
Computing Society

14th INFORMS Computing Society Conference
Richmond, Virginia, January 11–13, 2015
pp. 119–133

http://dx.doi.org/10.1287/ics.2015.0009
Creative Commons License

This work is licensed under a
Creative Commons Attribution 3.0 License

Row-Partition Branching for Set Partitioning
Problems

Namsuk Cho, Jeff Linderoth
Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison,
WI 53706, ncho6@wisc.edu

Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison,
WI 53706, linderoth@wisc.edu

Abstract We introduce the Row-Partition Branching Method for set partitioning and set packing
problems. Branching is accomplished by selecting a subset of the rows of the problem
that must be covered and partitioning the variables according to the number of rows
of the subset that each variable covers. The method can be viewed as a generalization
of the well-known Ryan-Foster branching scheme. We discuss implementation issues
associated with our method and show through computational experiments that the
method is competitive with other branching methods for set partitioning and packing
problems.

Keywords Set Partitioning Problem, Branching Methods.

1. Introduction

In this paper, we introduce a novel branching method for solving integer programming
formulations of the set partitioning problem. The set partitioning problem (SPP) may be
stated mathematically as

min
x
{c>x |Ax= 1, x∈ {0,1}n}, (SPP)

where the matrix A ∈ {0,1}m×n and 1 is an m-dimensional vector of ones. We denote the
row index set by I = {1,2, . . . ,m} and the column index set by J = {1,2, . . . , n}. The set
partitioning problem is used to model many important applications, including vehicle routing
[4], crew scheduling for airlines [23], and many others. The reader may see the bibliography
of [3] for a list of many other successful practical applications of the SPP.

Given its practical relevance, it is no surprise that significant research has been done on
solution approaches for (SPP). Exact solution approaches include those based on integer
programming [23, 16, 6] and constraint programming [24, 27]. Heuristic methods for solving
the problem may use mathematical programming as an integral component, [2, 20, 7], or
they may be based on meta-heuristics [19, 8].

Our work will have applicability for solution methods that are based on enumeration. We
investigate a new branching method that exploits the structure of the constraints in (SPP).
Each row in (SPP) is of the form ∑

j∈Ji

xij = 1, (1)

where for each row i∈ I, Ji = {j ∈ J | aij = 1} is the set of columns that intersects that row.
The constraints ensure that the ground set of rows is partitioned—exactly one column in
J must intersect with each row of I. The constraints (1) are often called Specially Ordered

119

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
120 ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS

Sets of Type 1 (SOS-1), implying that in the set of variables Ji at most one of the variables
is allowed to be positive. We will also refer to the constraints (1) as Generalized Upper
Bound (GUB) constraints.

In a linear programming (LP)-based branch and bound approach to solving (SPP), if the
LP relaxation to (SPP) is fractional, the problem must be recursively divided into smaller
subproblems by branching. It is part of the computational integer programming folklore that
traditional variable branching—where a single fractional variable xj is selected, and two child
subproblems enforcing either xj = 0 or xj = 1 are created—is ineffective for solving (SPP).
The fundamental problem is that the search tree can become “imbalanced”. Specifically,
branching on a single variable does a very poor job of balancing the number of feasible
solutions allocated to each side of the branching dichotomy. The xj = 0 branch still contains
a very large percentage of feasible solutions, and the xj = 1 branch will have a very small
percentage of the feasible solutions.

To overcome this imbalance, a traditional method of branching in integer programs that
have GUB constraints (1) is to choose a subset Q ⊂ Ji of the variables appearing in row
i∈ I and to enforce that either∑

j∈Q
xj = 1 or

∑
j∈Ji\Q

xj = 1.

Note that since all feasible solutions satisfy (1), this branching dichotomy is equivalent to∑
j∈Ji\Q

xj = 0 or
∑
j∈Q

xj = 0, (2)

and (2) has significant computational advantage, since it may be implemented by fixing
bounds xj = 0 ∀j ∈ Ji \Q on the first branch and xj = 0 ∀j ∈Q on the second branch. Com-
putational experiments demonstrating the superiority of GUB branching over traditional
variable branching on some instances were given by [10, 17, 12].

Another branching methodology for SPP was proposed by Ryan and Foster [25]. This
method is based on the logic that in any feasible solution to (SPP), each pair of rows (p, q)∈
I × I is either covered by the same column or by two different columns. The branching
rule is especially relevant in column-generation-based approaches to solving (SPP), since
the branching restrictions may be enforced without modifying the structure of the pricing
subproblem [5]. There have been some computational studies that demonstrate that the rule
may also be useful for (SPP) instances not solved by column generation [26, 13, 1].

In this paper, we propose a generalization of the Ryan-Foster branching method that we
call the row-partition branching method. We will discuss implementation issues associated
with the method and perform an empirical comparison of the proposed method with other
branching methods designed for (SPP). The paper is organized into five sections. In Section 2
we describe the proposed branching method, while Section 3 deals with implementation
issues associated with the method. We report on a series of computational experiments in
Section 4, and we offer some conclusion about the new method in Section 5.

2. Row-Partition Branching

In Row-Partition Branching, a subset of the rows is selected, and variables are partitioned
according to the number of rows that each variable covers. In this section, we explain the
method in more detail, including how to implement the branching constraints by only fixing
variable bounds to zero. We also establish the correctness and completeness of the method
by appealing to the Ryan-Foster branching method.

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS 121

2.1. Description

For any subset of rows S ⊆ I with |S|= s, each of the rows in S is covered in any feasible
solution to (SPP). The rows in S may all be covered by exactly one column, or it may take
exactly two columns to cover the rows, or in general it may take up to s different columns to
cover the rows of S. This defines for us a possible branching partition. The number of child
nodes in this branching dichotomy obviously depends on the number of ways s∈Z+ can be
expressed as the sum of positive integers. This value is known as the partition function and
is typically denoted by p(s). For notational purposes, we assume that we may express the
integer partition of s∈Z+ using values βij ∈Z+, where

s=

ni∑
j=1

βij ∀i= 1,2, . . . , p(s),

and numbers βij may be repeated if the same value occurs multiple times in the element of
the partition. For example, p(5) = 7, and the seven ways in which 5 may be expressed as
the sum of positive integers is the following:

(i= 1) 5 = 5

(i= 2) 5 = 4 + 1

(i= 3) 5 = 3 + 2

(i= 4) 5 = 3 + 1 + 1

(i= 5) 5 = 2 + 2 + 1

(i= 6) 5 = 2 + 1 + 1 + 1

(i= 7) 5 = 1 + 1 + 1 + 1 + 1.

We make the additional notation that for each i= 1,2, . . . , p(s), the value

κik = |{j : βij = k}|

is the number of times the value k ∈Z+ appears in the ith element of the partition of s. In
addition, for any subset of rows S ⊂ I, we define the sets of variable indices

Ck(S)
def
=

{
j ∈ J

∣∣∣∣∑
i∈S

aij = k

}
as the variables that cover exactly k elements of S. With this notation, we may express the
row-partition branching dichotomy as

p(s)∨
i=1

(∧
k:κik≥1

∑
j∈Ck(S)

xj = κik

)
, (3)

which merely expresses the logic that the rows of S must be covered by columns that intersect
S according to an element of the integer partition of s.

This is admittedly cumbersome notation, but the idea is very simple. As an example,
suppose that we choose a subset of 5 rows, so |S|= s= 5. In this case, p(5) = 7 and there
seven ways in which the five rows could possibly be covered. A feasible solution could contain

(1) One column in C5(S), or
(2) One column in C4(S) and one column in C1(S), or
(3) One column in C3(S) and one column in C2(S), or
(4) One column in C3(S) and two columns in C1(S), or
(5) Two columns in C2(S) and one columns in C1(S), or

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
122 ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS

(6) One columns in C2(S) and three columns in C1(S), or
(7) Five columns in C1(S).
These are all the possibilities for covering S, so we can create 7 child nodes from the

current branching tree node as in Figure 1. An algebraic description of the constraints

Figure 1. Branching Nodes for Row-Partition Branching with s = 5

P

1 2 3 4 5 6 7

enforcing the branching logic for each of the child nodes shown in Figure 1 is

Node 1:
∑

j∈C5(S)

xj = 1;

Node 2:
∑

j∈C4(S)

xj = 1,
∑

j∈C1(S)

xj = 1;

Node 3:
∑

j∈C3(S)

xj = 1,
∑

j∈C2(S)

xj = 1;

Node 4:
∑

j∈C3(S)

xj = 1,
∑

j∈C1(S)

xj = 2;

Node 5:
∑

j∈C2(S)

xj = 2,
∑

j∈C1(S)

xj = 1;

Node 6:
∑

j∈C2(S)

xj = 1,
∑

j∈C1(S)

xj = 3;

Node 7:
∑

j∈C1(S)

xj = 5.

We give another example for the case that S = {r, p, q}. The three rows may be partitioned
in p(3) = 3 ways, resulting in a 3-way branching and demonstrate on the matrix

A=

x1 x2 x3 x4 x5 x6

rowr 1 1 0 1 0 0
rowp 1 1 1 0 1 0
rowq 1 0 1 0 0 1

. (4)

The three rows may be partitioned in p(3) = 3 ways, resulting in a 3-way branching. If there
exists a column j ∈ J that intersects all three rows {r, p, k}, then fixing such a variable
to 1 will cover all 3 rows. In (4), this is done by fixing x1 to 1. Second, we can cover S
with 2 variables by choosing one variable from the set that intersects S exactly twice and
another variable that intersects S exactly once. In our example, this implies the branching
constraints (x2 +x3 = 1) and (x4 +x5 +x6 = 1). The final way to cover the rows in S is by
using variables that intersect S exactly once. In our example, it would be implemented by
the constraints x4 +x5 +x6 = 3.

For the case that |S|= s= 2, the row-partition branching method is exactly the branching
rule of Ryan and Foster [25]. The partition function p(2) = 2, and the elements of the

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS 123

partition are (2 = 2,2 = 1+1), which gives rise to the branching rule suggested by Ryan and
Foster. Specifically, one picks a pair of rows S = (p, q)∈ I × I and enforces that∑

j∈C2({p,q})

xj = 1 or
∑

j∈C1({p,q})

xj = 2, (5)

ensuring that the rows in S must be covered by exactly 1 column, or they are covered by
exactly 2 columns.

2.2. Fixing Variable Bounds

As described, the row-partition branching enforces constraints on the cardinality of sets of
variables that intersect the given branching set S a specified number of times. The straight-
forward manner to implement this branching methodology is by adding constraints to the
child subproblems.

While there is some recent work in integer programming on choosing good branching
constraints [22, 9], there are significant computational benefits to using branching rules that
only change bounds on variables. If only bounds are changed, the size of the basis does
not grow larger and existing matrix factors may be used to hot-start child nodes. Thus, we
prefer to add only bounds when defining child node subproblems in our method.

It is possible to enforce the constraints in the row-partition branching by only fixing
variable bounds. This requires, however, a recursive subdivision of some child nodes that
essentially enumerates the specific rows that will be covered by elements of the partition.

The method is best described with a example for S = {r, p, q}, so that |S|= s= 3. In this
case the branching scheme there are p(3) = 3 branches, since in every feasible solution either

(1)
∑
j∈C3(S)

xj = 1, or
(2)

∑
j∈C2(S)

xj = 1 and
∑
j∈C1(S)

xj = 1, or
(3)

∑
j∈C1(S)

xj = 3.
The first branch can be enforced by setting xj = 0 ∀j ∈C1(s)∪C2(s), and the third branch

can be implemented by setting xj = 0 ∀j ∈C2(S)∪C3(s).
Only the second branch cannot immediately be implemented by fixing variables. It remains

to enumerate the conditions on which of the 3 rows is covered by a column in C1(S).
Specifically, for the set S = {p, q, r}, we can enumerate the three cases for the row that will
be covered by the column in C1(S). We can then implement the condition

∑
j∈C2(S)

xj = 1
and

∑
j∈C1(S)

xj = 1 with the following three child nodes:
(2a) (Row p): xj = 0 ∀j ∈C3(S),∀j ∈C2({p, q}),∀j ∈C2({p, r}),∀j ∈C1({q, r})
(2b) (Row q): xj = 0 ∀j ∈C3(S),∀j ∈C2({p, q}),∀j ∈C2({q, r}),∀j ∈C1({p, r})
(2c) (Row r): xj = 0 ∀j ∈C3(S),∀j ∈C2({p, r}),∀j ∈C2({q, r}),∀j ∈C1({p, q})
For node (2a), we have designated row p as the the row covered by column that does not

additionally intersect rows q or r. With this additional condition, we can fix xj = 0 if column
j intersects all of rows rows p, q and r, or it if it intersects p and q or p and r. Additionally,
since the other two rows (q and r) in S must then be covered by exactly one column at node
(2a), we can fix variables xj to zero where j ∈C1({q, r}). The logic for nodes (2b) and (2c)
are similar. Thus to implement our row-subset branching for |S| = 3, wherein we only fix
variables to zero, we require 5 child nodes. (1), (2a), (2b), (2c), and (3).

It can be shown that by a similar recursive procedure, one can implement row-partition
branching by only fixing variables to zero at each of the child nodes. However, due to
the enumeration that must be done, the number of child nodes starts to grow rapidly.
For example, to implement 4-row partition branching by fixing only variables, one requires
15 child nodes. Our preliminary computational results for 4-partition branching were not
encouraging, so the remainder of our computational results will be on evaluating the row-
partition branching method for s≤ 3.

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
124 ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS

2.3. Correctness of Row-Partition Branching

The correctness and completeness of the row-partition branching method follows from a
similar analysis of the Ryan-Foster method, which as previously explained, is merely the
row-partition branching method for the case s= 2.

Definition 1. A set of rows S ⊆ I is called compatible with a fractional solution x̂ if
the solution x̂ is not in the feasible region of any child node created by the row-partition
branching rule (3).

As pointed out in [5], if there is a basic fractional solution x̂ to the linear programming
relaxation of (SPP), then there must be at least two rows p, q ∈ I such that

0≤
∑

j∈J:apj=1,aqj=1

x̂j < 1.

Thus, if x̂ is a fractional basic solution, then there must exist two columns j′ ∈ J , j′′ ∈ J ,
with 0< x̂j′ , x̂j′′ < 1 and two rows p∈ I, q ∈ I that form the “forbidden” [15] submatrix:

(j′ j′′

p 1 1
q 0 1

)
.

This implies that there always exists a compatible branching set of size s= 2 for a fractional
basic solution x̂. For larger values of |S|= s, we cannot always ensure that the current frac-
tional solution x̂ will be changed on each branch, but our selection mechanism for choosing
the subset S on which to perform row-partition branching will always consider using sets of
size s= 2, so we can conclude that the branching method is complete and correct.

3. Implementation

In our implementation, we must select either a pair of rows S = {p, q} or a triple of rows
S = {p, q, r} in order to perform row-partition branching. Given a fractional solution x̂,
there may be many compatible pairs or triples of rows. In this section, we discuss issues
related to implementing the method and making a good selection for a row-subset without
enumerating all possible pairs or triples.

3.1. Pseudocosts

The ranking mechanisms in our method rely heavily on pseudocosts. Recall that the (down)
pseudocost ψ−j of a binary variable j is an estimate of the rate of change of the optimal
objective value of the LP relaxation if the variable is fixed to take value 0. Likewise, the (up)
pseudocost ψ+

j of a binary variable xj is an estimate of the rate of change of the optimal
objective value of the LP relaxation if the variable is fixed to take value 1. Our implemen-
tation uses the callable library of the commercial optimization package CPLEX, which has
a function CPXgetcallbackpseudocosts() which will return the values ψ−j ,ψ

+
j ∀j ∈ J . We

define

F(x̂)
def
= {j ∈ J : 0< x̂j < 1}

as the set of fractional variables in a given solution x̂ and the set Fi(x̂)
def
= F(x̂)∩ Ji as the

set of fractional variables of x̂ that appear in row i∈ I.

3.2. Ranking Rows

The first step in our implementation method is to rank all of the rows of the based on how
“important” this row is with respect to the fractional solution x̂. This is an important step

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS 125

that we use in order to generate a good branching set without completely enumerating all
pairs or triples of rows. Rows are ranked (from highest to lowest) according to the score

Ψi(x̂) =
∑
j∈Fi

ψ−j x̂j . (6)

The value Ψi(x̂) is an estimate of how much the objective value of the LP relaxation would
change if each fractional variable from row i∈ I was (individually) set to zero. We justify the
ranking mechanism (6) by noting that in row-partition branching, each variable xj , j ∈ Ji
will be set to zero on one of the branches.

3.3. Finding Good Branching Row Sets

Even if the elements of a pair or triple of rows each have a high score according to (6),
together they may not lead to a good branching set for row-partition branching. In fact,
they may not even be compatible according to Definition 1. We therefore must consider
how the rows “fit-together” with respect to the current fractional solution x̂. As previously
mentioned, we would like to avoid enumerating of all pairs or triples. Our heuristic for
finding a good branching row set is to find a good pair of rows and to then see if the pair
can be augmented with a third row that seems likely to significantly improve the strength
of our branching decision.

The first step of our method is to create a collection of at most δ1 “good” pairs of
compatible rows. Row pairs are considered for compatibility in the ordered generated by
their row-specific rank from (6). We call this list of initial compatible candidates pairs P. For
each pair (p, q)∈P, we loop over the rows q ∈ I \{p, q} and determine if the set S = {p, q, r}
is compatible and if the resulting 3-row partition branching is likely to be a “strong” branch.

For our method, we need a mechanism to compare the relative strength of row partition
branches coming from different sets S. To compute the score for a set of rows S, we estimate
the change for each child node using pseudocosts. Since we only implement row-partition
branching for |S| = s ∈ {2,3}, it is simple to explicitly write down the formulas for the
estimated increase in LP relaxation objective value for each child.

If |S|= s= 2, the estimated LP increase on each child node is

Node 1: D1(x̂, S) =
∑

j∈C1(S)

ψ−j x̂j

Node 2: D2(x̂, S) =
∑

j∈C2(S)

ψ−j x̂j .

These two values are combined into a single score by taking a weighted sum of the scores
of the individual child nodes, with some extra emphasis given for the sets that ensure that
the minimum improvement is as large as possible, as is suggested to be important in [21].

Υ2(S) =D1(S) +D2(S) +λmin{D1(S),D2(S)}. (7)

If S = {p, q, r} has s= 3 elements, the calculation of a score for ranking different possible
3-sets is a bit more involved, but is based on the variable zero-fixing explained in Section 2.2.
If we let Fn be the set of variables fixed to zero on node n∈ {1,2a,2b,2c,3}, we have

F1(S) =C1(S)∪C2(S)

F2a(S) =C3(S)∪C2({p, q})∪C2({p, r})∪C1({q, r})
F2b(S) =C3(S)∪C2({p, q})∪C2({q, r})∪C1({p, r})
F2c(S) =C3(S)∪C2({p, r})∪C2({q, r})∪C1({p, q})
F3(S) =C2(S)∪C3(S),

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
126 ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS

and we can define the estimated LP change on each node n as

En(S) =
∑

j∈Fn(S)

x̂jψ
−
j .

Again, these five values are combined into a single score by adding the individual contribu-
tions and giving extra weight to the smallest value.

Υ3(S) =
∑
n∈N3

En(S) +λ min
n∈N3

En(S). (8)

In both Equations 7 and 8, we use λ= |S|.
If we do “pure” Ryan-Foster (or s= 2) branching, we choose to branch on the set

S∗2 ∈ arg max
S∈P

Υ2(S). (9)

If we do “pure” 3-row partition branching, we choose to branch on the set

S∗3 ∈ arg max
(p, q, r) : (p, q)∈P, q ∈ I such that {(p, q, r)} is compatible

Υ3({p, q, r}). (10)

If we are attempting to do 3-row partition branching, and there are no compatible triples
of rows, we branch on the pair given by (9).

As a final branching method, we consider a “dynamic” method that may choose to do
3-row partition branching only if the resulting child nodes are estimated to be “strong”
compared to the best two-row set. In this method, we choose the set specified by S∗3 if
instead of S∗2 if

Υ3(S∗3)>
5

2
Υ2(S∗2). (11)

4. Computational Results

In this section, we empirically demonstrate the performance of Row-Partition branching. We
also test the performance of other branching methods designed to exploit the structure of
GUB constraints. We will describe our implementation of these branching methods, explain
the test set of SPP instances used, and describe the results.

4.1. Branching variations

The SPP-specific branching methods we compare to the row-partition method are GUB
branching and multi-node branching. We briefly describe each of these methods, including
necessary algorithmic choices for implementation. It was not the goal of this line of research
to do an exhaustive investigation of branching methods, but rather we attempted to imple-
ment “reasonable” selection mechanisms for each comparative branching methodology.

4.1.1. GUB Branching As explained in the introduction, GUB branching is one of the
most traditional branching methods designed to exploit the structure of the GUB constraints
appearing in (SPP). If row i ∈ I is selected for branching, a subset Q⊂ Ji of the variables
is selected and child nodes are created to enforce∑

j∈Ji\Q

xj = 0 or
∑
j∈Q

xj = 0.

In our implementation, given a fractional solution x̂, we perform GUB branching on the
row i∗ ∈ I of the SPP instance that has the highest score (6):

i∗ ∈ arg max
i∈I

Ψi(x̂). (12)

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS 127

The set Q is selected by choosing a “branch point” within the set Ji that attempts to put
1/2 of the current fractional solution x̂ on variables in Q and 1/2 in Ji \Q. This can be
implemented by choosing a “branch point”

B =
∑
j∈Ji

ord(j) x̂j ,

where ord(j) is the order of the element j in the set Ji. With this definition, the set Q is
simply

Q= {j ∈ Ji | j <B}.

4.2. Multi-Node Branching

In multi-node branching, each fractional variable appearing in the row is individually set
to 1 on a child node, with one child node handling the case in which all of these variables
simultaneously take the value 0:(∨

j∈Fi(x̂)

(xj = 1)

)
∨
(∑
k∈Fi(x̂)

xk = 0

)
.

This branching rule is part of the computational integer programming folklore. It has been
used in [18] to create strong valid inequalities for MIP instances that contains GUB con-
straints. An example multinode branching dichotomy is given in Figure 2, where Fi(x̂) =
{j1, j2, j3}.

Figure 2. Example of (MN) branching

P

1 2 3 4xj1 = 1 xj2 = 1 xj3 = 1
∑

t∈{j1,j2,j3} xt = 0

In our implementation, to determine the row i ∈ I on which to perform the multinode
branching, we compute the average estimated change in the LP relaxation value and select
the row i∗ ∈ I with the largest average estimated change:

i∗ ∈ arg max
i∈I

∑
j∈Fi(x̂)

(1− x̂j)ψ+
j +

∑
j∈Fi(x̂)

x̂jψ
−
j

|Fi(x̂)|+ 1
. (13)

In (13), for computing the estimated change to LP relaxation value, the “down” pseudocosts
are only counted for the “all-zero” branch.

4.3. Test set

Assessing the performance of branching methods is not simple. There are many factors that
affect the performance of each branching method other than the branching decision. For
example, performance is dramatically affected by the existence of a high-quality feasible
solution to be used in pruning. Also, advanced integer programming features found in mod-
ern codes, such as presolve ans cutting planes can interact with the instance in a manner
that is difficult to anticipate. And recently authors have demonstrated that there is large
inherent variability in the search procedure itself [14]. Put together, these factors contribute
to a very large variance in the results, which may make it difficult to draw a meaningful
conclusions about the relative performance of methods. For this reasons, it is necessary to
conduct experiments with a large number of instances.

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
128 ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS

The first family of instances in our test set are publicly available (SPP) instances from
MIPLIB and COR@L. For each of these “base” instances, we create 30 scrambled instances
by randomly changing the order of the rows and columns. Every scrambled instance has
the same objective value as the original instance but has a different coefficient matrix. The
second family of instances in our test set are constructed randomly. Each element aij is
an (independent) Bernoulli random variable with parameter µ. In the instances, we induce
some correlation between the magnitude of the objective function coefficient for variable
j and the number of ones in its associated column of A. These correlated-coefficient(CC)
instances mimic characteristics of those seen in practice. For example, in crew-scheduling the
rows represent flight legs in a schedule, and the cost of a crew pairing should be correlated
to the number of flight legs in the pairing. The random instances have sizes ranging from
100≤m≤ 1000 and 1100≤ n≤ 14000 variables. The instances are categorized as “sparse” if
µ< 0.02, and “dense” otherwise. We also create instances that have set packing constraints
of the form ∑

j∈Ji

xj ≤ 1. (14)

These constraints can easily be transformed into GUB constraints (1) by the addition of
a slack (binary) variable. The instances subsequently categorized as “PAC” instances may
have some fraction of their constraints as (14). The instances labeled as PAR are pure set
partitioning.

4.4. Experimental Settings

We implemented the branching methods using the branching callback methods available
in CPLEX 12.5. We attempted to use nearly all CPLEX default settings, with two major
exceptions. First, we disable the presolve aggregation option in CPLEX, since this may
modify the structure of the instance so it is no longer a pure SPP instance, which makes
performing our branching methods via callback difficult. Second, since branching methods
are primarily designed to improve the lower bound of the search, we felt that we may remove
a source of variation in performance if we instructed CPLEX to perform a “pure” best-
bound search. Thus, for our experiments, we used all CPLEX default parameters except the
following:

CPX_PARAM_AGGIND = 0

CPX_PARAM_MIPSEARCH = CPX_MIPSEARCH_TRADITIONAL

CPX_PARAM_NODESEL = 1 (Best Bound)

CPX_PARAM_BBINTERVAL = 1 (Always Choose)

CPX_PARAM_BTTOL = 0.0 (Most backtrack)

Our computational experiments were run on a cluster of machines that are scheduled via
the HTCondor scheduling mechanism. The hardware on the machines running the experi-
ments was not identical, so traditional measures of performance (such as CPU time) are not
directly relevant. Instead, we use as a primary measure of effectiveness the number of nodes
required to solve the problem to optimality.

4.5. Experiments and Results

For the different classes of instances, we compare the following six different branching
methods:

(1) CPLEX: CPLEX default branching
(2) GUB: Our GUB branching implementation described in Section 4.1.1
(3) MN: Multinode-branching described in Section 4.2
(4) 2R: Two row (Ryan-Foster) branching with the branching set selected by (7)
(5) 3R: Three row partition-branching with the branching set selected by (8)

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS 129

(6) DM: The “dynamic method” that attempts to determine if the (compatible) 3R
branching is more effective than 2R branching using (11).

To limit the search for effective row pairs or row triples, we use the parameter δ1 = 100.
Thus, when considering 2R, 3R, or DM branching, the initial candidate set of row pairs
has cardinality |P| ≤ 100.

We summarize the outcome of the computational results by breaking the instances into
different categories. For the randomly constructed instances, the categories are based on the
size of the instance and whether or not the instance contained some percentage of set packing
constraints or if it was a pure set partitioning instance. For these instances, the (arithmetic)
average number of nodes explored by each method, the number of times the method reached
the CPU limit of 3 hours, and the number of times each method resulted in the smallest
search tree is reported for each category of instances in Table 1. The computational results
show that in terms of nodes explored, the 2-row-partition branching method, the 3-row

Table 1. Results Summary of CC instances

avg node explored # time to win # reach time limit

PAR, sparse, small size of m (m=100, 200), n∈ [1100,5900], 85 instances
CPLEX 3.07E+05 4 0

DM 84776 25 1
3-Row 84563 24 0
2-Row 86530 26 1
GUB 1.48E+06 0 14
MN 3.94E+05 7 10

PAR, sparse, medium size of m (m=300, 400), n∈ [1800,10800], 68 instances
CPLEX 9.97E+05 3 10

DM 94758 17 0
3-Row 95760 14 2
2-Row 99484 34 0
GUB 1.10E+06 1 13
MN 4.60E+05 1 27

PAR, sparse, large size of m (m=500, 600, 700, 800, 1000),n∈ [2000,14000], 54 instances
CPLEX 7.20E+05 1 8

DM 77716 15 2
3-Row 77564 10 2
2-Row 86218 23 2
GUB 4.75E+05 4 11
MN 2.75E+05 1 13

PAR, dense, small size of m (m=100, 200), n∈ [1200,10100], 55 instances
CPLEX 60724 8 0

DM 59364 9 0
3-Row 63437 5 0
2-Row 74144 6 1
GUB 4.47E+05 0 2
MN 72299 30 0

PAR, dense, large size of m (m=300,400,500,700), n∈ [3300,8800], 33 instances
CPLEX 31159 6 4

DM 29566 8 2
3-Row 31896 6 4
2-Row 30154 6 3
GUB 3.62E+05 5 5
MN 1.62E+05 4 5

PAC, sparse (m=100,200,300), n∈ [2000,6700], 141 instances
CPLEX 1.27E+05 31 0

DM 58772 32 6
3-Row 61332 29 6
2-Row 44514 48 7
GUB 1.70E+06 0 20
MN 4.18E+05 9 17

PAC, dense (m=100,200,500), n∈ [1300,9100], 63 instances
CPLEX 22120 22 0

DM 20345 11 0
3-Row 21836 14 3
2-Row 30504 9 3
GUB 2.66E+05 1 9
MN 1.32E+05 14 8

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
130 ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS

Figure 3. Performance comparison—number of nodes explored—CC instance

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of nodes explored

P
e

rf
o

rm
a

n
c
e

CPLEX
DM
3R
2R
GUB
MN

(a) PAR instance

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of nodes explored

P
e

rf
o

rm
a

n
c
e

CPLEX
DM
3R
2R
GUB
MN

(b) PAC instance

partition branching method, and the dynamic method are all of comparable quality, and all
appear to perform better than all other methods. The results over instances solved by each
method are summarized with performance profiles [11] in Figure 3.

Table 2 summarizes the computational results of the different branching methods on the
publicly-available instances used in our tests. In the table, both the arithmetic average of
the number of nodes and the standard deviation of the number of nodes is reported from
the 30 different scrambled versions of the same instance. The computational results again
show that the row-partition-based methods perform well, but the improvement over the
default branching mechanism of CPLEX is less pronounced. The performance profile given in
Figure 4 shows that the Ryan-Foster branching method is most effective on these instances.

In a final experiment, we compared CPLEX default with 2R branching and the dynamic
method DM on large, randomly-generated instances that were very difficult to solve. The
results of this experiment are reported in Table 3. The instances are named Par-m-n-nz,
where m is the number of rows, n is the number of columns, and nz is the number of nonzero
elements in the A matrix. For these larger instances, it seems that doing branching based
on a 3-row partition can lead to significant computational improvement.

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS 131

Table 2. Results Summary of Benchmark instance

instances CPLEX DM 3R 2R GUB MN
Node Std Node Std Node Std Node Std Node Std Node Std

eil33.2(30 instances) 10667 1824 3190 656 3206 817 3277 642 12060 2545 5168 823
eilA76(30 instances) 137.4 61 63 32 64.2 31 67.1 39.3 114.2 81 76.7 40.4
eilB76(30 instances) 436.5 208 268.1 162 272 145 199.7 68 497.1 382 290.3 174
eilC76(30 instances) 85.8 61 29.1 20 28.2 16 23.7 10.4 45.8 28 40.6 14.3
eilD76(30 instances) 128.2 42 36 10.2 36.1 9.9 29 9.3 53.1 17.6 81.7 20.9
eilB101(30 instances) 13382 6814 3033 967 3127 1270 2648 931 4059 2262 4304 1812
air04(30 instances) 279.1 171 941.1 845 878 869 1201 1505 12539 17925 3012 3180
air05(30 instances) 1243 488 1470 546 1626 567 1216 512 4791 2045 3210 1579
nw04(30 instances) 116.7 138 65.1 71 63.5 71.7 68.8 67.9 302 325 169 143
bills.SF(30 instances) 164.3 72.5 152.1 96 147.8 55 129.7 84 151.2 91.7 150.4 90.1
eilC76.2(30 instances) 23414 5357 3295 1100 3816 1721 3343 1031 21925 13921 12045 3635
eilD76.2(30 instances) 1.3e5 29154 30357 9140 29820 8673 20073 5259 1.8e5 64290 27813 5218
eilB101.2(30 instances) 20189 9821 3004 1784 2679 1318 2918 1679 31836 98965 7046 3879

Figure 4. Performance comparison - number of nodes explored - benchmark instance

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of nodes explored

P
e

rf
o

rm
a

n
c
e

CPLEX
DM
3R
2R
GUB
MN

benchmark instance

Table 3. Results for very large instances

instances CPLEX DM 2R time limit
Node explored Node explored Node explored (hrs)

Par-400-6800-104337 ≥1.77E+07 1.34E+006 *8.77E+005 20
Par-400-7400-114035 1.52E+07 *2.53E+006 ≥ 3.04E+006 20
Par-400-8200-127005 4.81E+06 1.47E+006 *9.36E+005 20
Par-400-9800-152875 2.12E+07 *1.97E+006 3.33E+006 20
Par-500-7300-138394 ≥2.54E+06 6.29E+005 *4.48E+005 20
Par-500-9700-187030 ≥2.62E+06 *1.24E+006 ≥ 2.67E+006 20
Par-500-9900-191019 ≥4.97E+06 *1.38E+006 1.56E+006 20
Par-800-5800-123219 ≥ 1.04E+007 *6.80E+005 1.38E+006 20
Par-800-7800-228002 ≥ 8.49E+006 *1.06E+006 ≥ 1.42E+006 20
Par-900-9700-275822 2.83E+006 *3.70E+004 2.83E+005 20
Par-900-9900-362228 ≥ 3.61E+006 *1.53E+006 ≥ 1.42E+006 20
Par-1000-9000-485532 ≥ 7.79E+006 *4.11E+005 ≥ 2.46E+006 20
Par-1000-12000-667103 ≥ 3.82E+006 *7.27E+005 1.85E+006 20
Par-1000-14000-657909 9.49E+005 *2.06E+005 5.39E+005 20
Par-800-7600-177515 ≥1.57E+06 *2.64E+006 ≥ 2.22E+006 30

5. Conclusion

In this study, we described a novel branching strategy based on partitioning a subset of the
rows for set partitioning and set packing problems. The method is a natural generalization of

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
132 ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS

the Ryan-Foster method. We described an implementation that attempts to choose a “good”
subset of rows on which to base the branching, and demonstrated through computational
experiments that the method may hold some promise as a methodology for branching for
these classes of problems. We plan to continue to work on testing additional methods for
selecting the branching set, and we hope to identify classes of instances for which row-
partition branching is effective for row-subset of size s > 3.

References
[1] J. Appleget and R. K. Wood. Explicit-constraint branching for solving mixed-integer programs.

In M. Laguna and J. Velarde, editors, Computing Tools for Modeling, Optimization and Simu-
lation, volume 12 of Operations Research/Computer Science Interfaces Series, pages 245–261.
Springer US, 2000.

[2] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. A combined Lagrangian, linear
programming, and implication heuristic for large-scale set partitioning problems. Journal of
Heuristics, 1:247–259, 1995.

[3] E. Balas and M. Padberg. Set partitioning: A survey. SIAM Review, 18:710–760, 1976.

[4] M. Balinski and R. Quandt. On an integer program for a delivery problem. Operations Research,
12:300–304, 1964.

[5] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch
and price: Column generation for solving huge integer programs. Operations Research, 46:316–
329, 1998.

[6] M.A. Boschetti, A. Mingozzi, and S. Ricciardelli. A dual ascent procedure for the set parti-
tioning problem. Discrete Optimization, 5:735–747, 2008.

[7] D. Bredström, K. Jörnsten, M. Rönnqvist, and M. Bouchard. Searching for optimal integer
solutions to set partitioning problems using column generation. International Transactions in
Operational Research, 21:117–197, 2014.

[8] P. C. Chu and J. E. Beasley. Constraint handling in genetic algorithms: The set partitioning
problem. Journal of Heuristics, 4:323–357, 1998.

[9] G. Cornuéjols, L. Liberti, and G. Nannicini. Improved strategies for branching on general
disjunctions. Mathematical Programming, 130:225–247, 2011.

[10] H. Crowder, E. L. Johnson, and M. W. Padberg. Solving large scale zero-one linear program-
ming problems. Operations Research, 31:803–834, 1983.

[11] E. Dolan and J. Moré. Benchmarking optimization software with performance profiles. Math-
ematical Programming, 91:201–213, 2002.

[12] L. Escudero. S3 sets. An entenion of the Beale-Tomlin special ordered sets. Mathematical
Programming, 42:113–123, 1988.

[13] M. Esö. Parallel Branch and Cut for Set Partitioning. PhD thesis, Department of Operations
Research and Industrial Engineering, Cornell University, 1999.

[14] M. Fischetti and M. Monaci. Exploiting erraticism in search. Operations Research, 62:114–122,
2014.

[15] A. Hoffman, A. Kolen, and M. Sakarovitch. Totally balanced and greedy matrices. SIAM
Journal on Algebraic and Discrete Methods, 6:721–730, 1985.

[16] K. Hoffman and M. Padberg. Solving airline crew-scheduling problems by branch-and-cut.
Management Science, 39:667–682, 1993.

[17] W. Hummeltenberg. Implementations of special ordered sets in MP software. European Journal
of Operations Research, 17:1–15, 1984.

[18] M. Kılınç, J. Linderoth, J. Luedtke, and A. Miller. Strong branching inequalities for convex
mixed integer nonlinear programs. Computational Optimization and Applications, 59:639-665,
2014.

[19] D. Levine. A Parallel Genetic Algorithm for the Set Partitioning Problem. PhD thesis, Illinois
Institute of Technology, Chicago, IL, 1995.

[20] J. T. Linderoth, E. K. Lee, and M. W. P. Savelsbergh. A parallel, linear programming based
heuristic for large scale set partitioning problems. INFORMS Journal on Computing, 13:191–
209, 2001.

[21] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies in mixed
integer programming. INFORMS Journal on Computing, 11:173–187, 1999.

Cho and Linderoth: Row-Partition Branching for Set Partitioning Problems
ICS-2015—Richmond, pp. 119–133, c© 2015 INFORMS 133

[22] A. Mahajan and T. K. Ralphs. Experiments with branching using general disjunctions. In
Proceedings of the Eleventh INFORMS Computing Society Meeting, pages 101–118, 2009.

[23] R. E. Marsten and F. Shepardson. Exact solution of crew problems using the set partitioning
mode: Recent successful applications. Networks, 11:165–177, 1981.

[24] T. Müller. Solving set partitioning problems with constraint programming. In Proceedings of the
Sixth International Conference on Practical Applications of Prolog and the Fourth International
Conference on the Practical Application of Constraint Technology – PAPPACT98, pages 313–
332, London, U.K., 1998. The Practical Application Company Ltd.

[25] D. Ryan and B. Foster. An integer programming approach to scheduling. In A. Wren, editor,
Computer Scheduling of Public Transport, pages 269–280. North Holland, Amsterdam, 1981.

[26] M. B. Ryoo. A constraint branch-and-bound method for set partitioning problems. Master’s
thesis, Naval Postgraduate School, Monterey, CA, 1990.

[27] R. Saldanha and E. Morgado. Solving set partitioning problems with global constraint propa-
gation. In F. M. Pires and S. Abreu, editors, Progress in Artificial Intelligence, volume 2902
of Lecture Notes in Computer Science, pages 101–115. Springer, 2003.

	Introduction
	Row-Partition Branching
	Description
	Fixing Variable Bounds
	Correctness of Row-Partition Branching

	Implementation
	Pseudocosts
	Ranking Rows
	Finding Good Branching Row Sets

	Computational Results
	Branching variations
	GUB Branching

	Multi-Node Branching
	Test set
	Experimental Settings
	Experiments and Results

	Conclusion

