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Abstract

We survey recent progress in applying disjunctive programming theory
for the effective solution of mixed integer nonlinear programming prob-
lems. Generation of effective cutting planes is discussed for both the
convex and nonconvex cases.

1 Introduction

We consider mixed integer nonlinear programming problems (MINLPs) of the
form

zminlp = min c>x

gi(x) ≤ 0 i = 1, . . . ,m,

xj ∈ Z j = 1, . . . , p,

xj ∈ R, j = p+ 1, . . . , n,

(1)

where 1 ≤ p ≤ n, c ∈ Rn and for i = 1, . . . ,m, gi : Rn → R ∪ {+∞} is
continuously differentiable. We denote by X the set of feasible solutions to (1).

In this review, we consider the solution of (1) by implicit enumeration ap-
proaches. In these methods, X is relaxed to a convex set C in order to obtain
a lower bound on the value of zminlp. The relaxed set C is then refined recur-
sively in the algorithm.
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We will distinguish two different cases. We call (1) a convex MINLP if
the feasible region of the continuous NLP relaxation obtained by dropping the
integrality requirements on the first p variables is a convex set. In that case C

is typically the set of continuous feasible solutions to (1) (i.e., C
def
= {x ∈ Rn :

gi(x) ≤ 0, i = 1, . . . ,m}).
In the general case, when the continuous relaxation is not convex, one has

to obtain a convex relaxation in an alternative way. In this paper, we will as-
sume that such a relaxation is given and we refer the reader to Tawarmalani
and Sahinidis [48] for methods for constructing convex relaxations.

The focus of this paper is on generating cutting planes for MINLPs, i.e.,
finding inequalities that (i) are valid for the mixed integer solutions X of (1)
and (ii) refine (restrict) the convex relaxation C of the problem. This is not to
be confused with the so-called outer approximation (OA) constraints that are
used to define a linear programming (LP) relaxation of the convex relaxation.
Indeed, a common approach for solving convex MINLPs is to construct a mixed
integer linear programming problem that is equivalent to (1). This approach
called outer approximation was pioneered by Duran and Grossmann [25] and
gives rise to several variants of algorithms using branch-and-bound to solve (1).

We call polyhedral outer approximation a set C def
= {x ∈ Rn : Ax ≥ b} such

that C ⊆ C. Duran and Grossmann gave an explicit algorithm to build an

outer approximation C such that minimizing c>x over X def
= C ∩ (Zp × Rn−p)

and over X gives the same value. Roughly speaking, the basic version of Outer
Approximation iteratively constructs C: the algorithm

1. starts with a (generally) weaker LP relaxation C′ ⊇ C ⊇ C;

2. solves the associated mixed integer linear programming problem (MILP)
{min c>x : C′ ∩ (Zp × Rn−p)};

3. tests if the mixed integer solution of step 2. is MINLP feasible. If this
is not the case, it amends C′ with on OA constraint aimed at cutting off
such a mixed integer solution, and iterates step 2. Otherwise, return the
solution.

In other words, the OA linear inequalities are used to cut off mixed integer
solutions of the auxiliary MILP, instead of tightening the convex relaxation of
the original MINLP. In this paper we concentrate on strengthening a convex
relaxation directly. We refer the reader specifically interested in OA techniques
to the recent survey [17].

Over the last thirty years, cutting planes have become one of the essential
ingredients in the solution of mixed integer linear programs. Among the most
used methods Gomory Mixed Integer Cuts [29], Mixed Integer Rounding (MIR)
cuts [39], Knapsack Covers [12] and Flow Covers [40, 43] are all employed in
modern commercial and open-source MILP codes to strengthen linear program-
ming relaxations. We refer to [22] for a recent survey of the associated theory
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and to [36] for the impact of these techniques in computations.

When moving from MILP to MINLP, many difficulties arise in the generation
of cutting planes and the state of the art is much less developed than in MILP.
In particular, so far, solvers for MINLP, whether commercial or academic, only
scarcely rely on cutting planes.

A special case worth mentioning is mixed integer second-order cone program-
ming where generalizations of the various techniques mentioned previously have
been proposed: Atamtürk and Narayan [2] extended the concept of MIR, Cezik
and Iyengar [19] extended Chvátal-Gomory cuts [28, 20] and lift-and-project
cuts [7]. Drewes [24] made extensive computational experiments of these tech-
niques.

Our focus here is on methods that address general MINLPs by using dis-
junctive arguments originally developed in the context of MILP by Balas [5].
In recent years, several authors have extended the theory and algorithms to
the nonlinear case. At the end of the 90s, Ceria and Soares [18] extended the
theorems on unions of polyhedra to general convex sets, and Stubbs and Mehro-
tra [47] extended the lift-and-project procedures of Balas, Ceria and Cornuéjols
[7, 8] to the case of 0-1 convex MINLPs. These pioneering works laid out the
basic theory to apply disjunctive programming techniques to MINLP but sev-
eral technicalities made it difficult to move to practice. In effect, they were not
used until very recently when several authors proposed different techniques with
positive computational results. Saxena, Bonami and Lee [44, 45] addressed the
case of indefinite quadratic constraints. Belotti [13] used similar techniques to
strengthen the convex relaxations of factorable MINLPs. Finally, Kılınc, Lin-
deroth and Luedtke [33, 35] and Bonami [15] independently revisited the case of
convex MINLPs and proposed two different separation procedures. Our intent
here is to review the common basic ideas behind these works.

There are many ways of generating cutting planes for MINLPs. Specifically,
cuts can be either linear or nonlinear and can be derived by exploiting either
convex NLP relaxations or LP ones. Although, we do not restrict our treatment
of the subject to any of the specific options above, we will be mainly concerned
with linear cutting planes, thus on LP relaxations. Indeed, by restricting the
attention to linear cuts, then it is (relatively) easy to show that it is enough to
concentrate on LP relaxations of C. A formal proof of this result is presented
in Section 2.

In Section 3, we recall the basic construction of the concavity cut by Tuy [50].
This is for historical reasons, as it is for sure one of the first cutting plane con-
struction in MINLP, but also because it gives a simple geometrical intuition.
We then focus on the disjunctive programming techniques. Specifically, in Sec-
tion 4 we introduce disjunctive programming basics and notation. In Section
5 we survey approaches for convex MINLPs, while in Section 6 we discuss the
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nonconvex MINLPs.

2 Linear Relaxations are enough for Linear Cuts

A basic question one may ask is wether it is really necessary to consider nonlin-
ear convex sets when one is generating valid inequalities, or if one could always
generate the same inequalities using polyhedral outer approximations. Here,
we show that, under some common technical conditions, when one is restricted
to linear valid inequalities (or cutting planes) the answer to this question is
negative, i.e., it is not necessary to consider nonlinear sets. We also show an
example that asserts the necessity of the technical conditions. Note nevertheless
that the result is not constructive and in particular does not give any indication
of how to obtain a good polyhedral outer approximation that can be used for
generating cuts. This subject will be revisited in the context of lift-and-project
cuts in Sections 5.1 and 5.2.

We suppose that the set C is bounded. Let l and u be large enough lower

and upper bounds so that C ⊆ {x ∈ Rn : lj ≤ xj ≤ uj} . Let Y def
= {y ∈

Zp : lj ≤ yj ≤ uj , j = 1, . . . , p} be the set of all possible assignments for the
integer-constrained variables. For each y ∈ Y , we define

ξ(y, c)
def
=


arg min

x∈C
{c>x : xj = yj , j = 1, . . . , p} if it exists,

arg min
x∈Rn

{
m∑
i=1

max (gi(x), 0) : xj = yj , j = 1, . . . , p} otherwise.

Hypothesis 1. We suppose that, for a given c ∈ Rn and for every y ∈ Y, a
constraint qualification holds in the point ξ(y, c).

We can now recall the statement of the fundamental theorem by Duran and
Grossmann [25].

Theorem 2 ([25, 27, 16]). Consider a convex MINLP (1) and suppose that
Hypothesis 1 holds. Then, there exists a matrix A and a vector b such that
C ⊆ {x ∈ Rn : Ax ≥ b} and

min
x∈Zp×Rn−p

{c>x : Ax ≥ b} = min
x∈X

c>x.

We can now show that if Hypothesis 1 holds for a given objective function
α>x, every valid inequality with left-hand-side α>x can be obtained by using
an outer approximation.

Theorem 3. Let α>x ≥ β be a valid linear inequality for X. Suppose that the
Hypothesis 1 holds with the objective function α>x, then there exists a matrix
A and a vector b such that C ⊆ {x ∈ Rn : Ax ≥ b} and the inequality α>x ≥ β
is valid for the set X = {x ∈ Zp × Rn−p : Ax ≥ b}.
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Proof. Because Hypothesis 1 holds, by Theorem 2, there exists a matrix A and
a vector b such that C ⊆ {x ∈ Rn : Ax ≥ b} and

β̂ = min
x∈X

α>x = min
x∈X

α>x.

Because α>x ≥ β is valid for X, then β ≤ β̂ and therefore α>x ≥ β is valid for
X as well.

In the next example, we show that Hypothesis 1 is really necessary. In other
words, if it is not satisfied, there exist valid inequalities that cannot be obtained
by using an outer approximation.

Example 4. We consider a mixed integer set X ∈ R2 consisting of the inter-
section of a ball B centered in (0.5, 0.5) and of radius 0.5, i.e.,

B
def
=

{
(x1, x2) ∈ R2 : (x1 −

1

2
)2 + (x2 −

1

2
)2 ≤ 1

4

}
,

and X = B ∩ (Z× R). Figure 1 gives a geometrical representation of X and B,
with the vertical lines defining the integrality of the first component x1.

x1

x2

x1 = 0 x1 = 1

q r

Figure 1: Illustration of the example. Set B is the inside of the circle, X is the
intersection of B with the two vertical lines, i.e., points q and r.

The convex envelope of X is the segment joining the two points q = (0, 0.5)
and r = (1, 0.5) and therefore the inequality x2 ≥ 0.5 is valid for X.

Let the unit vector e2 = (0, 1) be the objective function to be minimized.
Note that the points q and r are ξ(0, e2) and ξ(1, e2), respectively. However,
no constraint qualification holds in the two points, and therefore, Hypothesis 1
does not hold.

We now show that the inequality x2 ≥ 0.5 cannot be obtained using a
polyhedral outer approximation for X, i.e., a polyhedron P containing B. To do
that, note that the only valid inequality for B going through q is the tangent to B
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in q, i.e., x1 = 0, and therefore q cannot be an extreme point of any polyhedron
P containing B. Moreover, every other valid inequality for B that intersects
the vertical line x1 = 0, intersects it either above or below q. Therefore, for any
polyhedron P containing B there exists ε1 > 0 such that q± ε1e2 ∈ P . Finally,
note that q ± ε1e2 ∈ Z×R, and therefore q ± ε1e2 also belongs to P ∩ (Z× R).

Similarly for r, for any polyhedral outer approximation P , ∃ε2 > 0 such that
r ± ε2e2 ∈ P ∩ (Z× R).

It follows that the inequality x2 ≥ 0.5 is not valid for P ∩ (Z× R), since it
would cut q − ε1e2 and r − ε2e2.

Nevertheless, for all practical purposes, given any ε > 0, the inequality
x2 ≥ 0.5− ε can be obtained by using an outer approximation. �

3 The Concavity Cut

In this section we discuss the classical work on concavity cuts by Tuy [50] that
is for sure one of the first examples of cutting plane generation in MINLP, and
gives a simple geometrical intuition for constructing cuts for both convex and
nonconvex MINLPs. Tuy’s construction was originally made in the context
of concave minimization over a polyhedron. At the beginning of the 70s, the
construction was used by Balas to derive intersection cuts [3, 4]. Since then,
intersection cuts have been a fundamental tool in MILP (see, e.g., [21] for a
recent survey). In that way, Tuy’s construction is strongly related to disjunctive
programming.

Given a polyhedral outer approximation C = {x ∈ Rn : Ax ≥ b} of the feasi-
ble region of X, and natural first step to take in order to solve (1) is to minimize
c>x over C. Let x be a vertex of C attaining this minimum. Clearly, if x ∈ X,
it is also the minimum of (1).

Otherwise, if x 6∈ X, suppose that we know a concave function h(x) such that
the constraint h(x) ≤ 0 is verified by every point of X but not by x. Finding
such a function h(x) might be non-trivial. In Tuy’s original work, it was the
objective function to be minimized. If (1) is not a convex MINLP, h(x) ≤ 0
may be one of the original constraints of the problem. It is important to note
that h(x) may also reflect integrality constraints of the problem: for example
taking h(x) = (k+ 1− xj)(xj − k), for some j ∈ {1, . . . , p} and k ∈ Z expresses
the simple disjunction that if xj ∈ Z then either xj ≤ k or xj ≥ k + 1.

We now build the concavity cut by Tuy’s method. To avoid technicalities, we
assume here that C is full-dimensional and that x is a non-degenerate vertex of
C. These two hypotheses imply that C has exactly n edges r1, . . . , rn emanating

from x and the cone T
def
= {x ∈ Rn : x = x +

∑n
j=1 λjr

j , λ ≥ 0} is full

dimensional (i.e., r1, . . . , rn are linearly independent). Note that the set T∩{x ∈
Rn : h(x) > 0} is convex and does not contain any point of X.

For j = 1, . . . , n, let λj be a positive scalar such that h(x + λjr
j) ≤ 0 (λj

always exists since h(x) < 0) and θj = x+λjr
j . Since T is full dimensional, there

is a unique hyperplane γ>x = γ0 going through θ1, . . . , θn, and by our definitions
and assumptions γ>x 6= γ0. Without loss of generality, suppose that γ>x < γ0,
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then, by concavity of h(x), T ∩{x ∈ Rn : γ>x < γ0} ⊆ T ∩{x ∈ Rn : h(x) > 0},
and therefore the inequality γ>x ≥ γ0 is satisfied by all points in X. Note that
the portion of C cut by the inequality is bigger as the multiplier λj is bigger.
Therefore, it is recommendable to choose λj such that θj is the intersection of
the half-line x + λrj with h(x) = 0 if it exists. If there is no such intersection,
λj can be arbitrarily large and the cut defined to be parallel to the ray rj (see
[32] for technical details).

Figure 2, gives a graphical illustration of the geometrical construction in
two dimensions. It is worth noting that although Tuy’s algorithm for concave
minimization over a polytope does not converge, recently a proof of convergence
was given for a slightly modified version of the algorithm [41].

P

x

θ1

θ2

r1

r2

h(x)≤0

γTx≥γ0

Figure 2: Geometrical construction of a concavity cut.

Tuy’s construction illustrates how a nonconvex constraint can be used to
strengthen a polyhedral relaxation of an MINLP. However, the construction has
several limitations that make its use in the general setting difficult. First, the
construction relies on a polyhedral relaxation and its generalization to more
general convex sets is not straightforward. Moreover, in a general setting, one
has to find systematically concave functions to construct the cut. In a sense,
the various methods we review in this paper can be seen as ways to address
these limitations.

4 Disjunctive Programming Basics

Disjunctive programming is interested in the description of the convex hull of
unions of convex sets. The main results of disjunctive programming were ini-
tially established for unions of polyhedral sets by Balas [5, 6] and were later
generalized to general convex sets. We briefly recall those results here. The
results were established by Ceria, Soares [18] and/or Stubbs, Mehrotra [47].

We are given a collection of s closed convex sets K1, . . . ,Ks ⊂ Rn. Each set
Kl, l = 1, . . . , s has the following representation

Kl ≡
{
x ∈ Rn : gli(x) ≤ 0, i = 1, . . . ,ml

}
,
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where for i = 1, . . . ,ml, g
l
i : Rn → R ∪ {+∞} is continuously differentiable and

convex.
Our intent is to be able to describe conv

(
K1 ∪ . . . ∪Ks

)
. This set is not

closed in general (for example, take s = 2, K1 an infinite line and K2 a
point outside of K1). We will be only able to describe its topological clo-

sure. We denote by D the closure of the convex hull of this union: D
def
=

cl
(
conv

(
K1 ∪ . . . ∪Ks

))
.

The main theorem of disjunctive programming is a description of D by a
convex set in a higher dimensional space. A tractable representation of the
set uses the so-called perspective function that we define now. Let f : Rn →
R ∪ {+∞} be a function, the perspective of f , denoted by f̃ , is defined as
f̃ : Rn+1 → R such that

(x, λ) 7→ f̃(x, λ)
def
=

{
λf(x/λ) if λ > 0

+∞ otherwise.

The main property of the perspective f̃ is that if f is convex, f̃ is convex and
positively homogeneous (see [31], Chapter B, Section 2.2).

We can now state the main theorem.

Theorem 5. [18] Let Kl, for l = 1, . . . , s, and D be defined as above. Suppose
additionally that Kl 6= ∅. Then,

D ≡ projx cl



g̃li(x
l, λl) ≤ 0 l = 1, . . . , s, i = 1, . . . ,mt

x =

s∑
l=1

xl

1 =

s∑
l=1

λl

x ∈ Rn

xl ∈ Rn l = 1, . . . , s

λl > 0 l = 1, . . . , s



.

In the following sections, we will study the use of Theorem 5 to generate cuts
in various MINLP settings. Cuts are found by solving the so-called separation
problem for D: given a point x̄ ∈ Rn, either show that x̄ ∈ D or find an
hyperplane α>x = β such that α>x ≥ β ∀x ∈ D and α>x̄ < β

First, we recall how the separation problem can be solved in the simple case
where the sets Kl are polyhedral. In that setting, disjunctive programming has
been widely and successfully used. The basic results established by Balas [5, 6]
were in particular used by Balas, Ceria and Cornuéjols in their seminal work on
lift-and-project cuts [7, 8] for mixed integer linear programs.

Suppose now that for l = 1, . . . , s, Kl = {x ∈ Rn : Alx ≥ bl} (where Al is
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an n×ml matrix and bl ∈ Rml). By application of Theorem 5 we have

D ≡ projx



Alxl ≥ blλl l = 1, . . . , s

x =

s∑
l=1

xl

1 =

s∑
l=1

λl

x ∈ Rn

xl ∈ Rn l = 1, . . . , s

λl ≥ 0 l = 1, . . . , s



.

Balas [6] showed that separating a point from D can be done by solving a
linear program as shown in the next theorem.

Theorem 6 ([6]). x̄ ∈ D if and only if the optimal value of the following Cut-
Generation Linear Program (CGLP) is non-negative.

min α>x̄− β

ul
>
Al ≤ α l = 1, . . . , s;

ul
>
bl ≥ β, l = 1, . . . , s;

ul ≥ 0, l = 1, . . . , s;
s∑
l=1

ξl
>
ul = 1,

(CGLP)

where ξl ∈ Rml
+ , l = 1, . . . ,ml.

Furthermore, if (α, β, u1, v1, . . . , us, vs) is a feasible solution of CGLP of
negative cost, then α>x ≥ β is a valid inequality for Q that cuts off x̄.

The constraint
∑s
l=1 ξ

l>ul = 1 of CGLP is often referred to as the normal-
ization constraint. Note that it can be omitted from the statement of CGLP
(i.e., the theorem remains true if ξl = 0), but it plays a central role in the
practical efficiency and numerical stability of the cut (see, e.g., [9, 11, 26]). A
common setting is to take ξl = (1, 1, . . . , 1).

5 Disjunctive Cuts for Convex MINLPs

We now study how integrality of certain variables can be used to strengthen
the continuous relaxations of convex MINLPs. In that case, the standard way
to construct a disjunctive relaxation is to intersect the feasible region of the
continuous relaxation C with a so-called simple disjunction of the form (xj ≤
k) ∨ (xj ≥ k + 1) for some k ∈ Z. Stubbs and Mehrotra [47] gave a mechanism
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for generating a linear inequality by finding a separating hyperplane from the
set D corresponding to a simple disjunction.

Applying the disjunction (xj ≤ k)∨(xj ≥ k+1) to the continuous relaxation
of (1) yields the two convex sets

Ck↓j
def
= {x ∈ Rn | xj ≤ k, gi(x) ≤ 0 i = 1, . . . ,m},

Ck↑j
def
= {x ∈ Rn | xj ≥ k + 1, gi(x) ≤ 0 i = 1, . . . ,m}.

We denote by Ckj the convex hull of the union of Ck↓j and Ck↑j . Theorem 5

implies that Ckj may be represented in an extended space as

C̃kj =


(x, ỹ, z̃, λ, µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x = ỹ + z̃,
g̃i(ỹ, λ) ≤ 0, ∀i = 1, . . . ,m
g̃i(z̃, µ) ≤ 0, ∀i = 1, . . . ,m
ỹj ≤ λk,
z̃j ≥ µ(k + 1),
λ+ µ = 1, λ ≥ 0, µ ≥ 0,
ỹ ∈ Rn, z̃ ∈ Rn,


,

so that projx(C̃kj ) = conv(Ck↓j ∪ C
k↑
j ) = Ckj .

A linear inequality separating a (fractional) point x̄ with k < x̄j < k + 1

from C̃kj (and equivalently Ckj ) can be sought by projecting x̄ onto C̃kj . The
projection is accomplished by solving the convex optimization problem

min
(x,ỹ,z̃,λ,µ)∈C̃k

j

d(x)
def
= ‖x− x̄‖. (2)

Stubbs and Mehrotra demonstrated how to obtain a disjunctive inequality from
a subgradient of the distance function at an optimal solution to (2).

Theorem 7 ([47]). Let x̄ /∈ Ckj , x∗ be an optimal solution of (2), and let

ξ ∈ ∂d(x∗). Then, ξ>(x̄− x∗) < 0 and ξ>(x− x∗) ≥ 0 ∀x ∈ Ckj .

The procedure in Stubbs and Mehrotra is a generalization of the procedure
described in the case of the union of polyhedra in [6], which has been imple-
mented with great success as the so-called lift-and-project cut.

The separation problem (2) suggested by Stubbs and Mehrotra has two
undesirable computational properties. First, the generation of a disjunctive
inequality requires the solution of a nonlinear program of twice the number of
variables as the original problem. Second, the description of the set C̃kj onto
which the point to be separated is projected contains (perspective) functions
that are not everywhere differentiable. These two properties have hindered the
use of disjunctive cutting planes for convex 0-1 MINLP. Stubbs and Mehrotra
[47] report computational results only on four instances, the largest of which has
n = 30 variables. An implementation of the Stubbs and Mehrotra procedure
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for the special case of Mixed Integer Second Order Cone Programming appears
in the PhD thesis of Drewes [24].

Recently, a method that circumvents the difficulty associated with solving
nonlinear programs by instead solving a sequence of cut-generating linear pro-
grams has been proposed in [33, 35]. A disjunctive cut is generated at each
iteration of the procedure, and in the limit, the inequality is as strong as the
one suggested by Stubbs and Mehrotra. Also recently, Bonami [15] suggested
a method to generate disjunctive inequalities for MINLP in the space of the
original variables. In Bonami’s construction, a cut-generating convex program-
ming problem is solved, but the number of nonlinear constraints is double the
number in the original problem. This is an extension of the clever intuition of
Balas and Perregaard [10], which allows this separation problem to be solved
in the original space of variables for MILP. We now give an overview to each of
these recent methods.

5.1 Disjunctive Cuts via Linear Programming Only

The basic idea of the LP-only approach of [33, 35] is to avoid solving the difficult
nonlinear program (2), by instead solving a sequence of linear programs whose
limiting solution is also a solution to (2). To describe the method, let B ⊇ C
be a relaxation of the original continuous relaxation, and let

Bk↓i
def
= {x ∈ B | xi ≤ k} and Bk↑i

def
= {x ∈ B | xi ≥ k + 1}.

Inequalities valid for conv(Bk↓i ∪ B
k↑
i ) are also valid for conv(Ck↓i ∪ C

k↑
i ).

Further, if B is restricted to be a polyhedron, and an appropriate norm is used in
the definition of the distance in (2), the separation problem is a linear program.
In fact, the dual of the linear program is related to the CGLP described in
Theorem 6, the exact relation depending on the norm used to define the distance
in (2) or equivalently on the normalization condition in the CGLP.

Zhu and Kuno [51] were the first to suggest such an approach, and they
propose the outer approximating set

B
def
= {x ∈ Rn | g(x̄) +∇g(x̄)>(x− x̄) ≤ 0},

where x̄ ∈ arg minx∈C{c>x} is an optimal solution to the continuous NLP re-
laxation. Their computational results show that adding disjunctive inequalities
obtained from this polyhedral outer approximation can improve the solution
time for small test instances.

The method of Zhu and Kuno could be iterated by dynamically adding the
generated disjunctive inequalities to the set B. The updated set B is a tighter
relaxation of C, so subsequently stronger disjunctive inequalities are generated.
A natural question to ask is if by iterating the Zhu and Kuno procedure one
can obtain a disjunctive inequality of the same strength as from solving the
problem (2). Kılınç, Linderoth and Luedtke answer this question in the negative
by giving an example where by iteratively adding disjunctive inequalities to the
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set B, (but not to the CGLP, so that only rank-one inequalities are generated),
the final inequality generated is weaker than that generated by the Stubbs and
Mehrotra procedure [34]. The example demonstrates that in order to generate
stronger disjunctive inequalities, one must obtain tighter relaxations of the sets
Ck↓i and Ck↑i .

The method of [33, 35] iteratively updates polyhedral outer approximations

of Ck↓i and Ck↑i so that in the limit the inequality is of the same strength as
if the nonlinear separation problem (2) was solved. At iteration t, the method
has two finite sets of points Kt−,Kt+ ⊂ Rn about which linearizations of the
nonlinear functions are taken, resulting in two polyhedral sets

Fk↓,ti
def
=
{
x ∈ Rn | xi ≤ k, g(x̄) +∇g(x̄)>(x− x̄) ≤ 0 ∀x̄ ∈ Kt−

}
and

Fk↑,ti
def
=
{
x ∈ Rn | xi ≥ k + 1, g(x̄) +∇g(x̄)>(x− x̄) ≤ 0 ∀x̄ ∈ Kt+

}
.

Since the sets F t− and F t+ are polyhedral, a disjunctive inequality can be

obtained as suggested by Theorem 6, and since Ck↓i ⊆ F
k↓,t
i and Ck↑i ⊆ F

k↑,t
i ∀t,

the inequality is valid. The algorithm starts with K0
− = K0

+ = ∅ and augments
the sets based on the solution of the CGLP. Specifically, at iteration t, the dual
of the separation problem is solved, yielding a solution point xt, as well as two
points, called friends by [23]. The friends points yt and zt have the property
that xt = λyt+(1−λt)zt for some λ ∈ [0, 1]. The key insight of the work [33, 35]
is that augmenting the sets Kt− and Kt+ with the friend points (respectively) yt

and zt is sufficient for an iterative procedure to generate an inequality (in the
limit) as strong as if the nondifferentiable, nonlinear program (2) was solved.

A computational advantage of the LP-based approach lies in the fact that
a valid inequality is produced at every iteration. Thus, the process can be
terminated early if it is observed that the cuts are not effective reducing the
solution integrality gap.

Kılınç, Linderoth and Luedtke [33, 35] applied their separation procedure
in the context of the LP/NLP based branch and bound of FilMINT [1]. They
compared experimentally the total solution time taken to solve 207 publicly
available instances with and without their lift-and-project cuts. They report
that

• for 148 instances solved without cuts in less than five minutes, generating
cuts does not decrease computating times but the increase is very limited
(4% on average);

• for 30 instances that take more than 5 minutes but less than 3 hours to
solve without cutting planes the solution is more than 3 times faster with
cutting plane;

• 12 instances that cannot be solved in less than 3 hours without cutting
planes are solved with the same time limit when using cuts.
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5.2 Disjunctive Cuts via Nonlinear Programming

As noted in Section 5, the model proposed by Stubbs and Mehrotra is difficult
to solve as a nonlinear program because of its size and its non-differentiability.
We present another mechanism proposed by Bonami [15] that circumvents these
difficulties in the specific setting where a given point x is to be separated from
a disjunctive relaxation obtained by using simple disjunction.

First, since Ckj is a convex set, a separating hyperplane exists if and only

if x 6∈ Ckj or equivalently if there is no λ, µ ∈ R+ and ỹ, z̃ ∈ Rn+ such that

(x, ỹ, z̃, λ, µ) ∈ C̃kj . We now focus on the solution of this system of inequalities
(i.e., the construction of an hyperplane is delayed to the end of the section) and
show that in our special case C̃kj can be substantially simplified.

Without loss of generality, we can assume that in the formulation of C̃kj ,
ỹj = λk and z̃j = µ(k + 1). Using the equations λ + µ = 1 and xj = ỹj + z̃j ,
we obtain that xj = k + µ. In the remainder we denote by f0 the quantity
xj − k. We have established that µ = f0 and λ = 1− f0 are fixed (note that by
assumption 0 < f0 < 1 and therefore the constraints are well defined). Finally,
we can eliminate the variables ỹ by using the equation ỹ = x− z̃. Summing up
everything, we obtain that x ∈ Ckj if and only if the system

g̃i(x− z̃, 1− f0) ≤ 0, ∀i = 1, . . . ,m

g̃i(z̃, f0) ≤ 0, ∀i = 1, . . . ,m

z̃j = f0(k + 1),

z̃ ∈ Rn

(3)

admits a solution.
To determine if (3) has a solution, Bonami [15] proposes to solve the convex

non-linear program

max z̃j

gi

(
z̃

f0

)
≤ 0 i = 1, . . . ,m,

gi

(
x− z̃
1− f0

)
≤ 0 i = 1, . . . ,m.

z̃ ∈ Rn,

(MNLP)

where the last equation system (3) is used to define the objective function.
It is shown in [15] that the optimal value of (MNLP) is smaller than f0(k+1)

if and only if x 6∈ Ckj .
The nonlinear program (MNLP) has a technical deficiency in that it does not

satisfy any constraint qualification whenever x is an extreme point of the convex
region C. To circumvent the problem, it is proposed to solve the perturbed
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version of the problem

max z̃j

gi

(
z̃

f0

)
≤ f0(k + 1)− z̃j i = 1, . . . ,m,

gi

(
x− z̃
1− f0

)
≤ f0(k + 1)− z̃j i = 1, . . . ,m.

z̃ ∈ Rn.

(MNLP’)

This problem shares the property of (MNLP) that its optimal value is smaller
than f0(k + 1) if and only if x 6∈ Ckj . Contrary to the model proposed by
Stubbs and Mehrotra, (MNLP’) does not require the introduction of additional
variables and differentiability is maintained.

Finally, one needs to compute the equation of the separating hyperplane. It
is proposed in [15] to build a linear model similar to the one used in the previous
section except that no constraint generation is done. In particular, it is shown

that by choosing K0
− =

{
x−z̃
1−f0

}
and K0

+ =
{
z̃
f0

}
a cut is always found by the

CGLP, provided that x 6∈ Ckj and the optimal solution of (MNLP’) satisfies a
constraint qualification.

The technique was tested in the NLP based branch and bound of Bonmin
[16], by comparing the total solution time with and without cuts on a set of
80 instances that take more than 1000 nodes to solve with pure branch and
bound. The results are that 63 instances can be solved without cuts and 77
can be solved with cuts. On instances solved by both techniques the number
of branch-and-bound nodes is reduced on average by 21% and the CPU time
by 19%. The author notes nevertheless that, in these experiment, cuts have a
positive impact on only about half of the testset.

6 Disjunctive Cuts for Nonconvex MINLPs

A common approach for solving nonconvex MINLP problems is to construct
a convex relaxation C of the nonconvexities and to refine the relaxation using
a so-called spatial branch-and-bound approach. Similar to the convex case,
cutting planes can be used to strengthen the convex relaxation at any node
of the branch-and-bound tree. Using the methods presented in Section 5, it
is evident that one can strengthen this convex relaxation by using disjunctions
based on the integrality requirements of the problem. However, integrality is not
the only source for cutting planes. Indeed, as illustrated by Tuy’s construction
presented in Section 3, nonconvex constraints violated by the solution of the
current relaxation can also be used to generate cutting planes.

In this section we will then concentrate on obtaining cuts from disjunctions
that are not associated with the integrality requirements, but those that can
be derived from other nonconvex constraints. Since we place ourselves in the
context where we have at hand a convex relaxation C of the problem, the
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main question is how to identify appropriate disjunctions. Once a disjunction
is found, cuts can be generated by applying the general theory of disjunctive
programming presented in Section 4.

One general principle used to build disjunctions is simple and we start by
illustrating it with one nonconvex constraint of a very simple form: h(x2) ≤ x1,
where h : R → R is a concave function, and x1 has finite lower and upper
bounds l1 and u1, respectively. This setting might seem artificially simple but,
to the best of our knowledge, all cutting plane methods for nonconvex MINLP
problems consider one constraint of this form at a time to build a disjunction.

Figure 3 illustrates the construction of a disjunction. We consider the set

H
def
= {(x1, x2) ∈ R2 : h(x2) ≤ x1, l1 ≤ x1 ≤ u1}. The convex hull of H is the

set of points above the segment joining the two intersections of h(x2) = x1 with
x1 = l1 and x1 = u1 respectively (see Figure 3(a)):

conv(H) = {(x1, x2) ∈ R2 :
h(u1)− h(l1)

u1 − l1
x1+

h(u1)l1 − h(l1)u1
u1 − l1

≤ x2, l1 ≤ x1 ≤ u1}.

x1 = l1 x1 = u1

(x̄1, x̄2)

(a) The set H and its convex
hull. H is the gray shaded set
of points above the parabola and
its convex hull the set of points
above the segment joining the
two intersection of the parabola
with x1 = l1 and x1 = u1.

x1 = l1 x1 = u1x1 = x̄1

(x̄1, x̄2)

(b) Construction of a disjunction
that excludes the point x. Any
point of H is either on the left
side of x1 = x1 and above the
left segment, or on the right side
and above the right segment.

Figure 3: Construction of a disjunction from a constraint described by an uni-
variate concave function.

Let x̄ be the solution to be cut. Our goal is to build a disjunction that
excludes x̄. We suppose that (i) h(x̄1) > x̄2, since otherwise no cut can be gen-
erated using the constraint h(x1) ≤ x2, and (ii) (x̄1, x̄2) ∈ conv(H), otherwise x̄

can be cut by the inequality h(u1)−h(l1)
u1−l1 x1+ h(u1)l1−h(l1)u1

u1−l1 ≤ x2 used to describe
conv(H).

Consider the two sets H↓ = H ∩ {(x1, x2) : x1 ≤ x̄1} and H↑ = H ∩
{(x1, x2) : x1 ≥ x̄1} (evidently, H = H↓ ∪ H↑). A valid two-term disjunc-
tion can be simply obtained by convexifying H↓ and H↑ independently. Indeed
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H ⊆ conv(H↓)∪ conv(H↑) and x̄ 6∈ conv(H↓)∪ conv(H↑) (because h(x̄1) > x̄2).
Therefore,

(
(x̄1, x̄2) ∈ H↓

)
∨
(
(x̄1, x̄2) ∈ H↑

)
is a valid disjunction excluding x̄.

It is important to note that no cut can be obtained by considering solely the dis-
junction

(
(x̄1, x̄2) ∈ H↓

)
∨
(
(x̄1, x̄2) ∈ H↑

)
because (x̄1, x̄2) ∈ conv(conv(H↓) ∪

conv(H↑)), but one has to intersect the disjunction with the convex relaxation
C of the complete problem. Even in this case, there is no guarantee that x̄ can
be cut unless x̄ is an extreme point of C.

We now discuss two works that use this simple way of constructing disjunc-
tions in a more general setting.

6.1 Indefinite Quadratic Constraints

Saxena, Bonami and Lee [44, 45] proposed two methods for separating dis-
junctive cuts for constraints represented by quadratic functions of the form

gi(x) = x>Aix + ai
>
x + ai0 ≤ 0, where Ai is an n × n indefinite symmetric

matrix, ai is an n-dimensional vector and ai0 is a scalar. Furthermore, all the
variables xj appearing in products (i.e., such that ∃i, k with Aikj 6= 0) are as-
sumed to have finite lower and upper bounds lj , uj , respectively. In [44, 45], it is
assumed that all constraints are quadratic, but it is straightforward to see that
the approaches can also be applied if only a subset of constraints are quadratic.

The first method proposed in [44] is based on a standard reformulation-
linearization technique applied to the quadratic constraints. An n × n matrix
of auxiliary variables Y representing the products of variables is introduced:
Y = xx>. The quadratic constraints are then reformulated as linear constraints:

〈Y,Ak〉+ak>x+ak0 ≤ 0. The nonconvex constraint Y = xx> can then be relaxed
using two types of constraints: the convex semi-definite constraint Y −xx> � 0
and the RLT inequalities (see [37, 46])

max

{
lixj + ljxi − lilj
uixj + ujxi − uiuj

}
≤ yij ≤ min

{
uixj + ljxi − uilj
lixj + ujxi − liuj

}
. (4)

We call the convex relaxation using only the constraints (4) RLT and the one
using both (4) and Y − xx> � 0 SDP-RLT.

Disjunctive cuts can be used to strengthen the SDP-RLT relaxation in the
following manner. Let (x̄, Ȳ ) be a solution to the SDP-RLT relaxation such that
Ȳ 6= x̄x̄>. Because Ȳ −x̄x̄> � 0 and Ȳ 6= x̄x̄>, the matrix Ȳ −x̄x̄> certainly has
at least one positive eigenvalue λ with corresponding eigenvector v. It follows
that (x̄, Ȳ ) satisfies the inequality v>Ȳ v − (v>x̄)2 = λv>v > 0. However, the
nonconvex constraint Y − xx> = 0 implies that v>Y v − (v>x)2 ≤ 0 is a valid
(nonconvex) constraint for the problem. We can now use this last constraint to
generate a valid disjunction of the same form as the one exhibited in Figure 3(b)
in the space spanned by v>x and v>Y v. Once this disjunction is obtained, it can
be used to generate a cut using standard disjunctive programming techniques.

In [44], cuts are separated by using a linear outer-approximation of the con-
vex relaxation. (Specifically, the constraint Y − xx> � 0 is approximated with
only a few supporting hyperplanes). The authors develop a cutting plane algo-
rithm where at each iteration one cut is generated for each positive eigenvalue
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of the matrix Ȳ − x̄x̄>. Computational experiments show that the addition of
disjunctive cuts to the SDP-RLT relaxation gives a substantial improvement of
the bound obtained for many problems. On a test set of 129 moderate-size in-
stances from MINLPlib, for 67 of the instances, the disjunctive approach closes
more than an additional 98% of the gap of the RLT relaxation. The average gap
closed by the disjunctive approach is 76%, while the gap closed by the SDP-RLT
relaxation is 25%.

It is worth noting that directions v corresponding to eigenvectors are not
the only ones that can be used to generate cuts. Indeed, any vector v such
that v>Ȳ v − (v>x̄)2 > 0 can be used to generate a disjunctive cut. Also in
[44], an improved variant of the algorithm is proposed where, in addition to
eigenvectors, cuts are generated using directions for which the error induced by
convexifying the constraint v>Ȳ v − (v>x̄)2 ≤ 0 is greatest. The addition of
these disjunctions allows to close about 80% of the gap of the RLT relaxation
on the same test set as before.

The second type of cut proposed by Saxena, Bonami and Lee [45] results from
using a different convex relaxation. The basic idea of the relaxation in [45] is to
project the extended formulation with the RLT constraints (4) into the space
of x variables. Disjunctive cuts are then generated using spatial disjunctions of
the form (

xj ≤
lj + uj

2

)
∨
(
xj ≥

lj + uj
2

)
.

Noting that the projection of the RLT inequalities (4) gives rise to inequalities
whose coefficients depend on the bounds on the variables lj and uj , the modified
bound on xj is propagated to the inequalities defining the projection on the
two sides of the disjunction. A cut is then separated using the CGLP. Using
this technique on the same testset as before, Saxena, Bonami and Lee [45]
close almost the same gap as with the cuts in the extended space (76% of the
gap of the RLT relaxation), but the computing times are almost two orders of
magnitude faster.

6.2 Factorable MINLPs

Belotti [13] proposes to use disjunctive cuts in the more general setting of fac-
torable MINLPs. A function is said to be factorable if it can be expressed as a
finite recursion of finite sums and products of univariate functions. An MINLP
is factorable if all the nonlinear functions gi describing its feasible region are
factorable [48].

In practice, solvers for factorable MINLP only consider a subset of factorable
functions that can be obtained by using a pre-defined set of univariate func-
tions (e.g., {log, exp, 1/x, . . .}). Factorability is essential because it is used by
the solver to automatically build convex relaxations of the problem. In a first
step, the problem is reformulated by adding a number of artificial variables
xn+1, . . . , xn+K into the problem. The new variables xk are used to express the
nonlinear expressions as xk = ψ(xj) (where ψ is one of the predefined univariate
functions) or xk = xjxl. The factorability of the underlying problem guarantees
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that this reformulation can always be completed. In a second step the convex
relaxation is formed by convexifying each of the nonlinear constraints indepen-
dently using predefined convexifications (for example, xk = xjxl is convexified
using the inequalities (4)). The convexification has two important properties:
(i) the relaxation is exact when the variables involved in the functions to con-
vexify attain their bounds; and (ii) the quality of the relaxation depends on
these bounds.

An essential tool for solving factorable MINLP problems is bound tightening
and bound propagation [30, 38, 42, 48, 14]. These techniques are used to tighten
the convex relaxation when the bound on a variable is modified. The combi-
nation of the convexification method described above and bound propagation
has led to the development of several branch-and-bound algorithms specifically
designed for factorable MINLPs.

A weakness of the convexification method used in these algorithms is that
each nonlinear function is convexified separately. One interest of using disjunc-
tive cuts for solving nonconvex MINLP problems is that their use incoporates
interactions between different nonlinear functions, resulting in a tighter relax-
ation.

Despite the more general setting than that described in Section 6.1, disjunc-
tive cuts can be derived in a very similar way. Suppose that the constraint
xk = ψ(xj) is not satisfied by the solution to be cut x̄. It is important to re-
member that ψ is a function that belongs to a finite library of simple functions
known by the solver. In particular, by examining the second derivative, it is
known on what portions of its domain ψ is concave or convex. If x̄k < ψ(x̄j),
and ψ is convex in x̄j , x̄ can simply be cut by an outer approximation constraint.
Therefore, we suppose that x̄k < ψ(x̄j) and ψ is concave in x̄j . Then, we are in
the case exhibited in Figure 3. The spatial disjunction

xj ≤ θ ∨ xj ≥ θ

(where θ is any number in the interval [lj , uj ]) is imposed, each side of the
disjunction is intersected with the convex relaxation, and finally bound propa-
gation algorithms are used to tighten each side of the disjunction. The result
is a disjunction between two convex sets to which x̄ does not belong. We note
that in the simple case with only one constraint, the effect is similar to the
disjunction exhibited in Figure 3(b), but in general it leads to a more involved
disjunction that uses several constraints of the problem.

In Belotti’s method θ does not necessarily have to coincide with the value of
variable xj in the solution to be cut. Several rules have been devised to select
this value, the reader is referred to [14, 49].

Another difficulty is that there are usually too many disjunctions that can
be used to generate cuts and one typically has to choose a subset of “good”
candidates. Belotti [13] proposes to separate cuts for disjunctions correspond-
ing to the 20 most violated non-linear constraints. The method is implemented
and tested in the open-source solver Couenne [14] on a set of 84 publicly avail-
able instances. It is reported in [13] that the variant with cuts can solve more
instances in a time limit of 3 hours (39 instances solved versus 26 without cuts).
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