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Abstract. We describe FATCOP 2.0, a new parallel mixed integer program solver that works in an oppor-
tunistic computing environment provided by the Condor resource management system. We outline changes
to the search strategy of FATCOP 1.0 that are necessary to improve resource utilization, together with new
techniques to exploit heterogeneous resources. We detail several advanced features in the code that are
necessary for successful solution of a variety of mixed integer test problems, along with the different usage
schemes that are pertinent to our particular computing environment. Computational results demonstrating
the effects of the changes are provided and used to generate effective default strategies for the FATCOP
solver.
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1. Introduction

Many practical optimization problems involve a mixture of continuous and discrete vari-
ables. Examples of such problems abound in applications; for example, scheduling and
location problems, covering and partitioning problems and allocation models. While
many of these problems also contain nonlinear relationships amongst the variables, a
large number of interesting examples can be effectively modeled using linear relation-
ships along with integer variables. Such problems are typically called mixed integer
programs [13].

Typically, these problems are solved using a branch-and-bound approach [10,13].
First of all, the integer constraints are relaxed to simple bound constraints, resulting in
a linear programming relaxation. This relaxation is solved, typically by a version of the
simplex method, and the solution is tested to determine if the integrality constraints are
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satisfied. If not, one of the variables that violates integrality is chosen, two subproblems
are generated each with an extra constraint that precludes the current infeasible solution.
However, any integer solution will be feasible for one of the subproblems. Branching in
this way, generates a huge number of linear programs that need to be processed in order
to solve the original problem. Subproblems can be discarded (fathomed) if

1. the subproblem has an integer solution,

2. the subproblem is infeasible, or

3. the linear subproblem has worse objective value than a currently available integer
solution (bounding).

In many realistic problems, the size of the branch-and-bound tree is enormous, and re-
quires huge amounts of computing resources to solve the underlying program. Further-
more, due to bounding and fathoming, the shape of the tree is generally very irregular
and cannot be determined a priori. As such, efficient use of large numbers of processors
in this context is difficult.

FATCOP 1.0 [2] is an implementation of a branch-and-bound algorithm that at-
tempts to be both efficient and able to solve difficult MIP’s. A key feature of FATCOP 1.0
is that it runs in an opportunistic environment where the computational resources are
provided by Condor [11].

Condor is a resource manager that locates idle machines on a local or wide area
network and delivers them to an application (such as FATCOP) as a computational re-
source. Originally, these resources were provided for batch processing of long-running,
computationally intensive programs. Each machine in a Condor pool has an owner that
specifies the conditions under which a machine is made available. For example, most
owners require a job to vacate a machine when the owner returns to use the machine. It is
important to note that a resource user does not need to have an account on the machines
on which the job executes. Furthermore, the footprint of the job is small since all of the
data is stored on the submitting machine and accessed via remote procedure calls. Thus,
only the processing power of the “Condor” machine is utilized. More recently, an exten-
sion of Condor [14] has allowed a collection of Condor resources to be treated as a single
computational entity and programmatically controlled using primitives from PVM [6].

FATCOP (FAult Tolerant COndor Pvm) 1.0 [2] was developed with the aim of ex-
ploiting the opportunistic resources provided by Condor in a fault tolerant fashion. To
provide this fault tolerance, FATCOP is written in the master–worker paradigm. The
master–worker framework has three abstractions, namely that of a master, a worker, and
a task. In FATCOP 1.0, a worker is a machine loaded with the root linear program-
ming relaxation, a task consists of solving linear programming relaxations with added
bound restrictions, and the master is a controlling process that deals with all messages
coming from all workers and all tasks. Essentially, multiple branches of the search tree
are explored concurrently, with the master determining from a work pool which node
to explore next, noting the best solution found and fathoming parts of the tree that are
inconsequential. Linear programming subproblems comprise the tasks that are solved
on workers provided by Condor.
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A basic premise of FATCOP is to greedily use as many resources as possible to
solve the underlying problem. Particular attention is paid at the master to issues relating
to disappearance of resources and recovery of work assigned to these resources. For long
running problems, facilities exist that allow FATCOP to recover from most failures using
a mechanism that periodically saves the branch-and-bound tree to disk (checkpointing).

While FATCOP 1.0 can successfully process many mixed integer programs, several
deficiencies in the algorithm and the implementation limit its effectiveness on harder
problems, several of which became apparent after extensive testing. These are as follows:

1. Inefficient use of resources – the chunks of work are too small, leading to contention
effects at the master processor;

2. Poor mixed integer programming technology;

3. Not enough resources used;

4. Poor linear programming codes;

5. Difficulties associated with code maintenance.

This paper describes a series of ways in which FATCOP 1.0 can be improved,
and details the implementation of FATCOP 2.0. A schematic figure showing the basic
flow of information and an overview of the implementation of FATCOP 2.0 is given in
figure 1. The figure shows that the flow of communication between the master and a
(prototypical) worker occurs only when the worker is initialized. Tasks run on a worker,
get their initial data (MIP problem, cuts and pseudocosts) from the worker they are
assigned to, and their specific task information (subtree to work on, incumbent solution)
directly from the master. New pseudocost and cut information from the task is saved on
the current worker and hence may be used by a new task that runs on this worker. The
task also sends solution information (and newly generated cuts and pseudocosts) back
to the master so that it can update its work pool, global cut and pseudocost pool, and
incumbent solution.

We begin in section 2 with a description of the advanced MIP features that we
have added to FATCOP 2.0. These features are applied in nonstandard ways since our
search strategy is updated to have much larger grained tasks involving subtrees of the
search tree (as opposed to nodes of the search tree). In section 3, we outline the two
major resource management changes that are critical for solving difficult MIP’s. The
first change utilizes a computational framework embedded in an API, MW (short for
Master–Worker), thereby reducing the complexity of the FATCOP code. It also allows
different computational setups to be used, such as providing heterogeneous machines as
workers or replacing PVM messages with file transfers. The second change allows a va-
riety of linear programming software to be used interchangeably on the workers, thereby
increasing the efficiency of subproblem solution. The benefits of all these changes are
demonstrated in section 4 where a variety of tests are carried out on a representative
set of MIP test problems. We finish with some preliminary conclusions of the work in
section 5.
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Figure 1. A schematic overview of the design and data flow within the FATCOP solver.

2. Advanced MIP features

While the use of many computational resources can sometimes alleviate the need for
good algorithms, the classes of problems we are interested in solving require sophisti-
cated MIP features in addition to computational power. Several of these features enable
problem solution in fractions of the time needed for a basic branch-and-bound algo-
rithm. The aim of adding these features to FATCOP 2.0 is to ensure that a complex
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MIP code uses dynamic resources efficiently, and to deal with the computational com-
plexity of sharing local and global information within a continually changing computing
framework.

2.1. Search strategies

A critical problem in FATCOP 1.0 arises from contention issues at the master. In FAT-
COP 1.0, each worker solves two linear programs before reporting back to the master.
The master needs to deal with new information coming from the problems the workers
have solved, as well as issues related to the addition or deletion of hosts from the virtual
machine. When the linear program relaxations are relatively time consuming, this con-
tention is not limiting, but in many cases, the relaxations solve extremely quickly due to
advanced basis information.

To alleviate this problem, FATCOP 2.0 has a new notion of a worker and a task.
A task is a subtree for the worker to process, along with a limit on the number of linear
programs that can be solved, or a limit on the processing time. The data associated
with a task includes what subtree is to be processed along with strategy information for
processing this tree, such as the value of the best feasible solution and the node and time
limits for processing the task. Note that the subtrees passed to each worker are distinct.

However, a worker now must be responsible for managing more of the generated
MIP information. In FATCOP 2.0, a worker has a state that consists of both initialization
information (such as the linear program data) and information generated by the task that
runs on the worker (such as cuts, pseudocosts, and unevaluated nodes).

The time limit feature generates new issues, namely how to pass back a partially
explored subtree to the master. In order to limit the amount of information passed back,
we use depth-first-search to explore the subtrees, since then a small stack can be passed
back to the master encoding the remaining unexplored parts of subtree. Furthermore, it
is also easy to use the small changes to the LP relaxations in such a search mechanism
to improve the speed of their solution. Finally, any “local information” that is generated
in the subtree is valid and typically is most useful in the subtree at hand. As examples of
this last point, we point to the reduced cost fixing and preprocessing techniques that we
outline later in this section.

Most of the issues about search strategies of the master program were dealt with
in [2]. Two changes are of note. The first is that instead of generating the first N nodes
in the master, now only the first linear programming relaxation is solved at the master.
The optimal basis from this relaxation is sent to all workers, so that they may solve all
subsequent nodes efficiently. Furthermore, whenever there are less than a certain number
of nodes in the work pool, we switch from a time limit in the worker to an LP solve limit
of 1. This allows the work pool to grow rapidly in size.

A benefit of FATCOP 2.0 is that the amount of information passed back from a
worker is now much smaller. This makes it possible to have much larger work pools, and
allows FATCOP 2.0 to use best bound as its default node selection strategy. However
when the size of the work pool reaches an upper limit, we switch the node selection
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strategy to use “deepest-node” in tree, with the expectation that the subtrees rooted at
these nodes are likely to be completely explored by the worker, thus leading to a decrease
in the size of the work pool.

2.2. Cutting planes

If the solution to the linear programming relaxation does not satisfy the integrality re-
quirements, instead of generating new subproblems (branching), one may attempt to find
an inequality that “cuts off” the relaxed solution. That is, an inequality that is not valid
for the relaxed solution, but is valid for all integer solutions. Such an inequality is called
a cutting plane. Adding cutting planes to the relaxation can result in an improved lower
bound for the relaxation, which in turn may mean that the linear subproblem can be
fathomed without having to resort to branching.

There are many different classes of cutting planes. FATCOP 2.0 includes two
classes – knapsack cover inequalities [3] and flow cover inequalities [16]. Knapsack
covers and flow covers inequalities are derived from structures that are present in many,
but not all, MIP instances. This implies that for some instances, FATCOP 2.0 will be
able to generate useful cutting planes, and for other instances it will not.

The problem of finding a valid inequality of a particular class that cuts off the
relaxed solution is known as the separation problem. For both classes of inequalities
used in FATCOP 2.0, the separation problem is NP-Complete, so a heuristic procedure
is used for finding violated inequalities.

Cutting planes represent a new challenge for FATCOP 2.0. They provide globally
valid information about the problem that is locally generated. Namely, a cutting plane
generated at one processor may be used to exclude relaxed solutions occurring at another
processor. The question arises of how to distribute the cutting plane information.

We have chosen to attach this information to the worker by creating a cut pool on
the worker. All newly generated cuts get sent to the master when a task completes, but
this information is only sent to new workers, not to existing workers. Thus each worker
carries cut information that was generated by the tasks that have run on the worker, but
never receives new cuts from the master. Each cut is assigned a hash value so that the
master can quickly ensure that duplicate cuts are not stored.

2.3. Pseudocosts

If inequalities that cut off the relaxed solution cannot be found, then branching must be
performed. In FATCOP, branching is performed by selecting a variable j in the relaxed
solution that does not satisfy the integrality requirements and creating two subproblems.
In one subproblem variable j is required to be less than its value in the relaxed solution,
and in the other subproblem, variable j is required to be greater than its value in the
relaxed solution.

In a relaxed solution, there may be many variables that do not satisfy integrality
requirements. The goal of branching is to choose a variable that will most improve the
subproblems’ objective function. The rationale behind this goal is that if a subproblem’s
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objective function increases by a large amount, then it may be possible to fathom the sub-
problem. Pseudocosts are information that aid in choosing among the many fractional
variables.

Pseudocosts pose a challenge to FATCOP 2.0 in exactly the same way as cutting
planes, in that they are globally useful information that is generated locally. As such, we
choose to distribute pseudocosts in a manner similar to that for cutting planes. All new
pseudocosts get sent to the master when a task completes, but this information is only
sent to new workers, not to existing workers.

2.4. Heuristics

A heuristic is a procedure that attempts to generate a feasible integral solution. Feasible
solutions are important not only for their own sake, but also as they provide an upper
bound on the optimal solution of the problem. With this upper bound, subproblems may
be fathomed, and techniques such as reduced cost fixing can be performed.

There are very few general purposes heuristics for mixed integer programs. One
simple, yet effective heuristic is known as the diving heuristic. In the diving heuristic,
some integer variables are fixed and the linear program resolved. The fixing and resolv-
ing is iterated until either an integral solution is found or the linear program becomes
infeasible.

We have included a diving heuristic in FATCOP 2.0. The diving heuristic can be
quite time consuming – too time consuming to be performed at every node of the branch
and bound tree. In FATCOP 2.0, since a task is to explore an entire subtree for a specified
time limit, this also gives a convenient way to decide from which nodes to perform the
diving heuristic. Namely, the diving heuristic is performed starting from the root node
of each task.

Preliminary testing revealed that for some instances this strategy for deciding when
to perform the heuristic was also too time consuming. Therefore, if the total time spent in
carrying out the diving heuristic grows larger than 20% of the total computation time, the
diving heuristic is deactivated. Once the time drops to below 10%, the diving heuristic
is reactivated.

2.5. Preprocessing

Preprocessing refers to a set of reformulations performed on a problem instance to en-
hance the solution process. It has been shown to be a very effective way of improv-
ing integer programming formulations prior to and during branch-and-bound [15]. FAT-
COP 1.0 preprocesses the root problem by identifying infeasibility and redundancies,
tightening bounds on variables, and improving coefficients of constraints [2]. In FAT-
COP 2.0, we extend this procedure to apply preprocessing at the root node of every task
sent to a worker. This is due to the change in search strategy, whereby each task consists
of exploring a subtree of the search tree rooted at the passed node.

At a node in the branch-and-bound tree where the optimal solution of its LP re-
laxation is fractional, we first apply a standard reduced cost fixing procedure [5]. This



24 CHEN ET AL.

procedure fixes integer variables to their upper or lower bounds by comparing their re-
duced costs to the gap between a linear programming solution value and the current
problem best upper bound. After this, we perform preprocessing on the new problem.
Finally, the diving heuristic described above is applied to find a feasible integer solution.
Note that we can reverse the order of reduced cost fixing and node preprocessing in the
hope that reduced cost fixing may work better on a preprocessed model. However, the
current implementation chooses instead to take advantage of preprocessing a model that
possibly has more variables fixed by the reduced cost fixing procedure.

In a sequential branch-and-bound MIP program, node preprocessing is usually con-
sidered too expensive. However, in FATCOP 2.0, every worker explores a subtree of
problems. The cost of preprocessing is amortized over the subsequent LP solves. Pre-
processing may improve the lower bound of this subtree, and increase the chance of
pruning the subtree locally; however, the effects of node preprocessing are problem de-
pendent. Therefore, we leave node preprocessing as an option in FATCOP 2.0.

The key issue is that the search strategy in FATCOP 2.0 generates a piece of work
whose granularity is sufficiently large for extensive problem reformulations to be effec-
tive and not too costly in the overall solution process. All the approaches outlined above
are implemented to exploit the locality of the subproblems that are solved as part of a
task, and in our implementation are carried out at many more nodes of the search tree
than is usual in a sequential code. The benefits and drawbacks of this choice are further
explored in section 4.

3. Resource management improvements

3.1. MW framework

FATCOP 1.0 is implemented using Condor-PVM, an extension of the PVM program-
ming environment that allows resources provided by Condor to be treated as a single
(parallel) machine. As outlined in the introduction, FATCOP utilizes the master–worker
computing paradigm. Thus many of the details relating to acquiring and relinquish-
ing resources, as well as communicating with workers are dealt with explicitly using
specific PVM and Condor primitives. Many of the features, and several extensions, of
the resource management and communication procedures in FATCOP 1.0 have been in-
corporated into a new software API, MW [7], that can be used for any master–worker
algorithm. Since this abstraction shields all the platform specific details from an appli-
cation code, FATCOP 2.0 was redesigned to use this API, resulting in a much simpler,
easier to maintain, code.

Other benefits also accrue that are pertinent to this work as well. First, MW pro-
vides the application (in this case FATCOP) with details of resource utilization that can
be analyzed to improve efficiency (see section 4). Secondly, new features of MW imme-
diately become available for use in FATCOP. As an example, a new instantiation of MW
that is built upon a communication model that uses disk files (instead of PVM messages)
can now be used by FATCOP without any change to the FATCOP source code. Since
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this instantiation also uses standard Condor jobs instead of PVM tasks for the workers,
facilities such as worker checkpointing that are unavailable in the PVM environment
also become usable in the file environment. (Condor provides a checkpointing mecha-
nism whereby jobs are frozen, vacated from the machine, and migrated to another idle
machine and restarted.)

Also, other potential instantiations of MW utilizing MPI or NEXUS for commu-
nication or Globus for resource management are immediately available to FATCOP.
Thirdly, FATCOP can also drive new developments to MW, such as the requirement
for a broadcast mechanism in MW to allow dispersion of new cuts to all workers. Such
extensions would undoubtedly benefit other MW applications such as those outlined
in [7].

3.2. Heterogeneity

The MW framework is built upon the model of requesting more resources as soon as
resources are delivered. In order to increase the amount of resources available to the
code, we exploited the ability of MW to run in a heterogeneous environment. In this
way, the code garnered computational resources from a variety of machines including
Sun SPARC machines running Solaris, INTEL machines running Solaris, and INTEL
machines running Linux. While INTEL machines running NT are in the Condor pool,
currently the MW framework is unavailable on this platform. To effect usage of workers
on different architectures, all we needed to do was:

1. Compile each worker program for the specific architectures that it will run on.

2. Generate a new Condor “job description file” for FATCOP 2.0 that details the com-
putational resources that are feasible to use.

Since the source code for the solver SOPLEX [17] is available, compiling the worker
code on several platforms is straightforward. The benefits of this increase in number of
workers is shown in section 4.

It became clear that while SOPLEX is an effective linear programming code, com-
mercial codes such as CPLEX [9], OSL [8] and XPRESS [4] significantly outperform
SOPLEX for solving the LP problem relaxations. In many cases, several copies of these
solvers are available to a user of FATCOP 2.0 and so we updated the design of the code
to allow a variety of LP solvers to be used interchangeably. Thus, at any given time,
several of the workers may be using CPLEX, while others are using XPRESS and others
still are using SOPLEX. The LP interface deals carefully with issues such as how many
copies of CPLEX are allowed to run concurrently (for example, if a network license is
available), what machines are licensed for XPRESS, and what architectures OSL can
be ran upon. If none of the faster solvers are available, SOPLEX is used as the default
solver.
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4. Results

In this section, results on the performance of FATCOP 2.0 are reported. Due to the asyn-
chronous nature of the algorithm, the nondeterminism of running times of various com-
ponents of the algorithm, and the nondeterminism of the communication times between
processors, the order in which the nodes are searched and the number of nodes searched
can vary significantly when solving the same problem instance. Other researchers have
noticed the stochastic behavior of asynchronous parallel branch and bound implemen-
tations [5]. Running asynchronous algorithms in the dynamic, heterogeneous, environ-
ment provided by Condor only increases this variance. As such, for all the computational
experiments, each instance was run a number of times in an effort to reduce this variance
so that meaningful conclusions can be drawn from the results.

The results of FATCOP 2.0 are given on a number of test instances taken from the
MIPLIB set [1]. A time limit of 120 seconds was set on each task. If the number of
unevaluated tasks at the master fell below two times the number of workers, a limit of
one linear program solution was enforced for the task. Unless explicitly stated otherwise,
all the advanced features of FATCOP 2.0 described in section 2 were employed.

4.1. Assessing node preprocessing

It is well known that lifted knapsack covers, flow covers and diving heuristics are effec-
tive in solving MIP problems [3,12,16]. However, the reported overall benefits of node
preprocessing are less clear due to the amount of computing time they may take. A key
issue is that node preprocessing is too expensive to carry out at every node. Since our
tasks now correspond to subtrees of the branch-and-bound tree, it makes sense in this
setting to experiment with preprocessing just at the root nodes of these subtrees. In this
section we report results for experiments that ran a number of MIP problems with node
preprocessing turned off and on, while all other advanced features (cutting planes, div-
ing heuristics, reduced cost fixing and root preprocessing) were turned on. The problems
reported in table 1 were chosen because they all benefit from root node preprocessing.
The purpose of this experiment was to ascertain whether these problems benefit even
more from preprocessing at every subtree root node.

The algorithmic parameters that were used are as stated above. Each instance was
replicated three times. We report the number of nodes, the wall clock time and the
average number of processors used with and without node preprocessing in table 1. The
average number of processors (used in a particular run) was computed as

P =
∑Pmax

k=1 kτk

T
, (1)

where τk is the total time when the FATCOP job has k workers, T is the total execution
time for the job, Pmax is the number of available machines in the Condor’s pool.

As expected, all the test problems were solved in less nodes with node preprocess-
ing, since the subtrees were pruned more effectively in the branch-and-bound process.
An interesting observation is that it took longer to solve cap6000 even though the search
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Table 1
Effect of node preprocessing, data averaged over 3 replications.

Name Node preprocessing No node preprocessing
Nodes Time P Nodes Time P

cap6000 119232 6530.2 30 129720 3317.0 30
egout 11 11.3 2 26 12.3 2
gen 7 14.2 3 19 195.5 4
l152lav 4867 222.6 17 6018 475.1 25
p0548 215 16.1 2 222 20.0 2
p2756 2447 928.5 19 3044 1058.4 36
vpm2 1070217 654.5 17 1897992 940.1 40

Table 2
Effect of varying worker grain size: results for vpm2.

Grain size E Nodes Time P

2 0.16 809945 1335.8 45
100 0.64 1479350 743.9 25
200 0.61 1938241 1053.2 29

tree is smaller with node preprocessing. In fact, node preprocessing combined with local
reduced cost fixing worked very effectively on this problem. After the first integer feasi-
ble solution was found, preprocessing and reduced cost fixing usually can fix more than
half of the binary variables at the root node of a subtree. But the problem is that cap6000
has a very large LP relaxation. The cost to reload the preprocessed LP model into the LP
solver is significant compared with task grain size. This observation suggests a better
implementation for modifying a formulation in a LP solver is necessary. However, based
on this limited experimentation, FATCOP 2.0 uses node preprocessing by default.

4.2. Grain size and master contention

A potential drawback of a master–worker program is the master bottleneck problem.
When using a large number of processors, the master can become a bottleneck in
processing the returned information, thus keeping workers idle for large amounts of
time. In FATCOP 2.0, we deal with this problem by allowing each worker solve a sub-
tree in a fixed amount of time. The rule to choose an appropriate grain size at worker
is arbitrary. In this section we show the results for FATCOP 2.0 on vpm2 by varying
worker grain size.

We ran FATCOP 2.0 on vpm2 with worker grain size 2, 100 and 200 seconds,
respectively, under the proviso that at least one LP relaxation is completed. In each
case, we ran three replications employing all advanced features described in section 2.
The results are reported in table 2. For each test instance, we report average worker
efficiency E, number of nodes, execution time, and average number of processors P .
The average worker efficiency, E, was computed as the ratio of the total time workers



28 CHEN ET AL.

spent performing tasks to the total time the workers were available to perform tasks.
A grain size of two seconds had a very low worker utilization. Each worker finishes its
work quickly, resulting in a large amount of result messages queued at the master. The
node utilization corresponding to grain size of 100 seconds is satisfactory. Increasing
grain size does not improve node utilization further. As stated in [2], all Condor-PVM
programs risk losing the results of their work if a worker is suspended or deleted from
the virtual machine. Taking this into consideration, we prefer a smaller worker grain size
so that only small amounts of computation are lost when a worker disappears from the
virtual machine. We have found that a grain size of around 100 seconds strikes a good
balance between contention and loss of computation and is appropriate for the default.

4.3. Heterogeneity

In this section we show how FATCOP 2.0 exploits heterogeneous resources, including
both heterogeneous machines and LP solvers. We ran the problem 10teams on a pool
of Sun SPARC machines running Solaris (SUN4), a pool of INTEL machines running
Solaris (X86), and a pool of both types of machine. Note that the worker executables are
different on these different architectures. Each instance was replicated three times and
we report the results in table 3. Clearly, FATCOP was able to get more workers when
requesting machines from two architecture classes.

We also ran some experiments to show the effects of heterogeneous LP solvers.
We solved the problem air04 with SOPLEX only, and both SOPLEX and CPLEX. We
limited the maximum number of CPLEX copies to 10 in the latter case. Results are
shown in table 4. The problem air04 has very large LP relaxations, so the worker running
SOPLEX usually can only solve one LP in the specified grain size (120 seconds), while
a worker running CPLEX is able to evaluate a number of nodes in the depth first fashion
outlined previously. We notice from table 4 that using CPLEX and SOPLEX the problem
was solved three times faster using less machines compared with using SOPLEX only.

Table 3
Effect of using heterogeneous machines: results for 10teams.

Machine architecture Nodes Time P

SUN4 16910 763.5 24
X86 20364 1290.5 16
SUN4 and X86 23840 636.7 38

Table 4
Effect of using heterogeneous LP solvers: results for air04.

LP solver Nodes Time P

SOPLEX only 3623 19125.0 43
SOPLEX and CPLEX 3661 6626.2 16
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4.4. Raw performance

Based on the experiments outlined above, we set appropriate choices of the parameters
of our algorithm. In this subsection, we attempt to show that FATCOP 2.0 works well on
a variety of test problems from MIPLIB. Our test set includes all the MIPLIB problems
examined in the FATCOP 1.0 paper [2] and several new problems that could not be
solved effectively by FATCOP 1.0. The selected problems have relatively large search
trees, so that some parallelism can be exploited.

The average worker efficiency is computed for each run of a problem using the
formula described in section 4.2. The average number of processors used in a particular
run is determined from (1). In table 5, for each test problem, we report the number of
nodes, solution time, average worker efficiency E, and average number of processors P ,
averaged over the five replications that were carried out. For each of these statistics, we
also report the minimum and maximum values over the five replications.

The computational results show that in comparison to version 1.0, FATCOP 2.0 is
able to solve more problems in MIPLIB and has better average execution time on all
the test problems that could be solved by both versions, except pk1. (Note that solution
times for FATCOP 1.0 [2] on problems 10teams, air04, air05, danoint, fiber, l1521av,
modglob, pk1, pp08acuts, qiu, rout and vpm2 are 1.9 hrs, 56.8 mins, 2.0 hrs, 24.2 hrs,
1.1 hrs, 24.6 mins, 44.8 hrs, 14.5 mins, 2.8 hrs, 22.2 mins, 12.3 hrs and 46.7 mins, re-
spectively.) One significant example is modglob. FATCOP 2.0 can solve it in seconds
while FATCOP 1.0 took days [2]. The introduction of new cutting planes makes the
branch and bound process on this problem converge in less than 1000 nodes. The differ-
ent search strategy used in FATCOP 1.0 results in a smaller search tree only in the pk1
example. When FATCOP 2.0 is set up to use a similar strategy, it generates a smaller
search tree as well, and solves more quickly than FATCOP 1.0.

Figure 2 shows, for one particular trial and instance, the number of participating
processors. Figure 3 shows, for the same trial and instance, the instantaneous worker
efficiency, measured as

∑nt

k=1 ltk/nt , where nt is the number of processors participating
at time t and ltk is the load average of the processor k at time t . The load average,
computed using the UNIX command uptime, and number of participating processors
were sampled at 30 second intervals during the run.

The efficiency of a run may be less than “ideal” (1.0) due to

• Contention: The workers are idle during the time they send the results of their task
to the master until they receive the next task. If the master needs to respond to many
requests, workers may idle for long periods waiting for new work, thus reducing
efficiency.

• Starvation: There are not enough active tasks in the work pool for all the participating
workers.

• Inaccuracy of measurements: The load average reported by the UNIX operating sys-
tem is computed as the average number of processing jobs during the last minute, so
even though a processor is working on a task, the reported load average may be less
than 1.0.



30 CHEN ET AL.

Table 5
Performance of FATCOP 2.0: min (max) refer to the minimum (maximum) over five replications of the

average number of processors (nodes, time) used.

Instance Statistic E P Nodes Time

10teams average 63.9 44.0 9340 677
[min,max] [48.6,79.3] [33.6,48.6] [8779,9655] [550,754]

air04 average 83.5 82.4 3666 2639
[min,max] [78.9,89.2] [68.0,90.6] [3604,4019] [2308,3033]

air05 average 44.6 69.4 14755 1515
[min,max] [40.9,54.3] [57.0,78.6] [9979,17419] [1353,2549]

danoint average 88.1 60.5 686680 60586
[min,max] [70.9,95.0] [53.1,66.3] [630954,708513] [59514,60586]

fiber average 64.4 23.0 9340 125
[min,max] [55.6,69.3] [18.6,28.6] [8779,9655] [108,143]

gesa2 average 60.4 53.0 7965014 2982
[min,max] [50.1,66.2] [44.3,60.8] [7013876,8243657] [2768,3044]

gesa2_o average 90.9 78.4 2739772 1818
[min,max] [82.4,93.5] [74.0,88.1] [2206782,4031245] [1642,2219]

l152lav average 51.6 16.1 4702 206
[min,max] [42.9,58.2] [11.1,19.5] [3985,6381] [118,317]

modglob average 51.6 2.7 358 27
[min,max] [42.4,58.1] [2.6,2.9] [21,953] [21,53]

p2756 average 51.3 14.4 2145 995
[min,max] [44.3,61.9] [7.6,21.1] [1936,3115] [866,1216]

pk1 average 74.1 55.2 3047981 2800
[min,max] [66.2,79.0] [36.8,69.5] [3018755,4148176] [2111,3567]

pp08aCUTS average 66.8 54.3 4213412 2038
[min,max] [54.5,70.1] [47.0,60.8] [3785673,4648207] [1500,2353]

qiu average 61.3 23.1 9687 303
[min,max] [48.9,71.2] [17.5,26.9] [6249,14115] [266,347]

rout average 91.3 94.1 4510670 42274
[min,max] [88.9,94.2] [77.5,100.9] [4249369,4600843] [37697,45326]

vpm2 average 73.1 16.5 1088824 633
[min,max] [64.9,79.0] [13.3,20.9] [974832,1344618] [453,701]

5. Conclusion

The results reported in this paper show that FATCOP is both an effective MIP solver for
a variety of test problems arising in the literature, and an efficient user of opportunistic
resources. Further experiments with FATCOP will be made to investigate how well
the ideas presented scale with an increased number of available resources. Also, we
intend to investigate the use of different cutting planes, as well as further exploitation
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Figure 2. Average number of processors participating in solving gesa2_o.

Figure 3. Average worker efficiency during solution of gesa2_o.

of the local nature of information when performing a task. Other extensions to the code
include adding the ability for user defined heuristics and branching rules.
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