linear program?

A cut management scheme tries to find the right balance between the various com-
ponents of a branch-and-cut algorithm, e.g., LP solving, cut generation, and branching.
In this section, we discuss a number of experiments that we have conducted to develop
an effective cut management scheme for our branch-and-cut algorithm.

We have taken 4 instances from the TSPLIB [35] and modified them to create
instances of the CCCP in the following manner. First, a positive constant was subtracted
from the weight of each edge. This results in optimal solutions having more than a small
number of edges in the optimal solution. This strategy was also used by Bauer to
construct instances of WGP [5]. For each of these modified TSPLIB instances, we
created three instances of the CCCP by varying the value of k. Let q be the cardinality
of the optimal circuit for the modified TSPLIB instance without a cardinality constraint.
The values of k were chosen as follows:

– k = q,
– k = �2q/3 ,
– k = �q/3 .

This gives us 12 instances. This is admittedly a small set of instances, but at the
moment we are only looking for trends to help us decide on a cut management scheme.
When we have decided on a cut management scheme and are ready to test the complete
branch-and-cut algorithm, we will use a much larger set of instances.

Our code was compiled with the IBM xlc compiler with code optimization -O2 and
run on an RS6000 Model 390 with 512MB of memory.

6.3.1. Cut deletion. Preliminary computational experiments showed that because many
violated cuts are generated, the size of the active linear program increases rapidly. This
leads to linear programs that require a prohibitive amount of memory. Therefore, we
chose to delete all cuts from the active linear program that have not been binding in
the last two LP solutions. This reduces the memory requirements and speeds up the LP
solution times. It may happen that we generate the same cut several times.

6.3.2. Cuts per round. Given a fractional LP solution x∗, we solve the separation
problem for each class of valid inequalities introduced in the previous sections. We call
this a round of cut generation. In each round, we typically find many violated inequalities.
To conserve memory and to speed up the solution of the active linear program, it may
be more efficient to add only a subset of the generated violated inequalities, for example
the η “best” cuts. We have used the distance d from the LP solution x∗ to the hyperplane
aT x = b defining a cut as the measure of quality of a cut. The distance d is given by

d = b − aT x∗

aT a
.

We have conducted a small experiment to determine a good value for η. In the experi-
ment, we generated cuts at every node of the search tree for each class of inequalities,

A branch and cut approach to the cardinality constrained circuit problem 329

and we used a “tailing-off detection percentage” (see Sect. 6.3.3) of 0.1%. Table 6.2
shows the performance of the branch-and-cut algorithm for various values of η on our
twelve test instances.

Table 6.2. The effect of the maximum number of cuts per round

η Total Nodes Total Time (sec.)
1 1680 (N/A)
10 359 4898
25 261 5968
50 288 5093
all 274 4966

If η = 1, i.e, when we add only the deepest cut in a single round of cut generation,
then the branch-and-cut code fails to solve three instances. In each case, it exceeds the
memory limit. If η > 1, it is hard to draw definite conclusions. We have chosen to work
with η = 50 in all remaining experiments.

6.3.3. Tailing-off. The change in the value of the objective function of the LP relaxation
has a tendency to decrease as the number of rounds of cut generation increases at a node
in the search tree. This is known as the tailing-off effect. If the change in the value
of the objective function from one round of cut generation to the next becomes “too
small”, we may decide to branch rather than to generate additional cuts, since it appears
that spending more time on cut generation is not worthwhile at the moment. We have
implemented tailing-off detection as follows. If the change in the value of the objective
function is less than α% over the last two rounds of cut generation, we say tailing-off
has occurred.

We have conducted a small experiment to determine a good value for α. In the
experiment, we generated cuts at every node of the search tree for each class of inequal-
ities. Table 6.3 shows the performance of the branch-and-cut code for various values
of α.

Table 6.3. The effect of the tailing off percentage

α Total Nodes Total Time (sec.)
0.1 274 4966
1.0 403 3432
2.5 426 3356
5.0 486 3185

10.0 480 3196

Based on these results, we decided to use α = 5.0 in all remaining experiments.

6.3.4. Cutting or branching. Since generating cuts takes time, and is not guaranteed to
be successful, it may not be wise to try to generate cuts at every opportunity. A simple
scheme to realize this is to generate cuts at the root node and then only at every κth

330 P. Bauer et al.

node that is evaluated. Balas et al. call κ the skip factor [4]. The motivation behind this
scheme is that after a number of branchings, we have moved to a different part of the
solution space and we are more likely to find deep cuts again. (Note that we have to
make one exception. If the LP relaxation at a node is integral but not feasible, i.e., there
are violated parity or disjoint circuit elimination constraints, then we have to add cuts.)

We have conducted a small experiment to determine a good value for κ. Table 6.4
shows the performance of the branch-and-cut code for various values of κ.

Table 6.4. The effect of the skip factor

κ Total Nodes Total Time (sec.)
1 486 3185
2 1277 4753
5 6607 8779
10 11970 8138
∞ 34782 (N/A)

When κ = ∞, i.e, we generate cuts at the root node only, the branch-and-cut
algorithm failed to solve six instances. In each case, it exceeds the memory limit. From
Table 6.4, it is clear that (combined with our other cut managent choices) it is best to
add cuts at every node of the search tree, which is what we will do in all remaining
experiments.

6.3.5. Useful cut classes. We have introduced several classes of valid inequalities for
Pn,k

C and have derived conditions under which they are facet inducing. However, using
a class of facet inducing inequalities is by no means a guarantee for improved perform-
ance. For example, if the separation routine for a class of inequalities is computationally
intensive but rarely successful, then the overall performance is likely to decrease. Even
if the separation algorithm for a class of inequalities is fast and often generates a violated
cut, it may still not help to improve the performance. Since we only add the η deepest
cuts in any particular round of cut generation, it may be the case that the violated cuts
of a particular class are seldomly added to the LP relaxation. Also, the addition of cuts,
especially if they are dense, increases memory requirements and may slow down the
solution of the LPs.

For each of the classes of inequalities we introduced, Table 6.5 shows the percentage
of time that the separation routine was successful in generating a violated inequality, the
average amount of time required by the separation routine to do so, and the percentage
of time a generated cut was among the 10 deepest cuts found in a single round of cut
generation.

Table 6.5 shows clearly that it is not wise to include the maximal set inequalities
in our branch-and-cut algorithm. We also felt that it may not be worthwile to include
the k-partition inequalities, since they are quite dense and take a relatively long time
to generate, or to include the cut inequalities, since they have a tendency to cut off
fractional solutions that are also cut off by the disjoint circuit elimination constraints.

Based on the results of Table 6.5 and our intuition, we conducted an experiment to test
whether or not the k-partition and cut inequalities should be excluded. Table 6.6 shows

A branch and cut approach to the cardinality constrained circuit problem 331

Table 6.5. Cut class statistics

Cut Type Success % Avg. Gen. % of Time Among
Time (sec.) 10 Deepest

Forest 22.1% 0.026 45.9%
Path 8.65% 0.308 43.9%

k-Partition 27.8% 0.135 27.2%
Cut 82.8% 0.009 24.2%
Tree 95.0% 0.007 17.3%

Maximal Set 0.434% 0.576 0.0%

the results of this experiment, in which different classes of inequalities are excluded in
our branch-and-cut algorithm.

Table 6.6. Cut class statistics

Cut Classes Excluded Total Nodes Total Time (sec.)
None 486 3177

Maximal Set 486 2647
Maximal Set, k-Partition 507 2458

Maximal Set, Cut 706 3519
Maximal Set, k-Partition, Cut 793 3379

All 1026 3197

From Table 6.6, we see that excluding the maximal set inequalities clearly improves
the performance, and that excluding the cut inequalities is detrimental to the perform-
ance. It is difficult to draw any further conclusions. For the remainder of the experiments,
we decided to include all classes of cuts except the maximal set inequalities.

6.4. Computational results

With all the components of our branch-and-cut algorithm in place, we are ready to
investigate its overall effectiveness. We solved many instances of the CCCP created by
modifying instances from TSPLIB in the manner described in Sect. 6.3. The names of
the instances are of the form<name>m<integer>, where<name> is the name of the
original TSPLIB instance, and <integer> is the positive constant that was subtracted
from each edge. The integer in the name of the TSPLIB instances is the number of nodes
in the instance.

The full results can be found in Appendix B in Table B.1. For each instance, we report
the best objective function value found (zbest), the gap between zbest and the best lower
bound (zL B), computed as 100 |(zbest − zL B)/zbest |, the gap between zbest and the value
of the linear programming relaxation at the root node, the number of evaluated nodes
(NN), the number of linear programs solved (NLP), the total computation time (t), the
time spent solving linear programs (tL P), and the time spent solving separation problems
(tcut). All times are reported in CPU seconds. A time limit of 7200 CPU seconds was
imposed in the solution of each instance. Table B.2 in Appendix B shows the results
when we solve the same instances using only parity and disjoint circuit elimination cuts,

332 P. Bauer et al.

i.e., cuts necessary for feasibility. If an instance was not solved to proven optimality,
then either the time limit or memory limit was reached. The reader can deduce which
of the limits was reached by checking the total computation time t.

There are 90 instances in our test suite, and the instances can be broken into three
classes based on the computational results:

– Class I. Instances solved by both algorithms.
– Class II. Instances solved by the branch-and-cut algorithm that uses all inequalities,

but not by the branch-and-cut algorithm that uses only feasibility cuts.
– Class III. Instances unsolved by both algorithms.

There are 80 instances in Class I, 5 instances in Class II, and 5 instances in class III.
Table 6.7 presents a summary of the results obtained for the “easy” instances of

Class I. More specifically, we present the average number of nodes (NN), the average
number of LPs solved (NLP), the average time spent on solving LPs (tL P), the average
time spent on cut generation (tCUT), and the average solution time (t).

Table 6.7. Summary of computational results for class I instances

NN NLP tL P tCUT t

Feasibility Cuts 4588 15822 21415 2072 30024

All Cuts 1995 6486 19143 4070 26768

We see that for the class of easy instances the improvement in performance of the
algorithm using all cuts over the algorithm using only feasibility cuts is modest. In fact,
of the 32 instances in Class I that required more than one minute to solve by either
algorithm, the algorithm using all cuts performed better only in 17 cases.

However, on the more difficult instances of class II and class III the improvements
are more significant. Table 6.8 presents the results obtained for the instances of Class II.

Table 6.8. Computational results for class II instances

Name k All Cuts? zbest Final Root NN NLP tL P tcut t
Gap% Gap%

cn100am100 100 N -7418 3.0 3.6 1400 1681 808 1020 4029
cn100am100 100 Y -7544 0.0 1.8 221 471 352 695 2786

kroA100m200 32 N -551 88.9 274.1 181 1150 5657 322 7200
kroA100m200 32 Y -622 0.0 197.4 41 210 2279 411 2983
kroA100m200 48 N -855 18.2 139.4 273 1301 5649 355 7200
kroA100m200 48 Y -855 0.0 119.8 17 88 519 114 713
kroC100m200 52 N -970 25.2 119.0 231 970 5667 419 7200
kroC100m200 52 Y -970 0.0 114.3 27 100 1048 162 1325

pr76m9000 76 N -575300 0.6 0.7 4082 4614 485 851 2666
pr76m9000 76 Y -575841 0.0 0.5 409 790 204 446 1506

We see that for three out of the five instances, the algorithm using only feasibility
cuts has not yet, after two hours, found the optimal solution. Furthermore, significant
integrality gaps still remain.

A branch and cut approach to the cardinality constrained circuit problem 333

Table 6.9 presents the results for the class of most difficult instances, i.e., class III.

Table 6.9. Computational results for class III instances

Name k All Cuts? zbest Final Root NN NLP tL P tcut t
Gap% Gap%

cn100am100 33 N -2040 40.2 47.8 153 653 3501 125 7200
cn100am100 33 Y -2266 24.0 32.7 51 239 5242 352 7200
cn100am100 66 N -5030 4.9 8.2 64 268 2505 249 7200
cn100am100 66 Y -5115 2.7 8.1 51 228 2851 377 7200
cn100am30 29 N -180 179.6 247.6 237 1291 5360 188 7200
cn100am30 29 Y -204 115.8 192.9 42 263 5904 461 7200
cn100am30 58 N -507 16.6 49.2 142 625 5448 408 7200
cn100am30 58 Y -501 11.9 45.1 72 348 5111 526 7200

kroA100m300 31 N -1839 132.9 182.4 171 808 6052 204 7200
kroA100m300 31 Y -3522 11.0 41.1 90 404 5835 659 7200

Even though the algorithm using all cuts was unable to solve these instances within
two hours, the integrality gaps at the end of the two hours are much smaller than the
remaining integrality gaps for the algorithm using only feasibility cuts. With a little
more time some of the instances would have been solved.

From our computaional experiments, we draw the following conclusions:

– Using the classes of inequalities introduced in this paper improves the overall per-
formance.

– Instances with k < q, where q is the cardinality of the optimal circuit if the cardin-
ality constraint is not imposed, are the most difficult to solve by a branch-and-cut
algorithm.

– The addition of many cuts significantly increases the LP solution times. The average
LP solution time is 2.14 seconds when only parity and disjoint circuit elimination
cuts are used and 5.03 seconds when all classes of cuts (except for maximal set
inequalities) are used.

– Medium-size instances can be solved effectively by a branch-and-cut approach.

Table B.3 presents detailed cut generation statistics. It shows the number of cuts
of each class of inequalities that were added for each of the instances as well as the
maximum size of the active linear program. Table 6.10 presents, in a slightly different
form, a summary of these statistics. It shows, for several classes of inequalities, the
number of cuts added to the linear program as a percentage of the total number of cuts
added to the linear program for different values of k.

Table 6.10. Percentage of total cuts for various cut classes

k Cut Forest Path Tree k-Partition
q/3 36.25 0.47 1.86 1.71 2.75
2q/3 26.62 1.35 2.88 1.56 0.19

q 18.37 5.44 0.00 1.17 0.06

For the most part, the results in Table 6.10 confirm our intuition. Path, tree, and k-
partition inequalities, which are specific to the cardinality constrained circuit polytope,

334 P. Bauer et al.

are more likely to be generated for smaller values of k. Forest inequalities, which
are “inherited” from the circuit polytope, are more likely to be generated for larger
values of k. Also, a forest inequality with roots R and links U is facet defining only
if |R| + |U| + 2 ≤ k (Theorem 7), which is less likely to be true for smaller values
of k.

6.5. Solving pricing problems

One of the motivations for studying the CCCP is that it arises as the pricing problem in
a branch-and-price algorithm for vehicle routing problems with unit demands. In this
section, we give some preliminary computational results showing the effectiveness of
our branch-and-cut algorithm in solving instances arising in this context.

Instances of CCCP arising in the context of vehicle routing problems with unit
demands were created in the following manner. First, capacitated vehicle routing in-
stances from TSPLIB [35] and the thesis of Augerat [2] with general demand were
turned into unit demand instances. (The capacity of the vehicle in the new instances was
defined to be k = �b/d�, where b was the original capacity of the vehicle and d was
the average demand at a customer.) These instances were then solved using a column
generation approach. As long as possible, negative reduced cost columns were generated
using a heuristic consisting of a cheapest insertion construction heuristic followed by
2-exchange and 3-exchange improvement heuristics. If negative reduced cost columns
were found, they were added, and the linear program resolved. The CCCP instance for
which the heuristic failed to identify a negative reduced cost column was taken as a test
instance for our branch-and-cut algorithm. Thus, the CCCP instances that are obtained
in this way have some degree of difficulty.

In vehicle routing CCCP instances, we know that all feasible circuits have to contain
the depot node v. We enforced this constraint in our branch-and-cut algorithm by setting
yv = 1. We also modified the primal heuristic to find a cheapest circuit of length no
more than k − 1, and then inserted the depot node into the circuit in the cheapest way
possible. This is a somewhat naive approach to solving vehicle routing CCCP instances.
As pointed out by Bixby et al. [9] and Fischetti et al. [14], many classes of inequalities
can be improved by using the knowledge that the depot must be included in any circuit.
Also, specialized primal heuristics can be developed. We leave these improvements as
a line of further research.

The results of solving these vehicle routing CCCP instances are shown in Table 6.11.
The number of nodes in each instance is the first integer in the name of the instance.
We report the best solution found (zbest), the best lower bound (zL B), the number
of evaluated nodes (NN), the number of linear programs solved (NLP), the time and
method by which the first negative reduced cost column was found (t−), the time (tbest)
and method by which the best solution was found, and the total computation time (t).
A time limit of two CPU hours was imposed on the solution of each instance.

We see that these CCCP instances are indeed difficult, but that in most instances
a negative reduced cost column was identified within 10 minutes and often much faster.
Again, we note that our branch-and-cut algorithm can be improved significantly by
taking into account that all circuits have to include the depot.

A branch and cut approach to the cardinality constrained circuit problem 335

Table 6.11. Computational results on modified TSPLIB instances

Name zbest zL B NN NLP t− (Method) tbest (Method) t

eil22 -23.37 -23.37 1 7 2.4 (Heur.) 2.4 (Heur.) 2.5
eil23 -19.06 -19.06 7 48 2.5 (Heur.) 6.9 (LP) 8.8
eil30 -36.51 -36.51 3 29 2.4 (Heur.) 2.4 (Heur.) 11.0
eil33 -31.23 -31.23 17 241 79.4 (LP) 93.6 (Heur.) 151.3
att48 -3044.55 -3044.55 9 40 2.6 (Heur.) 9.3 (Heur.) 43.3

SP-n51-k4 -61.50 -158.66 182 3642 396.6 (Heur.) 5511.5 (LP) 7200.0
eil51 -11.33 -11.33 71 285 126.8 (Heur.) 320.2 (LP) 466.3

P-n55-k8 -3.36 -3.36 353 2571 401.8 (LP) 471.4 (LP) 6978.6
P-n60-k10 -2.13 -10.36 115 1558 6397.0 (LP) 6397.3 (LP) 7200.0
P-n65-k10 3.35 -11.72 86 1218 NONE 1814.7 (LP) 7200.0

eilA76 0.00 -23.68 73 546 NONE 2780.2 (LP) 7200.0
eilB76 -0.80 -15.90 85 600 183.7 (LP) 183.7 (LP) 7200.0

7. Conclusions

We have presented many classes of facet inducing inequalities for the polyhedron arising
from an integer programming formulation of the cardinality constrained circuit problem.
A branch-and-cut code based on these inequalities was developed and shown to be
computationally effective for medium size problem instances. To be able to solve larger
instances, it is necessary to use sparse graph representation techniques. Furthermore,
the performance of the algorithm may be improved if better separation heuristics can
be developed for some of the classes of inequalities. Our computational results show
that adding a simple cardinality constraint to the circuit problem makes the problem
much more difficult. This indicates that solving knapsack constrained circuit problems
is likely to be even more challenging.

A. Proof of validity of cardinality tree inequalities

The proof relies on the concept of coefficient improvement. We will improve the coeffi-
cients of the variables corresponding to edges e ∈ E \ T . These coefficients we start out
at their initial values 2 − lT

e , and it is our goal to show that they can be increased to at
least wT

le
, thereby strengthening the inequality. Note first that the coefficients of edges

f ∈ E \ T with lT
f ≤ k − 1 are not changed, so the “new” coefficients wT

l f
are certainly

valid in this case. For an edge f ∈ E \ T , define the coefficient improvement problem
(CIP) for f as

max
x

z f ≡
∑
e∈T

xe +
∑

e∈E\T

wexe

subject to: x is the incidence vector of a circuit C,

|C| ≤ k,

x f = 1.

With the above definitions, we can state the following lemma.

Lemma 2. The coefficient wT
f = 2 − lT

f can be increased by 2 − z f .

336 P. Bauer et al.

The following lemma will also come in handy:

Lemma 3. Define PT
e as the unique path in T between the endpoints of e. If f ∈

C ∩ (E \ T) and (C \ f) ∩ (E \ T) �= ∅, then PT
f \ C ⊆ ⋃

e∈(C\ f)∩(E\T) PT
e .

Proof. Consider the graph GC with edge set ∪e∈C∩(E\T)(PT
e

⋃
C). GC is planar, so

draw GC with C as its outer face, as in Fig. A.1. In this embedding, edges on interior
faces are in ∪e∈C∩(E\T)PT

e . Let g ∈ PT
f \ C. g is on the boundary of two interior faces,

so g is also on some PT
e for e ∈ (C \ f) ∩ (E \ T).

��

Fig. A.1. An embedding of C and PT
e

Now, suppose for a contradiction that the coefficient for edge f ∈ E \ T cannot be
increased to wT

l f
, this implies by Lemma 2 that

2 − lT
f + 2 − z f ≤ wT

l f
− 1. (A.1)

Since edge f must be in an optimal solution x to problem (CIP), we have

z f =
∑
e∈T

xe + 2 − lT
f +

∑
e∈(E\T)\ f

wexe. (A.2)

A branch and cut approach to the cardinality constrained circuit problem 337

Combining (A.1) and (A.2) gives that

wT
l f

+
∑

e∈(E\T)\ f

wexe ≥ 3 −
∑
e∈T

xe. (A.3)

Let C be the optimal circuit defined by incidence vector x. Define m as m ≡
|C ∩ (E \ T)|. We now proceed to prove the validity of the coefficient improvements on
a case by case basis.

Case I. k ≤ lT
f ≤ �3k/2� − 2, so that wT

l f
= 4 − 2k + lT

f .

Subcase I.a.1. k is even and ∃g ∈ (C \ f) ∩ (E \ T) such that lT
g ≥ k.

In this subcase, it can be shown by definition of wT
le

that wT
l f

≤ 2 − k/2, and

wg ≤ 2 − k/2. Also by definition of wT
le

, we know that we ≤ 0 ∀e ∈ E \ T . Using these
facts and (A.3), we may write

2 − k/2 + 2 − k/2 ≥ wT
l f

+ wg ≥ wT
l f

+
∑

e∈E\T\ f

wexe ≥ 3 −
∑
e∈T

xe,

which yields

∑
e∈T

xe ≥ k − 1.

Since f, g ∈ C ∩ (E \ T), the circuit C with incidence vector x has |C| ≥ k + 1. But
this contradicts our cardinality constraint.

Subcase I.a.2. k is odd and ∃g ∈ (C \ f) ∩ (E \ T) such that lT
g ≥ k.

Suppose first that one of the following occurs:

– k ≤ lT
f < �3k/2� − 2,

– k ≤ lT
g < �3k/2� − 2, or

– lT
g = �3k/2� − 1 + 2i for some i ∈ �� � � +.

By definitions of the weights wT
le

, it can be shown that either wT
l f

≤ (3 − k)/2 and

wg ≤ (5 − k)/2, or wT
l f

≤ (5 − k)/2 and wg ≤ (3 − k)/2. Using (A.3), we can now
write

(3 − k)/2 + (5 − k)/2 ≥ wT
l f

+ wg ≥ wT
l f

+
∑

e∈E\T\ f

wexe ≥ 3 −
∑
e∈T

xe,

which yields

∑
e∈T

xe ≥ k − 1.

As in Subcase I.a.1, we have a contradiction since the circuit C is too long.

338 P. Bauer et al.

Now suppose that lT
f = �3k/2� − 2 and lT

g = �3k/2� − 2 or lT
g = �3k/2� + 2i for

i ∈ �� � � +. We can write lT
g = �3k/2� + 2(j − 1) for some j ∈ � � � � +. By definition of the

weights, we know that wT
l f

= wg = (5 − k)/2. Using (A.3), we have

(5 − k)/2 + (5 − k)/2 ≥ wT
l f

+ wg ≥ wT
l f

+
∑

e∈E\T\ f

wexe ≥ 3 −
∑
e∈T

xe,

which yields ∑
e∈T

xe ≥ k − 2.

It must be that
∑

e∈T xe = k − 2, or else we violated our cardinality constraint.
Suppose f, g, C, and T look as in Fig. A.2. Let lxy denote the length of the path in

T from x to y. Then we know that

lau1 + lab + lbv1 = (3k + 1)/2, (A.4)

lau2 + lab + lbv2 = (3k + 1)/2 + 2(j − 1) for some j ∈ �� � � +, (A.5)

lau1 + lau2 + lbv1 + lbv2 = k − 2. (A.6)

Fig. A.2. The circuit, tree, and edges in C ∩ (E \ T)

Subtracting (A.4) from (A.5) and adding it to (A.6) yields:

2(lau2 + lbv2) = k − 2 + 2(j − 1).

The left hand side of this equation is even and the right hand side is odd, a contradiction.

A branch and cut approach to the cardinality constrained circuit problem 339

Subcase I.b � ∃g ∈ C ∩ (E \ T \ f) such that lT
g ≥ k.

In this subcase we know that wT
l f

= 4−2k+lT
f and we = (2−lT

e)∀e ∈ C∩(E\T\ f).
Recall that m ≡ |C∩(E\T)|. Beginning with inequality (A.3) we deduce the following:

4 − 2k + lT
f +

∑
e∈(C\ f)∩(E\T)

(2 − lT
e) ≥ 3 −

∑
e∈T

xe

4 − 2k + lT
f + 2(m − 1) −

∑
e∈(C\ f)∩(E\T)

lT
e ≥ 3 + m − k

lT
f −

∑
e∈(C\ f)∩(E\T)

lT
e ≥ k + 1 − m.

Using Lemma 3, this is equivalent to

|PT
f ∩ C| −

∑
e∈(C\ f)∩(E\T)

|PT
e \ PT

f | ≥ k + 1 − m. (A.7)

It is clear that

|C| ≥ |PT
f ∩ C| + m. (A.8)

Combining (A.7) and (A.8) gives

|C| ≥ k + 1 +
∑

e∈E\T\ f

|PT
e \ PT

f | ≥ k + 1,

a contradiction, since C is too long.

Case II. lT
f ≥ �3k/2� − 1.

Subcase II.a.1. k is even, and ∃g ∈ (C \ f) ∩ (E \ T) such that lT
g ≥ k.

In this subcase we know by definition of the weights wT
le

that wT
l f

= 2 − k/2, and
wg ≤ 2 − k/2. A contradiction is derived in a manner similar to Subcase I.a.1.

Subcase II.a.2. k is even, and � ∃g ∈ (C \ f) ∩ (E \ T) such that lT
g ≥ k.

In this subcase, we know that wT
l f

= 2−k/2 and we = 2−lT
e ∀e ∈ (C\ f)∩(E\T).

Using (A.3), we can get the following inequalities:

2 − k/2 +
∑

e∈(C\ f)∩(E\T)

(2 − lT
e) ≥ 3 −

∑
e∈T

xe

2 − k/2 + 2(m − 1) −
∑

e∈(C\ f)∩(E\T)

lT
e ≥ 3 + m − k

−
∑

e∈(C\ f)∩(E\T)

lT
e ≥ 3 − m − k/2. (A.9)

340 P. Bauer et al.

Adding the inequality lT
f ≥ 3k/2 − 1 to (A.9), we get

lT
f −

∑
e∈(C\ f)∩(E\T)

lT
e ≥ k − m + 2.

Using Lemma 3 we find that this is equivalent to

|PT
f ∩ C| −

∑
e∈(C\ f)∩(E\T)

|PT
e \ PT

f | ≥ k − m + 2.

This leads us to

|C| ≥ |PT
f ∩ C| + m ≥ k + 2 +

∑
e∈E\T\ f

|PT
e \ PT

f | ≥ k + 2,

which is a contradiction, since C is too long.

Subcase II.b.1.i. k is odd, lT
f = �3k/2�−1+2i for some i ∈ �� � � +, and ∃g ∈ C∩(E\T \ f)

such that lT
g ≥ k.

In this subcase, we know that wT
l f

= (3−k)/2. Further, we know that wg ≤ (5−k)/2.
Using (A.3), we have

(3 − k)/2 + (5 − k)/2 ≥ wT
l f

+ wg ≥ wT
l f

+
∑

e∈E\T\ f

wexe ≥ 3 −
∑
e∈T

xe,

which yields ∑
e∈T

xe ≥ k − 1,

a contradiction.

Subcase II.b.1.ii. k is odd, lT
f = �3k/2�−1+2i for some i ∈ �� � � +, and � ∃g ∈ C∩(E\T\ f)

such that lT
g ≥ k.

We know that wT
l f

= (3 − k)/2 and we = 2 − lT
e ∀e ∈ (C \ f) ∩ (E \ T). (A.3)

implies that

(3 − k)/2 +
∑

e∈(C\ f)∩(E\T)

(2 − lT
e) ≥ 3 −

∑
e∈T

xe.

Using the fact that
∑

e∈T xe ≤ k − m, this inequality can be manipuated to

−
∑

e∈(C\ f)∩(E\T)

lT
e ≥ (7 − k)/2 − m (A.10)

Furthermore, we know that

lT
f ≥ �3k/2� − 1 = (3k − 1)/2 (A.11)

A branch and cut approach to the cardinality constrained circuit problem 341

Adding inequalities (A.10) and (A.11) and applying Lemma 3, we get that

|PT
f ∩ C| −

∑
e∈(C\ f)∩(E\T)

|PT
e \ PT

f | ≥ k − m + 3.

Therefore,

|C| ≥ |PT
f ∩ C| + m ≥ k + 3 +

∑
e∈E\T\ f

|PT
e \ PT

f | ≥ k + 3,

which gives the contradiction |C| > k.

Subcase II.b.2.i. k is odd, lT
f = �3k/2�+2i for some i ∈ �� � � +, and ∃g ∈ C ∩ (E \T \ f)

such that lT
g ≥ k.

Suppose first that k ≤ lT
g < �3k/2� − 2 or lT

g = �3k/2� − 1 + 2i for some i ∈ � � � � +.
In this case wg ≤ (3 − k)/2. Using (A.3) we can say

(5 − k)/2 + (3 − k)/2 ≥ wT
l f

+ wg ≥ wT
l f

+
∑

e∈E\T\ f

wexe ≥ 3 −
∑
e∈T

xe,

which yields ∑
e∈T

xe ≥ k − 1,

a contradiction.
Now suppose that lT

g = �3k/2� − 2 or lT
g = �3k/2� + 2i for some i ∈ � � � � +, which

can equivalently be written as lT
g = �3k/2� + 2(j − 1) for some j ∈ � � � � +. From (A.3),

we get

wT
l f

+ wg = (5 − k)/2 + (5 − k)/2 ≥ wT
l f

+
∑

e∈E\T\ f

wexe ≥ 3 −
∑
e∈T

xe.

This inequality implies that
∑

e∈T xe ≥ k − 2, but since edges f and g are also in the
circuit, it must be that

∑
e∈T xe = k − 2, or else the cardinality constraint would be

violated. Referring to Fig. A.2, we know that

lau1 + lab + lbv1 = (3k + 1)/2 + 2i, for some i ∈ �� � � + (A.12)

lau2 + lab + lbv2 = (3k + 1)/2 + 2(j − 1), for some j ∈ �� � � + (A.13)

lau1 + lau2 + lbv1 + lbv2 = k − 2. (A.14)

Subtracting (A.12) from (A.13) and adding it to (A.14) yields:

2(lau2 + lbv2) = k − 2 + 2(i − j + 1).

The left hand side of this equation is even and the right hand side is odd, a contradiction.

Subcase II.b.2.ii. k is odd, lT
f = �3k/2�+2i for some i ∈ � � � � +, and � ∃g ∈ C∩(E \T \ f)

such that lT
g ≥ k.

342 P. Bauer et al.

In this subcase, we know that wT
l f

= (5−k)/2 and we = 2−lT
e ∀e ∈ (C\ f)∩(E\T).

Therefore, (A.3) implies that

(5 − k)/2 +
∑

e∈(C\ f)∩(E\T)

(2 − lT
e) ≥ 3 −

∑
e∈T

xe.

Using the fact that
∑

e∈T xe ≤ k − m, this inequality can be manipulated to give

−
∑

e∈(C\ f)∩(E\T)

lT
e ≥ (5 − k)/2 − m (A.15)

Furthermore, we know that

lT
f ≥ �3k/2� = (3k − 1)/2 (A.16)

Adding inequalities (A.15) and (A.16) and applying Lemma 3, we get that

|PT
f ∩ C| −

∑
e∈(C\ f)∩(E\T)

|PT
e \ PT

f | ≥ k − m + 3.

Therefore,

|C| ≥ |PT
f ∩ C| + m ≥ k + 3 +

∑
e∈E\T\ f

|PT
e \ PT

f | ≥ k + 3,

which gives the contradiction |C| > k.
We have shown that in all possible cases, if the coefficient of an edge e ∈ E \ T in

the original tree inequality cannot be improved to wT
le

, then there is a contradiction.

Appendix B. Tables of computational results

Table B.1. Computational results on modified TSPLIB instances

Name k zbest Final Root NN NLP tL P tcut t
Gap% Gap%

bayg29m47 4 -17 0.0 3.9 1 9 0.2 0.1 2.6
bayg29m47 9 -17 0.0 11.9 3 15 0.4 0.3 3.2
bayg29m47 14 -32 0.0 0.0 1 8 0.2 0.1 2.8
bayg29m50 5 -26 0.0 14.3 3 17 0.4 0.3 3.1
bayg29m50 10 -45 0.0 24.0 5 26 1.6 0.8 5.0
bayg29m50 16 -78 0.0 0.0 1 8 0.3 0.1 2.9
bayg29m120 9 -661 0.0 4.9 13 40 3.4 1.0 7.2
bayg29m120 19 -1388 0.0 2.7 7 19 1.1 0.3 3.9
bayg29m120 29 -1870 0.0 0.0 1 8 0.2 0.1 2.7
berlin52m50 4 -80 0.0 0.0 1 5 0.2 0.1 2.8
berlin52m50 8 -80 0.0 30.7 7 23 1.2 0.8 4.8
berlin52m50 12 -123 0.0 0.0 1 7 0.3 0.2 3.1
berlin52m200 12 -1923 0.0 0.6 3 9 0.4 0.2 3.2
berlin52m200 25 -3233 0.0 1.8 5 14 1.1 0.6 4.6
berlin52m200 38 -3686 0.0 2.3 3 15 2.0 1.4 6.8
berlin52m500 17 -7532 0.0 2.1 9 30 2.6 1.4 7.2
berlin52m500 34 -13879 0.0 0.7 5 18 1.8 1.2 6.0
berlin52m500 52 -18458 0.0 0.0 1 2 0.3 0.1 2.9

A branch and cut approach to the cardinality constrained circuit problem 343

Name k zbest Final Root NN NLP tL P tcut t
Gap% Gap%

brazil58m200 4 -418 0.0 3.1 7 19 0.6 0.5 3.8
brazil58m200 8 -589 0.0 16.5 3 16 0.9 0.8 4.7
brazil58m200 12 -607 0.0 29.0 3 19 1.7 1.7 6.9
brazil58m500 16 -5173 0.0 9.7 11 38 11.2 3.1 18.2
brazil58m500 32 -8889 0.0 13.0 9 35 19.0 3.2 27.5
brazil58m500 48 -10432 0.0 9.7 7 28 9.4 2.2 16.8
brazil58m2000 19 -34506 0.0 2.1 13 43 17.4 3.4 25.9
brazil58m2000 38 -65937 0.0 3.3 67 204 322.0 41.5 400.0
brazil58m2000 58 -90605 0.0 0.2 3 12 1.2 0.8 6.1
cn100am100 33 -2266 24.0 32.7 51 239 5242. 351.5 7200.
cn100am100 66 -5115 2.7 8.1 51 228 2851. 377.3 7200.
cn100am100 100 -7544 0.0 1.8 221 471 352.2 694.7 2786.
cn100am30 29 -204 115.8 192.9 42 263 5904. 460.9 7200.
cn100am30 58 -501 11.9 45.1 72 348 5111. 525.7 7200.
cn100am30 87 -750 0.0 2.0 3 13 69.8 16.6 99.5
cn100bm20 11 -81 0.0 92.7 65 269 414.7 172.6 675.4
cn100bm20 22 -134 0.0 59.4 35 145 494.0 132.6 716.6
cn100bm20 33 -151 0.0 45.7 11 45 131.0 37.5 192.6
cn100bm40 31 -761 0.0 11.7 29 76 295.1 41.2 367.4
cn100bm40 62 -1126 0.0 12.8 81 146 678.7 153.2 1075.
cn100bm40 94 -1450 0.0 2.4 5 18 17.3 9.3 70.6
dlo49m700 3 -352 0.0 0.0 1 12 0.3 0.3 3.1
dlo49m700 6 -1089 0.0 0.0 1 7 0.2 0.2 2.8
dlo49m700 10 -1448 0.0 0.0 1 5 0.2 0.1 2.8

dlo49m1000 6 -2889 0.0 0.0 1 7 0.2 0.1 2.9
dlo49m1000 13 -5115 0.0 4.7 12 38 4.4 2.0 10.0
dlo49m1000 20 -6377 0.0 10.7 5 23 1.8 1.4 6.3
dlo49m2000 16 -21633 0.0 2.9 11 30 3.2 1.1 7.4
dlo49m2000 32 -34400 0.0 17.5 218 705 562.2 87.2 731.7
dlo49m2000 49 -52648 0.0 0.0 1 7 0.6 0.3 3.5
dlo61m2000 19 -24719 0.0 1.8 38 106 57.7 51.3 120.8
dlo61m2000 38 -47817 0.0 2.5 54 141 86.8 32.5 139.4
dlo61m2000 58 -70797 0.0 0.4 7 23 3.2 2.5 15.6
dlo61m5000 20 -86022 0.0 0.5 15 46 15.3 22.2 42.8
dlo61m5000 40 -170338 0.0 0.7 13 52 49.4 9.9 68.7
dlo61m5000 61 -251864 0.0 0.1 9 27 3.8 4.3 25.9

eil76m6 13 -13 0.0 24.4 5 24 4.0 3.4 12.2
eil76m6 26 -15 0.0 23.3 11 42 22.4 9.2 41.9
eil76m6 39 -17 0.0 13.2 3 14 3.7 2.1 11.2

eil76m15 24 -230 0.0 3.9 21 73 56.5 16.2 124.5
eil76m15 48 -444 0.0 2.4 29 69 70.4 21.7 133.8
eil76m15 72 -612 0.0 0.0 1 5 1.3 1.1 5.8
eil76m25 25 -489 0.0 2.0 15 44 37.7 7.4 52.4
eil76m25 50 -962 0.0 0.9 7 29 18.8 6.6 31.4
eil76m25 76 -1362 0.0 0.0 1 5 1.0 1.8 6.1

kroA100m200 16 -551 0.0 168.6 93 417 5526. 757.3 6923.
kroA100m200 32 -622 0.0 197.4 41 210 2279. 411.0 2983.
kroA100m200 48 -855 0.0 119.8 17 88 519.0 114.0 713.1
kroA100m300 31 -3522 11.0 41.1 90 404 5835. 659.4 7200.
kroA100m300 62 -6898 0.0 13.3 38 139 1048. 205.2 1366.
kroA100m300 93 -9326 0.0 3.2 13 32 30.0 47.6 117.6
kroC100m200 26 -940 0.0 112.9 35 159 1753. 262.3 2222.
kroC100m200 52 -970 0.0 114.3 27 100 1048. 161.8 1325.
kroC100m200 78 -1171 0.0 71.4 21 78 554.2 107.0 738.1

344 P. Bauer et al.

Name k zbest Final Root NN NLP tL P tcut t
Gap% Gap%

kroE100m400 32 -7537 0.0 8.4 44 145 705.8 188.0 1033.
kroE100m400 64 -13277 0.0 5.6 131 369 2883. 565.7 3773.
kroE100m400 97 -18290 0.0 1.1 5 14 11.0 13.0 31.0

pr76m1500 18 -9420 0.0 23.0 48 176 110.1 48.8 190.8
pr76m1500 36 -19483 0.0 2.5 59 102 22.9 19.0 50.1
pr76m1500 54 -24376 0.0 1.9 11 23 3.2 3.7 15.4
pr76m9000 25 -201289 0.0 0.9 133 450 290.0 89.9 447.6
pr76m9000 50 -398964 0.0 0.0 5 12 2.2 1.8 7.6
pr76m9000 76 -575841 0.0 0.5 409 790 203.6 446.4 1506.
rat99m12 24 -29 0.0 56.1 63 202 351.0 235.6 708.6
rat99m12 48 -37 0.0 51.7 17 73 186.4 93.1 329.3
rat99m12 73 -40 0.0 55.6 37 119 457.4 108.0 663.8
st70m10 14 -45 0.0 18.8 13 50 39.2 16.4 63.9
st70m10 28 -72 0.0 17.4 21 83 126.7 20.3 170.6
st70m10 42 -97 0.0 9.5 3 19 12.4 6.0 24.5
st70m40 23 -742 0.0 3.8 279 822 1447. 341.4 2381.
st70m40 46 -1474 0.0 1.3 21 58 56.0 23.8 114.1
st70m40 70 -2125 0.0 0.3 3 11 2.3 2.4 12.5

Table B.2. Computational results on modified TSPLIB instances

Name k zbest Final Root NN NLP tL P tcut t
Gap% Gap%

bayg29m47 4 -17 0.0 76.5 5 22 0.2 0.1 2.7
bayg29m47 9 -17 0.0 165.9 13 46 1.1 0.2 3.9
bayg29m47 14 -32 0.0 36.5 5 14 0.3 0.1 2.8
bayg29m50 5 -26 0.0 99.2 15 41 0.6 0.1 3.4
bayg29m50 10 -45 0.0 65.9 13 52 1.8 0.3 5.0
bayg29m50 16 -78 0.0 0.0 1 8 0.2 0.0 2.9

bayg29m120 9 -661 0.0 6.4 47 117 4.9 0.3 8.6
bayg29m120 19 -1388 0.0 0.7 5 13 0.4 0.1 3.0
bayg29m120 29 -1870 0.0 0.1 3 10 0.2 0.1 2.8
berlin52m50 4 -80 0.0 18.8 3 9 0.3 0.0 3.0
berlin52m50 8 -80 0.0 54.5 23 43 1.5 0.2 4.6
berlin52m50 12 -123 0.0 0.0 1 9 0.3 0.1 3.2

berlin52m200 12 -1923 0.0 0.7 3 9 0.4 0.0 3.0
berlin52m200 25 -3233 0.0 1.9 3 13 0.7 0.2 3.7
berlin52m200 38 -3686 0.0 4.1 3 12 1.2 0.4 4.6
berlin52m500 17 -7532 0.0 2.1 11 29 1.9 0.3 6.0
berlin52m500 34 -13879 0.0 0.7 8 27 3.0 0.8 7.4
berlin52m500 52 -18458 0.0 0.0 1 2 0.4 0.1 3.0
brazil58m200 4 -418 0.0 6.9 7 19 0.5 0.1 3.2
brazil58m200 8 -589 0.0 17.7 7 24 0.9 0.1 4.2
brazil58m200 12 -607 0.0 39.8 11 36 2.8 0.4 6.9
brazil58m500 16 -5173 0.0 9.8 29 79 17.8 1.4 25.3
brazil58m500 32 -8889 0.0 13.0 11 36 13.2 1.4 19.0
brazil58m500 48 -10432 0.0 16.9 13 45 15.4 2.4 32.5
brazil58m2000 19 -34506 0.0 1.9 25 68 28.6 1.6 36.6
brazil58m2000 38 -65937 0.0 3.1 71 189 186.2 11.0 224.6
brazil58m2000 58 -90605 0.0 0.1 5 14 1.3 0.7 6.1

A branch and cut approach to the cardinality constrained circuit problem 345

Name k zbest Final Root NN NLP tL P tcut t
Gap% Gap%

cn100am100 33 -2040 40.2 47.8 153 653 3501. 124.7 7200.
cn100am100 66 -5030 4.9 8.2 64 268 2505. 248.6 7200.
cn100am100 100 -7418 3.0 3.6 1400 1681 807.8 1020. 4029.
cn100am30 29 -180 179.6 247.6 237 1291 5360. 187.9 7200.
cn100am30 58 -507 16.6 49.2 142 625 5448. 407.9 7200.
cn100am30 87 -750 0.0 2.3 3 18 66.2 17.7 93.0
cn100bm20 11 -81 0.0 92.7 265 947 332.5 22.5 486.0
cn100bm20 22 -134 0.0 68.3 145 591 623.6 39.5 891.7
cn100bm20 33 -151 0.0 51.6 45 236 341.7 25.4 502.2
cn100bm40 31 -761 0.0 13.5 45 148 355.4 19.0 532.9
cn100bm40 62 -1126 0.0 6.3 45 83 202.1 36.6 293.7
cn100bm40 94 -1450 0.0 2.5 7 23 14.3 8.1 69.0
dlo49m700 3 -352 0.0 77.0 5 16 0.4 0.1 3.0
dlo49m700 6 -1089 0.0 -0.0 1 7 0.2 0.0 2.8
dlo49m700 10 -1448 0.0 -0.0 1 7 0.2 0.0 2.9
dlo49m1000 6 -2889 0.0 0.0 1 7 0.2 0.0 2.8
dlo49m1000 13 -5115 0.0 4.8 7 26 1.4 0.3 4.7
dlo49m1000 20 -6377 0.0 12.7 5 26 2.6 0.5 6.4
dlo49m2000 16 -21633 0.0 3.0 17 39 3.2 0.4 6.6
dlo49m2000 32 -34400 0.0 19.5 345 1143 746.8 51.2 970.7
dlo49m2000 49 -52648 0.0 0.0 1 8 0.6 0.3 3.6
dlo61m2000 19 -24719 0.0 1.8 39 100 24.5 3.1 36.6
dlo61m2000 38 -47817 0.0 2.3 45 150 81.0 11.3 112.1
dlo61m2000 58 -70797 0.0 1.0 11 27 4.6 1.9 28.9
dlo61m5000 20 -86022 0.0 0.5 133 392 209.8 14.9 282.8
dlo61m5000 40 -170338 0.0 0.7 17 57 38.7 4.5 51.8
dlo61m5000 61 -251864 0.0 0.2 29 50 7.3 5.5 39.6

eil76m6 13 -13 0.0 35.6 9 31 3.2 0.6 7.8
eil76m6 26 -15 0.0 31.7 17 50 23.4 3.3 36.4
eil76m6 39 -17 0.0 16.6 4 22 8.0 1.8 16.2

eil76m15 24 -230 0.0 4.0 55 167 110.0 8.4 159.7
eil76m15 48 -444 0.0 1.6 17 37 15.0 3.6 24.6
eil76m15 72 -612 0.0 0.0 1 5 1.0 0.8 4.8
eil76m25 25 -489 0.0 2.1 23 66 45.4 3.7 59.8
eil76m25 50 -962 0.0 0.9 16 38 14.4 3.7 24.1
eil76m25 76 -1362 0.0 0.1 7 15 2.5 2.6 14.9

kroA100m200 16 -551 0.0 184.7 551 2410 1651. 112.6 2274.
kroA100m200 32 -551 88.9 274.1 181 1150 5657. 322.4 7200.
kroA100m200 48 -855 18.2 139.4 273 1301 5649. 354.5 7200.
kroA100m300 31 -1839 132.9 182.4 171 808 6052. 204.4 7200.
kroA100m300 62 -6898 0.0 13.1 144 406 2092. 238.1 2895.
kroA100m300 93 -9326 0.0 3.4 117 168 129.6 100.1 450.3
kroC100m200 26 -940 0.0 122.3 279 1188 4056. 215.6 5155.
kroC100m200 52 -970 25.2 119.0 231 970 5667. 418.7 7200.
kroC100m200 78 -1171 0.0 78.9 115 491 2165. 218.8 2838.
kroE100m400 32 -7537 0.0 9.3 116 390 1504. 91.8 1926.
kroE100m400 64 -13277 0.0 8.2 69 200 945.5 115.1 1188.
kroE100m400 97 -18290 0.0 1.7 31 56 37.0 33.7 128.0

pr76m1500 18 -9420 0.0 23.2 95 293 111.0 9.0 155.0
pr76m1500 36 -19483 0.0 2.1 37 60 8.3 1.7 15.1
pr76m1500 54 -24376 0.0 1.6 23 38 4.4 2.5 16.1
pr76m9000 25 -201289 0.0 0.9 57 173 67.1 5.3 89.8
pr76m9000 50 -398964 0.0 0.0 7 16 2.4 1.0 8.0
pr76m9000 76 -575300 0.6 0.7 4082 4614 484.8 850.6 2666.

346 P. Bauer et al.

Name k zbest Final Root NN NLP tL P tcut t
Gap% Gap%

rat99m12 24 -29 0.0 71.2 139 590 654.3 65.0 986.5
rat99m12 48 -37 0.0 79.0 116 504 1111. 177.1 1629.
rat99m12 73 -40 0.0 63.3 245 892 1241. 236.2 1996.
st70m10 14 -45 0.0 21.0 83 261 94.6 8.2 155.0
st70m10 28 -72 0.0 18.8 21 79 76.7 6.2 108.9
st70m10 42 -97 0.0 8.2 7 24 9.8 2.0 16.8
st70m40 23 -742 0.0 3.8 599 2000 1854. 113.4 2723.
st70m40 46 -1474 0.0 1.3 25 48 31.6 3.4 51.3
st70m40 70 -2125 0.0 0.3 9 17 2.0 1.6 15.5

Table B.3. Cut statistics for modified WGPLIB instances

Name k Total Max Parity DCE Cut 2For Simple Path Tree K-Part
Cuts Loaded Forest

bayg29m47 4 75 75 17 11 34 0 0 0 6 7
bayg29m47 9 223 223 16 78 99 0 0 11 10 9
bayg29m47 14 193 193 20 90 75 0 0 0 6 2
bayg29m50 5 198 198 19 53 62 0 0 27 12 25
bayg29m50 10 381 381 17 149 157 1 1 22 19 15
bayg29m50 16 230 230 22 113 85 0 0 0 6 4

bayg29m120 9 537 537 21 173 182 0 2 88 23 48
bayg29m120 19 382 382 20 200 121 3 4 20 11 3
bayg29m120 29 158 158 2 132 20 2 0 0 2 0
berlin52m50 4 29 29 10 6 8 0 0 0 3 2
berlin52m50 8 201 201 10 90 68 0 2 10 15 6
berlin52m50 12 118 118 13 54 40 3 1 0 5 2

berlin52m200 12 109 109 14 50 33 4 1 0 4 3
berlin52m200 25 325 325 24 176 111 4 4 0 6 0
berlin52m200 38 663 663 18 392 227 11 5 0 10 0
berlin52m500 17 443 443 19 265 117 8 1 17 15 1
berlin52m500 34 468 468 14 290 116 3 3 34 8 0
berlin52m500 52 65 65 1 50 11 2 0 0 1 0
brazil58m200 4 83 83 17 24 23 0 0 10 9 0
brazil58m200 8 230 230 18 108 72 0 1 0 10 21
brazil58m200 12 479 479 23 260 167 0 0 0 13 16
brazil58m2000 19 1068 1068 38 636 359 2 2 0 25 6
brazil58m2000 38 5477 1857 61 3485 1120 38 244 419 110 0
brazil58m2000 58 318 318 2 264 40 8 0 0 4 0
brazil58m500 16 784 784 29 422 289 1 0 5 19 19
brazil58m500 32 1075 1075 28 733 271 6 17 0 19 1
brazil58m500 48 1016 1016 19 697 269 17 1 0 13 0
cn100am100 33 11913 4271 79 7218 4115 0 26 0 150 325
cn100am100 66 11021 4028 101 8112 2614 13 26 2 150 3
cn100am100 100 9434 1950 6 7807 317 355 872 0 77 0
cn100am30 29 13700 5786 61 8669 4164 0 8 1 190 607
cn100am30 58 16280 4087 112 12463 3430 5 24 7 236 3
cn100am30 87 1446 1446 60 912 427 6 31 0 10 0
cn100bm20 11 5079 1672 71 2750 1538 0 3 55 169 493
cn100bm20 22 4909 1997 59 2880 1700 0 20 46 90 114
cn100bm20 33 2220 2132 64 1319 776 0 27 0 30 4
cn100bm40 31 2532 2471 53 1501 773 2 21 140 33 9
cn100bm40 62 4165 2842 94 2779 1099 33 94 16 49 1
cn100bm40 94 1234 1234 43 811 332 25 14 0 9 0
dlo49m700 3 62 62 18 4 27 0 0 7 6 0
dlo49m700 6 67 67 17 21 22 0 0 0 4 3
dlo49m700 10 92 92 22 36 30 0 0 0 3 1

dlo49m1000 6 67 67 17 21 22 0 0 0 4 3
dlo49m1000 13 721 721 41 375 235 10 22 18 19 1
dlo49m1000 20 532 532 36 321 149 7 6 0 11 2
dlo49m2000 16 495 495 42 296 132 6 4 1 14 0
dlo49m2000 32 15795 1394 210 11200 2565 129 550 722 386 33
dlo49m2000 49 202 202 2 135 51 11 0 0 3 0
dlo61m2000 19 2212 1366 62 1193 489 13 44 366 44 1
dlo61m2000 38 3300 1424 76 2303 556 18 10 271 66 0
dlo61m2000 58 502 502 5 409 62 16 3 0 7 0

A branch and cut approach to the cardinality constrained circuit problem 347

Name k Total Max Parity DCE Cut 2For Simple Path Tree K-Part
Cuts Loaded Forest

dlo61m5000 20 1155 1155 53 618 313 3 20 126 21 1
dlo61m5000 40 1654 1466 62 1155 342 16 30 18 31 0
dlo61m5000 61 627 627 1 570 22 24 4 0 6 0

eil76m6 13 675 675 33 300 276 0 0 28 15 23
eil76m6 26 1662 1662 38 836 672 10 5 72 28 1
eil76m6 39 829 829 47 423 344 2 3 0 10 0

eil76m15 24 1936 1402 49 921 698 10 19 197 41 1
eil76m15 48 2029 1767 56 1268 606 23 39 7 30 0
eil76m15 72 292 292 6 185 96 2 1 0 2 0
eil76m25 25 1312 1312 38 663 547 3 1 34 21 5
eil76m25 50 1111 1111 56 609 349 18 14 52 13 0
eil76m25 76 181 181 0 147 27 6 0 0 1 0

kroA100m200 16 17699 4670 61 8246 7530 0 18 22 285 1537
kroA100m200 32 10492 4406 62 6466 3717 0 8 36 153 50
kroA100m200 48 4967 3168 65 3070 1766 0 0 0 64 2
kroA100m300 31 19009 4979 67 11567 6734 1 77 129 258 176
kroA100m300 62 6421 3071 68 4298 1843 15 10 100 86 1
kroA100m300 93 1411 1411 38 948 342 28 43 0 12 0
kroC100m200 26 8575 4808 58 4715 3509 0 3 27 110 153
kroC100m200 52 5903 4622 57 3630 2142 0 7 0 66 1
kroC100m200 78 4637 3676 60 2709 1816 0 1 0 51 0
kroE100m400 32 6257 3913 67 3877 1770 18 163 277 74 11
kroE100m400 64 15054 4194 85 9799 3853 44 50 1051 171 1
kroE100m400 97 938 938 25 649 225 18 14 0 7 0

pr76m1500 18 3736 1248 68 1749 1598 0 7 125 105 84
pr76m1500 36 1738 956 71 583 424 1 7 634 17 1
pr76m1500 54 593 593 46 330 195 7 10 0 5 0
pr76m9000 25 8256 1194 106 3784 3168 1 13 939 242 3
pr76m9000 50 462 462 50 244 153 7 3 0 5 0
pr76m9000 76 10249 1368 0 8857 212 466 562 0 152 0
rat99m12 24 7590 2234 80 4297 2999 6 41 8 125 34
rat99m12 48 3545 2532 72 2217 1150 8 26 23 49 0
rat99m12 73 4637 3184 79 3143 1209 47 84 0 75 0
st70m10 14 1486 1486 44 705 575 0 0 89 32 41
st70m10 28 2856 1892 53 1592 1102 3 6 46 48 6
st70m10 42 1146 1146 56 658 397 8 13 0 13 1
st70m40 23 22963 2203 145 13551 7867 54 194 519 441 192
st70m40 46 1884 1669 53 1076 395 28 42 262 26 2
st70m40 70 452 452 0 362 72 11 3 0 4 0

Acknowledgements. The authors appreciate the constructive comments of the referees and associate editor,
resulting in an improved presentation.

References

1. Applegate, D., Bixby, R., Cook, W., Chvátal, V. (1996): Personal communication
2. Augerat, Ph. (1995): Polyhedral study of the capacitated vehicle routing. PhD thesis, Universite Joseph

Fourrier, Grenoble
3. Balas, E. (1989): The prize collecting traveling salesman problem. Networks 19, 621–636
4. Balas, E., Ceria, S., Cornuejols, G. (1996): Mixed 0-1 programming by lift-and-project in a branch-and-

cut framework. Management Science 42, 1229–1246
5. Bauer, P. (1994): A Polyhedral Approach to the Weighted Girth Problem. PhD thesis, Universität zu Köln
6. Bauer, P. (1997): The circuit polytope: facets. Mathematics of Operations Research 22, 110–145
7. Bauer, P., Linderoth, J.T., Savelsbergh, M.W.P. (1998): A branch and cut approach to the cardinality

constrained circuit problem. Technical Report TLI-98-04, The Logistics Institute, Georgia Institute of
Technology, 1998. Available from
http://tli.isye.gatech.edu/research/papers/files/TLI9804.pdf

8. Bienstock, D., Goemans, M., Simchi-Levi, D., Williamson, D. (1993): A note on the prize collecting
traveling salesman problem. Mathematical Programming 59, 413–420

9. Bixby, A., Coullard, C., Simchi-Levi, D. (1996): The capacitated prize-collecting traveling salesman
problem. Technical Report TR 96-10, Northwestern University

10. Carr, R. (1997): Separating clique trees and bipartition inequalities having a fixed number of handles and
teeth in polynomial time. Mathematics of Operations Research 22, 257–265

11. CPLEX Optimization, Inc. Using the CPLEX Callable Library, 1995

348 P. Bauer et al.: A branch and cut approach to the cardinality constrained circuit problem

12. Desrosiers, J., Soumis, F., Desrochers, M. (1984): Routing with time windows by column generation.
Networks 14, 545–565

13. Edmonds, J., Karp, R.M. (1972): Theoretical improvements in algorithmic efficiency of network flow
problems. Journal of ACM 19, 248–264

14. Fischetti, M., González, J.J.S., Toth, P. (1998): Solving the orienteering problem through branch-and-cut.
INFORMS Journal on Computing 10, 133–148

15. Fleischer, L., Tardos, É. (1999): Separating maximally violated combs in planar graphs. Mathematics of
Operations Research 24, 130–148

16. Garey, M.R., Johnson, D.S. (1979): Computers and intractability: a guide to the theory of NP-
completeness. W.H. Freeman and Company, New York

17. Golden, B.L., Wang, Q., Liu, L. (1988): A multifacted heuristic for the orienteering problem. Naval
Research Logistics 35, 359–366

18. Goldschmidt, O., Hochbaum, D. (1994): A polynomial algorithm for the k-cut problem for fixed k.
Mathematics of Operations Research 19, 24–37

19. Grötschel, M., Pulleyblank, W.R. (1986): Clique tree inequalities and the symmetric travelling salesman
problem. Mathematics of Operations Research 11, 537–569

20. Gusfield, D. (1990): Very simple methods for all pairs network flow analysis. SIAM Journal of Computing
19, 143–155

21. Hartmann, M., Ozluk, O. (1998): Facets of the p-cycle polytope. Technical Report UNC/OR TR98-1,
Department of Operations Research, University of North Carolina

22. Hu, T.C. (1974): Optimum communication spanning trees. SIAM Journal on Computing 3, 188–195
23. Hyafil, L., Rivest, R.L. (1973): Graph partitioning and constructing optimal decision trees and polynomial

complete problems. Technical Report 33, IRIA-Laboria, Rocquencourt, France
24. Johnson, D.S., Lenstra, J.K., Rinnooy Kan, A.H.G. (1978): The complexity of the network design

problem. Networks 8, 279–285
25. Jünger, M., Reinelt, G., Thienel, S. (1994): Provably good solutions for the traveling salesman problem.

Zeitschrift für Operations Research 40, 183–217
26. Leifer, A.C., Rosenwein, M.B. (1994): Strong linear programming relaxations for the orienteering prob-

lem. European Journal of Operational Research 73, 517–523
27. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C. (1994): MINTO, a Mixed INTeger Optimizer.

Operations Research Letters 15, 47–58
28. Nguyen, V.-H., Maurras, J.-F. (2000): The k-cycle polytope: I. Lifting theorems and lifting algorithms.

Technical report 358, Laboratoire d’Informatique de Marseille, Marseille, France
29. Nguyen, V.-H., Maurras, J.-F. (2000): The k-cycle polytope: II. Facets. Technical report 359, Laboratoire

d’Informatique de Marseille, Marseille, France
30. Padberg, M.W., Rao, M.R. (1982): Odd minimum cut sets and b-matchings. Mathematics of Operations

Research 7, 67–80
31. Padberg, M.W., Rinaldi, G. (1990): Facet identification for the symmetric traveling salesman problem.

Mathematical Programming 47, 219–257
32. Pillai, R. (1992): The Traveling Salesman Subset-Tour Problem with one Additional Constraint (TSSP+1).

PhD thesis, University of Tennessee, Knoxville
33. Prim, R.C. (1957): Shortest connection networks and some generalizations. Bell System Technological

Journal 36, 1389–1401
34. Ramesh, R., Yoon, Y.S., Karwan, M.H. (1992): An optimal algorithm for the orienteering tour problem.

ORSA Journal on Computing 4, 155–165
35. Reinelt, G. (1991): TSPLIB – a traveling salesman problem library. ORSA Journal on Computing 3,

376–384
36. Saran, H., Vazirani, V.V. (1995): Finding k cuts within twice the optimal. SIAM Journal of Computing

24, 101–108
37. Savelsbergh, M.W.P., Uma, R.N., Wein, J. (1998): An experimental study of LP-based approximation

algorithms for scheduling problems. In: Proceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 453–461

38. Seymour, P.D. (1979): Sums of circuits. In: Bondy, Murty, eds., Graph Theory and Related Topics.
pp. 341–355, Academic Press, New York

39. Wang, Y. (1995): Fleet assignment, Eulerian subtours and extended Steiner trees. PhD thesis, Georgia
Institute of Technology

