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Stochastic linear programs can be solved approximately by drawing a subset of all possible

random scenarios and solving the problem based on this subset, an approach known as sample

path optimization. The value of the optimal solution to the sampled problem provides an

estimate of the true objective function value. This estimator is known to be optimistically

biased; the expected optimal objective function value for the sampled problem is lower (for

minimization problems) than the optimal objective function value for the true problem. We

investigate how two alternative sampling methods, antithetic variates and Latin Hypercube

sampling, affect both the bias and variance, and thus the mean squared error (MSE), of

this estimator. For a simple example, we analytically express the reductions in bias and

variance obtained by these two alternative sampling methods. For eight test problems from

the literature, we computationally investigate the impact of these sampling methods on

bias and variance. We find that both sampling methods are effective at reducing mean

squared error, with Latin Hypercube sampling outperforming antithetic variates. Whether

the bias reduction or variance reduction plays a larger role in MSE reduction is problem and

parameter specific.

Key words: stochastic programming; sample path optimization; antithetic variates; Latin

Hypercube sampling
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1. Introduction

Two-stage stochastic linear programs arise in a variety settings. At the first stage, values

are chosen for a set of design variables; for example, the design variables may represent a set

of production line capacities, while the second stage decisions may be production quantities.

The objective function of the first-stage problem requires us to evaluate the expected value

of the solution to a second-stage linear program (e.g., a production scheduling problem),

some of whose parameters (e.g., demand) are stochastic. Furthermore, the design variables

from the first stage appear in the constraints of the second-stage linear program (LP). Early

formulations of this problem were given by Dantzig (1955) and Beale (1955).

The motivation for this paper is the efficient solution of such two-stage design problems.

Throughout the paper we adopt a modified version of the notation for two-stage stochastic

programs presented by Kleywegt and Shapiro (2001):

MP : z∗MP
def
= min

x
Eω [Q(x, ω)] + g(x), s.t. Ax = b, x ≥ 0,

where g(x) is a deterministic function of x, and Q(x, ω) represents the optimal objective

function value of the second-stage problem:

P : Q(x, ω)
def
= min

y
q(ω)T y, s.t T (ω)x + W (ω)y = h(ω), y ≥ 0.

Here q(ω) ∈ Rn, T (ω) ∈ R`×m, W (ω) ∈ R`×n, and h(ω) ∈ R` may be random (functions

of the realization ω). When g(x) = cT x and W (ω) is deterministic, we have a two-stage

stochastic linear program with fixed recourse.

Standard solution methods, such as the L-shaped method, suppose that the random com-

ponents of the problem have finite support. If there are K possible realizations (scenarios),

each with probability pk, an equivalent extensive form of MP can be written:

EF : min
x,y1,...,yK

K∑
i=1

piq(ωi)
T yi + g(x), s.t.

Ax = b, x ≥ 0, T (ωi)x + W (ωi)yi = h(ωi), yi ≥ 0, i = 1, 2, . . . , K.

The L-shaped method takes advantage of this problem’s structure by performing a Dantzig-

Wolfe decomposition of the dual or a Benders decomposition of the primal (Birge and Lou-

veaux, 1997).

In many practical problems the number of possible scenarios K is prohibitively large,

so a Monte Carlo approximation of MP is used. We will refer to this approach as sample
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path optimization. The idea is to draw N realizations (sample paths) and optimize over this

representative sample. More specifically, let MPN(ω1, . . . , ωN) denote a realization of the

N -sample path problem. That is,

MPN : z∗MPN (ω1,...,ωN )

def
= min

x
N−1

N∑
i=1

Q(x, ωi) + g(x). s.t. Ax = b, x ≥ 0.

The solution to MPN is used to approximate the solution to the original problem MP.

In this paper we examine three different sampling procedures for generating the ap-

proximating problem MPN : independent sampling (IS), antithetic variates (AV), and Latin

Hypercube sampling (LH). Suppose X is a random element of the data {q, T, W, h} having in-

vertible cdf F , so Qi(x, ωi) is a function of X(ωi). Under independent sampling we generate N

independent values {U1, . . . , UN} uniformly distributed on [0,1], and we use X(ωi) = F−1(Ui)

to compute Qi(x, ωi). Under AV, rather than drawing N independent numbers, we draw N/2

antithetic pairs {(Ui, 1−Ui), i = 1, 2, . . . , N/2} to obtain {U1, . . . , UN}. Under LH, the inter-

val [0,1] is divided into N segments, [(i− 1)/N, i/N ], i = 1 . . . , N , and a sample is generated

uniformly from each segment. These samples are shuffled to obtain {U1, . . . , UN}.
We are concerned with the impact of the sampling procedure on the use of z∗MPN

as

an estimator for z∗MP. As with any statistical estimation problem, two important measures

of performance are the estimator’s variance and bias, which are combined as the mean

squared error (MSE). (The MSE is equal to the bias squared plus the variance.) The relative

contribution of variance and bias to MSE is problem- and parameter-specific. In Section 2

we develop an example based on the newsvendor problem in which the fraction of MSE due

to variance changes dramatically with the cost parameters of the problem. In Section 3 we

investigate a series of computational examples from the literature which tell a similar story.

In some problems the bulk of MSE is due to variance, and in others the bias predominates.

The AV, and LH sampling procedures are usually prescribed for reducing variance (Law

and Kelton, 2000), and indeed Higle (1998) investigates the use of AV and other techniques

to reduce the variance of

N−1

N∑
i=1

Qi(x, ωi) + g(x),

which is an unbiased estimate of Eω [Q(x, ω)]+g(x) for an arbitrarily chosen value of x. Here

we are concerned with estimating z∗MP, which is Eω [Q(x, ω)] + g(x) evaluated at x∗MP, the

unknown optimal solution to MP. In Section 2 we derive analytic expressions for the variance
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of the estimator z∗MPN
in the context of the newsvendor problem. We show this variance is

reduced under LH, but the effect of AV depends on the problem parameters. We use this

example to motivate the computational results of Section 3, where the variance reduction

benefits of LH and AV are shown to be highly problem dependent.

In addition to variance reduction, we show the AV and LH sampling procedures may also

reduce the bias of z∗MPN
. Under fairly general conditions, the solution to MPN approaches

that of MP with probability 1 as the number of realizations N increases (Dupačová and

Wets, 1988). However, the solution to MPN is biased in the sense that the expectation of

the optimal objective function value of MPN is less than that of MP . Mak, Morton, and

Wood (1999) show that:

E(ω1,...,ωN )

[
z∗MPN (ω1,...,ωN )

]
≤ E(ω1,...,ωN+1)

[
z∗MPN+1(ω1,...,ωN+1)

]
≤ z∗MP ∀N. (1.1)

A related issue is that the optimal solution x∗N(ω1, . . . , ωN) of MPN may be suboptimal with

respect to the objective function Eω [Q(x, ω)] + g(x) of MP. We refer to:

Eω

[
Q(x∗MPN (ω1,...,ωN )

, ω)
]

+ g
(
x∗MPN (ω1,...,ωN )

)
(1.2)

as the actual cost of the sample path problem and z∗MPN
as the perceived cost.

In Section 2 we show that in the context of the newsvendor problem, AV and LH bring

the both perceived and actual costs closer to z∗MP. (The effect on the perceived cost is

equivalent to reducing the bias of z∗MPN
.) This example is again used to motivate results in

Section 3, where we examine bias reduction in a number of computational examples. This

computational work extends a related paper by Linderoth et al. (2006), which examines the

impact of LH on the bias of z∗MPN
and on an upper bound for z∗MP with a set of empirical

examples.

2. The Newsvendor Problem

In this section we develop an example based on the newsvendor problem in order to illustrate

the effects of different sampling procedures. The newsvendor problem can be expressed as

a two-stage stochastic program as follows. In the first stage we choose an order quantity

x. After demand D has been realized, we decide how much of the available stock y to sell.

Assume demand is uniformly distributed on the interval [0, 1], and there is a shortage cost
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α ∈ (0, 1) and an overage cost 1− α. The second stage problem is

P : Q(x, D)
def
= min

y
{(1− α)(x− y) + α(D − y) | y ≤ x, y ≤ D}.

The solution to P is min(x, D). Let TC(x) be the expected total cost associated with order

quantity x:

TC(x)
def
= E[Q(x, D)]

= E
[
min

y
{(1− α)(x− y) + α(D − y) | y ≤ x, y ≤ D}

]
, (2.1)

so MP is minx TC(x). Furthermore:

TC(x) = (1− α)E(x−D)+ + αE(D − x)+

= (1− α)

∫ x

0

(x− z)dz + α

∫ 1

x

(z − x)dz

= (1− α)
x2

2
+ α

(1− x)2

2
.

The cost-minimizing solution is therefore x∗ = α, and the optimal expected total cost is:

TC∗ def
= TC(α) = (1− α)

α2

2
+ α

(1− α)2

2
=

α(1− α)

2
. (2.2)

The N -sample path version of this problem is:

z∗MPN (D1,...,DN )

def
= min

x
N−1

N∑
i=1

[
(1− α)(x−Di)

+ + α(Di − x)+
]
. (2.3)

The optimal solution x̂ to (2.3) is the dαNethorder statistic of the demands {D1, . . . , DN}.
The kth of N order statistics uniformly distributed on (0, 1) has a Beta distribution with pa-

rameters k,N−k (see Hogg and Craig, 1978, p. 159); therefore, under independent sampling,

x̂ has a Beta distribution with parameters dαNe and (N − dαNe+ 1).

We next compute V ar[z∗MPN
], the variance with respect to demands D1, . . . , DN . The

analysis is based on the following expression for variance involving random variables X and

Y :

V ar(X) = V arY [E(X|Y )] + EY [V ar(X|Y )].

(See, for example, Law and Kelton (2000).) The following equations hold under any sampling
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procedure:

V ar[z∗MPN (D1,...,DN )
] =V ar

[
1

N

N∑
i=1

(1− α)(x̂−Di)
+ + α(Di − x̂)+

]

=V arx̂

[
E

[
1

N

N∑
i=1

(1− α)(x̂−Di)
+ + α(Di − x̂)+

∣∣∣∣∣ x̂

]]

+ Ex̂

[
V ar

[
1

N

N∑
i=1

(1− α)(x̂−Di)
+ + α(Di − x̂)+

∣∣∣∣∣ x̂

]]
. (2.4)

Under independent sampling, x̂ has a Beta distribution with parameters dαNe and (N −
dαNe+ 1), so:

E[x̂] =
dαNe
N + 1

(2.5)

E[x̂2] =
(dαNe)(dαNe+ 1)

(N + 1)(N + 2)
(2.6)

V ar[x̂] =
(dαNe)(N − dαNe+ 1)

(N + 1)2(N + 2)
. (2.7)

Since x̂ is the dαNeth order statistic, dαNe−1 of the demand values are uniformly distributed

below x̂, and the remaining N − dαNe are uniformly distributed above. The first term on

the right side of (2.4) becomes:

V arx̂

[
E

[
1

N

N∑
i=1

(1− α)(x̂−Di)
+ + α(Di − x̂)+

∣∣∣∣∣ x̂

]]

= V arx̂

[
(1− α)

(
dαNe − 1

N

)
1

x̂

∫ x̂

0

(x̂− z)dz + α

(
N − dαNe

N

)
1

1− x̂

∫ 1

x̂

(z − x̂)dx

]
=

(
dαNe − 1 + α− αN

2N

)2

V ar(x̂). (2.8)

The second term on the right side of (2.4) becomes:

Ex̂

[
V ar

[
1

N

N∑
i=1

(1− α)(x̂−Di)
+ + α(Di − x̂)+

∣∣∣∣∣ x̂

]]

= Ex̂

[
1

N2

[
(1− α)2(dαNe − 1)

x̂2

12
+ α2(N − dαNe)(1− x̂)2

12

]]
. (2.9)

Combining (2.4) through (2.9) gives V ar[z∗MPN
] under independent sampling.

We next examine the expected performance of x̂ with respect to the original objective

function TC(·). The expected actual total cost using the sample path optimization solution
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is:

Ex̂ [TC(x̂)] =

∫ 1

0

TC(z)fx̂(z)dz =
1− α

2
E

[
x̂2

]
+

α

2

(
1− 2E [x̂] + E

[
x̂2

])
=

1

2
E

[
x̂2

]
− αE [x̂] +

α

2
. (2.10)

The expected perceived cost of the sample path optimization solution (i.e., E[z∗MPN
]) is:

ED1,...,DN

[
N−1

N∑
i=1

(1− α)(x̂−Di)
+ + α(Di − x̂)+

]

=

∫ 1

0

[
(1− α)

(
dαNe − 1

N

)
1

u

∫ u

0

(u− z)dz + α

(
N − dαNe

N

)
1

1− u

∫ 1

u

(z − u)dz

]
fx̂(u)du

=
(1− α)

2

(
dαNe − 1

N

)
E [x̂] +

α

2

(
N − dαNe

N

)
(1− E [x̂]) . (2.11)

We derive the second line by conditioning on the value of x̂, the dαNethorder statistic, in

which case dαNe − 1 of the demand values are uniformly distributed below x̂, and the

remaining N −dαNe are distributed above. The bias of z∗MPN
under independent sampling

is computed by substituting (2.5) into (2.11) and subtracting (2.2).

Not surprisingly, both the expected actual and expected perceived costs approach the

optimal cost (2.2) as N increases. If αN is integer, the expected actual cost of the sample

path solution (SPS) computed by substituting (2.5) and (2.6) into (2.10) is:

α

2

[
1− αN2 + 4αN −N

(N + 1)(N + 2)

]
,

and the expected perceived cost of the sample path solution computed by substituting (2.5)

into (2.11) is:
α(1− α)

2

(
N

N + 1

)
.

Therefore using (2.2):

Ex̂ [TC(x̂)]

TC∗ =

(
1

1− α

) (
1− αN2 + 4αN −N

(N + 1)(N + 2)

)
, and (2.12)

E
[
z∗MPN (D1,...,DN )

]
TC∗ =

N

N + 1
. (2.13)

Expressions (2.12) and (2.13) approach 1 (from above and below respectively) as N increases.

We can also use expressions (2.4) through (2.9), which provide V ar[z∗MPN
], and expres-

sions (2.5), (2.11) and (2.2), which provide Bias[z∗MPN
], to compute the MSE. It is worth
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N
α

0.6 0.7 0.8 0.9

2 7.4 2.0 79.7 85.3
5 27.6 41.0 25.9 51.7
10 19.4 19.3 19.0 18.0
100 2.9 2.9 2.9 2.9

Table 1: Percent of MSE due to bias in the newsvendor problem

pointing out that the relative importance of variance and bias to MSE in the newsvendor

problem depends greatly on the choice of α and N . Table 1 presents the percent of MSE

due to bias for various combinations of parameter values. Notice that when N is small and

α is close to 1, bias becomes a much more significant issue than variance.

2.1 Antithetic Variates

We next examine the effect of antithetic variates on variance and bias for the newsvendor

problem. Under AV we draw N/2 antithetic pairs {(Di, 1 − Di), i = 1, 2, . . . , N/2}, rather

than N independent values {D1, . . . , DN}. These correlated values are used in the sample

path problem (2.3).

In the subsequent analysis we suppose α > 1/2, although similar computations can be

performed for lower values. The solution to the sample path problem is still the dαNethorder

statistic. With antithetic variates, we know that N/2 of the points will lie below 1/2, so the

solution to the sampled problem in this case, x̂AV , is the dαN−N/2eth order statistic of N/2

random variables uniformly distributed on [1/2, 1]. Hence x̂AV = 1/2 + X/2, where X has a

Beta distribution with parameters dαN −N/2e and N/2− dαN −N/2e+ 1. Therefore:

E[x̂AV ] =
dαNe+ 1

N + 2
, (2.14)

and

V ar[x̂AV ] =
(dαNe −N/2) (N − dαNe+ 1)

4 (N/2 + 1)2 (N/2 + 2)
. (2.15)

If αN and (αN −N/2) are integers, then E[x̂] < E[x̂AV ] < α, so the expectation of the AV

solution is closer to the optimal solution of the original problem. Furthermore Var [x̂AV ] <

Var[x̂].

To compute V ar[z∗MPN
] under AV, we again use (2.4) and condition on the value of

x̂AV . The first term on the right side of (2.4) becomes (2.16). We develop this expression
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by considering the N/2 points that lie between 1/2 and 1 and their corresponding antithetic

pairs. The first term inside the brackets corresponds to x̂AV and its antithetic partner. The

second term corresponds to the dαNe −N/2− 1 points lying below x̂AV but above 1/2 and

their antithetic partners lying between 1− x̂AV and 1/2. The third term corresponds to the

N − dαNe points above x̂AV and their partners, lying between 0 and 1 − x̂AV . The points

other than x̂AV and 1− x̂AV are uniformly distributed in the given range conditioned on the

value of x̂AV . This yields the following expression for the variance:

V arx̂AV

[
E

[
1

N

N∑
i=1

(1− α)(x̂AV −Di)
+ + α(Di − x̂AV )+

∣∣∣∣∣ x̂AV

]]

=V arx̂AV

[
(1− α)(x̂AV − (1− x̂AV ))

N

+ (1− α)

(
dαNe −N/2− 1

N

)
1

x̂AV − 1/2

∫ x̂AV

1/2

((x̂AV − z) + (x̂AV − 1 + z))dz

+

(
N − dαNe

N

)
1

1− x̂AV

∫ 1

x̂AV

[α(z − x̂AV ) + (1− α)(x̂AV − 1 + z)] dz

]
(2.16)

=V arx̂AV

[
(−2αN + N + dαNe)x̂AV − dαNe+ αN

2N

]
(2.17)

The second term on the right side of (2.4) becomes:

Ex̂AV

[
V ar

[
1

N

N∑
i=1

(1− α)(x̂AV −Di)
+ + α(Di − x̂AV )+

∣∣∣∣∣ x̂AV

]]

=Ex̂AV

[
(N − dαNe)(1− x̂AV )2

12N2

]
=

N − dαNe
12N2

(
V ar[x̂AV ] + E[x̂AV ]2 − 2E[x̂AV ] + 1

)
(2.18)

Combining (2.4) with (2.14), (2.15), (2.17), and (2.18) gives V ar[z∗MPN
].

To derive the expected perceived cost under AV, we again condition on the value of x̂AV .

As above, the three terms in the integrand correspond to the antithetic partner of x̂AV ,

those demand values lying below x̂AV , and those demand values lying above x̂AV (but whose
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antithetic partners lie below):∫ 1

1/2

[N−1(1− α)(u− (1− u))

+ N−1(1− α)(dαNe −N/2− 1)

(
1

u− 1/2

) ∫ u

1/2

((u− z) + (u− 1 + z))dz

+ N−1(N − dαNe) 1

1− u

∫ 1

u

(α(z − u) + (1− α)(u− 1 + z))dz ] fx̂AV
(u)du

=
(−2Nα + N + dαNe)E[x̂AV ]− dαNe+ αN

2N
.

The expected actual cost under AV is computed from (2.10) using the distribution of

x̂AV . Figure 1 plots the expected actual and perceived costs as percentages of the optimal

cost with both independent sample paths and antithetic pairs of sample paths, using a cost

ratio of α = 0.8. (To facilitate comparison across sampling methods, this figure includes

lines for Latin Hypercube sampling which will be discussed in the next section.) Note that

the use of antithetic pairs reduces the gaps between the expected cost of the optimal solution

and both the actual and perceived costs of the sample path solution. In particular, the bias

of z∗MPN
is reduced.

If αN is integer, the expected actual cost of the sample path solution under AV simplifies

to:
α(1− α)N2 + (8α− 1)(1− α)N + 2

2(N + 2)(N + 4)
,

and the expected perceived cost under AV is:

1− α

2

αN + 1

N + 2
.

Therefore using (2.2), under AV we have:

Ex̂ [TC(x̂)]

TC∗ =
N2

(N + 2)(N + 4)
+

(8α− 1)(1− α)N + 2

α(1− α)(N + 2)(N + 4)
; (2.19)

E
[
z∗MPN (D1,...,DN )

]
TC∗ =

αN + 1

α(N + 2)
. (2.20)

Expressions (2.19) and (2.20) approach 1 (from above and below respectively) as N increases.

Interestingly, while the use of AV decreases the bias for all values of α in the range (1/2,

1), it increases the variance for some values of α and N . The combination of the two effects is

reflected in the MSE. Figure 2 shows the change in MSE obtained by using antithetic pairs.
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Note that for α = 0.6 and α = 0.7, use of antithetic pairs increases MSE (the “reduction” is

negative). As we will see in Section 3, it is possible, although apparently rare, for AV and

LH to increase MSE.
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Figure 2: Change in MSE obtained by using antithetic variates instead of independent
samples for the newsvendor problem, as a function of the number of sample paths

2.2 Latin Hypercube Sampling

We can also attack the variance and bias of z∗MPN
using Latin Hypercube sampling, an-

other technique usually prescribed for variance reduction (McKay et al., 1979). In this

one-dimensional problem, we divide the interval [0, 1] into N equal segments; the ith demand

value Di is drawn uniformly from the ith segment. The solution to the sample path prob-

lem under Latin Hypercube sampling, x̂LH , is the demand value drawn from the dαNeth

segment, which is uniformly distributed on [(dαNe − 1)/N, dαNe/N ]. Under AV we have

E[x̂] < E[x̂AV ] < α when αN is integer. Similarly we now have E [x̂LH ] < α; however the
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relationships between E [x̂LH ] and the values E[x̂AV ] and E[x̂] depend on the choice of α and

N .

Since under LH the ith demand value Di is uniformly distributed on [(i− 1)/N, i/N ], we

compute V ar[z∗MPN (D1,...,DN )
] directly:

V ar[z∗MPN (D1,...,DN )
]

= V ar

[
1

N

N∑
i=1

(1− α)(x̂LH −Di)
+ + α(Di − x̂LH)+

]

=
1

N2
V ar

dαNe−1∑
i=1

(1− α)(DdαNe −Di) +
N∑

i=dαNe+1

α(Di −DdαNe)


=

1

N2

(dαNe − 1 + α− αN)2V ar[DdαNe] + (1− α)2

dαNe−1∑
i=1

V ar[Di] + α2

N∑
i=dαNe+1

V ar[Di]


=
dαNe(dαNe − 2αN − 1) + αN(αN − α + 2)

12N4
.

The derivation of the expected perceived cost under LH is also straightforward:

ED1,...,DN

[
N−1

N∑
i=1

(1− α)(x̂LH −Di)
+ + α(Di − x̂LH)+

]

= N−1ED1,...,DN

dαNe−1∑
i=1

(1− α)(DdαNe −Di) +
N∑

i=dαNe+1

α(Di −DdαNe)


= N−1

dαNe−1∑
i=1

N−1(1− α)(dαNe − i) +
N∑

i=dαNe+1

N−1α(i− dαNe)


=
dαNe(dαNe − 2αN − 1) + αN(N + 1)

2N2
.

When αN is integer this expression reduces to α(1 − α)/2; comparing this to (2.2) we see

the perceived cost estimate is unbiased. The expected actual cost under LH is computed

from (2.10):

ED1,...,DN

[
x̂2

LH

]
/2− αED1,...,DN

[x̂LH ] + α/2

=
1

2

[
1

12N2
+

(
dαNe

N
− 1

2N

)2
]
− α

(
dαNe

N
− 1

2N

)
+

α

2

=
1

8N2

[
1

3
+ (2dαNe − 1)2

]
− α

2N
(2dαNe − 1) +

α

2
.

When αN is integer this expression reduces to α(1 − α)/2 + 1/(6N2). Figure 1 plots

the expected actual cost under Latin Hypercube sampling as a percentage of the optimal
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cost. We see that LH reduces the gap between the expected actual cost of the sample path

solution and the optimal cost more effectively than AV.

As with AV, the use of LH also can also reduce the variance of the optimal objective

function estimator (i.e., the variance of the perceived cost) for the stochastic LP. This is true

for any value of α when N is greater than 3. Again, the combination of the two effects is

reflected in the MSE, although as we noted above, the bias for this particular newsvendor

case is equal to zero, so the MSE and the variance are equal. Figure 3 shows the dramatic

reduction obtained in MSE by using Latin Hypercube sampling.
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Figure 3: Change in MSE obtained by using Latin Hypercube sampling for the newsvendor
problem, as a function of the number of sample paths

3. Computational Examples

In Sections 2.1 and 2.2 we analytically characterized the effects of sampling methods on

the bias and variance of the solution to a simple sample path problem. Here, we present
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Name Application Source Scenarios
20term Vehicle Positioning Mak et al. (1999) 1.1× 1012

apl-1p Power Expansion Planning Problem Infanger (1992) 1284
fleet Fleet Planning Powell and Topaloglu (2005) 8.5× 10113

gbd Aircraft Allocation Dantzig (1963) 6.5× 105

LandS Electrical Investment Planning Louveaux and Smeers (1988) 106

snip Stochastic Network Interdiction Janjarassuk and Linderoth (2006) 3.7× 1019

ssn Telecommunication Network Design Sen et al. (1994) 1070

storm Flight Scheduling Mulvey and Ruszczyński (1995) 6× 1081

Table 2: Description of test instances

empirical results of applying these sampling methods to a set of more complicated test

problems. The section contains a brief description of our test problems, a description of our

approach for obtaining statistical estimates for perceived and actual cost, a description of

our computational platform, and the results of the experiments.

3.1 Test Problems

The test problems are two-stage stochastic linear programs with recourse that were ob-

tained from the literature. Table 2 contains details about each of the problems. The

problem fleet is a fleet management problem available from the page http://www.orie.

cornell.edu/~huseyin/research/research.html#Fleet_20_3. The problem snip is a

(linear relaxation) of a stochastic network interdiction problem available at the page http:

//coral.ie.lehigh.edu/sp-instances/. The remaining problems are described in Lin-

deroth et al. (2006) and available from the companion web site http://www.cs.wisc.edu/

~swright/stochastic/sampling/.

3.2 Methodology

Perceived Cost Estimates As indicated by the inequalities in (1.1), and previously

shown by Norkin et al. (1998) and Mak et al. (1999), the expected perceived cost:

E(ω1,...,ωN )

[
z∗MPN (ω1,...,ωN )

]
is a biased estimate of z∗MP , the value of the optimal solution. First, we generate M in-

dependent (and identically distributed) samples of size N : (ω1
1, . . . , ω

1
N), . . . , (ωM

1 , . . . , ωM
N ).

We define `j, j = 1, 2, . . . ,M , to be the solution value of the jth sample path problem:

`j
def
= z∗MPN (ωj

1,...,ωj
N )
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and compute the value:

LN,M
def
=

1

M

M∑
j=1

`j.

The statistic LN,M provides an unbiased estimate of E(ω1,...,ωN )

[
z∗MPN (ω1,...,ωN )

]
. Since the M

samples are i.i.d, we can construct an approximate (1−α) confidence interval for E(ω1,...,ωN )

[
z∗MPN (ω1,...,ωN )

]
:[

LN,M −
zα/2sL(M)√

M
,LN,M +

zα/2sL(M)√
M

]
, (3.1)

where

sL(M)
def
=

√√√√ 1

M − 1

M∑
j=1

(`j − LN,M)2. (3.2)

For small values of M , one can use tα/2,M−1 critical values instead of zα/2, which will produce

slightly bigger confidence intervals.

Actual Cost Estimates Since a solution to the sample path problem MPN may be sub-

optimal with respect to the true objective function, we estimate the expected actual cost

of x∗N(ω1, . . . , ωN), an optimal solution to MPN . We estimate the expected actual cost of a

sample path problem of size N in the following manner. First, we generate M samples of

size N : (ω1
1, . . . , ω

1
N), . . . , (ωM

1 , . . . , ωM
N ) and solve the sample-path problem MPN for each

sample yielding:

x∗j ∈ arg min
Ax=b,x≥0

N−1

N∑
i=1

Qi(x, ωj
i ) + g(x), j = 1, 2, . . . ,M.

Note that this is the same calculation necessary to compute a lower bound on the optimal

objective value, and the computational effort required is to solve M sample path problems,

each containing N scenarios. Next, for each candidate solution x∗j , we take a new, Latin

Hypercube sample of size N ′, (ωj
1, . . . , ω

j
N ′) and compute the quantity:

aj =
N ′∑
i=1

Q(x∗j , ω
j
i ) + g(x∗j). (3.3)

Latin Hypercube sampling appears to be superior to the other two methods for variance

reduction; thus, we use this technique to estimate expected actual cost no matter what

sampling method was used to obtain x∗j . Since x∗j is fixed, this computation required the
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solution of N ′ independent linear programs. The quantity:

AN,M
def
=

1

M

M∑
j=1

aj

is an unbiased estimate of the expected actual cost:

E(ω1,...,ωN )

[
Eω

[
Q(x∗MPN (ω1,...,ωN )

, ω)
]

+ g(x∗MPN (ω1,...,ωN )
)
]
.

Since the random quantities aj are i.i.d., we can similarly construct an approximate (1− α)

confidence interval for this quantity.

3.3 Computational Platform

The computational experiments presented here were performed on a non-dedicated, dis-

tributed computing platform known as a computational grid (Foster and Kesselman, 1999).

The computational platform was created with the aid of the Condor software toolkit (Livny

et al., 1997), which can be configured to allow for the idle cycles of machines to be donated

to a “Condor pool”.

In order to create the sampled problems, we use the sutil software toolkit (Czyzyk

et al., 2005). Specifically for this work, sutil was equipped with the ability to sample two-

stage stochastic programs using an antithetic variates sampling technique. An important

feature of sutil, necessary when running in a distributed and heterogeneous computing

environment, is its ability to obtain the same value for a random vector ωj on different

processors and at different points of the solution algorithm (say different iterations of the

LShaped method). This is a nontrivial implementation issue and is accomplished in sutil

by employing an architecture- and operating-system-independent random number stream,

storing and passing appropriate random seed information to the participating processors, and

performing some recalculation of random vectors in the case that the vectors in a sample are

correlated.

In order to solve the sampled problems, we use the code atr of Linderoth and Wright

(2003). The algorithm is a variation of the well-known LShaped algorithm (Van Slyke and

Wets, 1969) that has been enhanced with mechanisms for reducing the synchronization

requirements of the algorithm (useful for the distributed computing environment), and also

with a ‖·‖∞-norm trust region to help stabilization of the master problem. The initial iterate

of the algorithm was taken to be the solution of a sampled instance of intermediate size.
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3.4 Computational Results

Our computational experiments were designed to examine the impact of different sampling

methods on the bias and variance of the perceived cost of 2-stage stochastic linear programs

solved via sample path optimization. Recall that bias and variance reduction combine to

improve the mean squared error of the solution to the sample path problem. In the results

presented here, the optimal solution value to the full problem, z∗MP, is unknown, so we cannot

calculate the bias. Since we know that for minimization problems, the expected value of the

sample path solution, E
[
z∗MPN

]
, is less than the true optimal solution, z∗MP, we can test

whether or not one sampling method reduces bias as compared to another by testing whether

or not the expected value of the sample path solution, E
[
z∗MPN

]
, is significantly larger and

therefore closer to the true optimal solution, z∗MP.

Using samples drawn in an independent fashion, samples drawn using antithetic variates,

and samples drawn using Latin Hypercube sampling, the following experiment was per-

formed. For all instances described in Table 2 except apl-1p, confidence intervals for both

expected perceived cost and expected actual cost (as defined in Section 3.2) were computed

for M = 1000 for N ∈ {10, 25, 50, 75, 100}, M = 50 for N ∈ {500, 1000}, and M = 10 for

N ∈ {5000, 10000, 50000}. The value N ′ used in the calculation of aj (3.3) was N ′ = 500 for

M ∈ {10, 25, 50, 75, 100} and N ′ = 20, 000 for N ∈ {500, 1000, 5000, 10000, 50000}. In all ta-

bles and figures, we use z0.975 ≈ 1.96 when M = 50, 1000 (N ∈ {10, 25, 50, 75, 100, 500, 1000})
and t0.025,M−1 ≈ 2.685 when M = 10 (N ∈ {5000, 10000, 50000}). Since the full problem

apl-1p has only 1284 realizations, we only perform the smaller experiments with M ∈
{10, 25, 50, 75, 100}. The complete experiment required the solution of more than one billion

linear programs, so the ability to run in the powerful distributed setting of the computational

grid was of paramount importance to this work.

Confidence intervals for expected perceived cost and expected actual cost are contained

in the appendix. Table 3 shows the results of t-tests for bias reduction and F -tests for

variance reduction for the expected perceived cost. (Since each trial was independently

generated, and variances are significantly different in some cases, we use one-sided, unpaired

student t-tests, assuming unequal variance.) We use the symbol � to indicate when a test

assumes one method is preferred to another. Note that for this set of problems, statistically

significant bias reduction occurs with AV occasionally and with LH frequently. Both AV

and LH sampling methods are effective in reducing variance, with LH reducing variance as
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compared to IS in almost all cases. Table 4 shows the percentage reduction in bias and

variance for cases where the reduction is statistically significant. As discussed above, both

bias and variance combine to determine the quality of the lower bound estimate. Table 5

shows the percentage reduction in mean squared error for cases where there is a significant

reduction bias or variance.

Reductions in bias and variance combine to reduce MSE. Whether bias or variance im-

provements are responsible for the biggest improvement in MSE is problem specific. We

consider two of the eight problems here. Results from the full set of experiments are avail-

abile in the appendix. Figures 4 and 5 show estimates of expected perceived and expected

actual cost with confidence intervals for problem LandS. A horizontal reference line is shown

on the perceived and actual cost figures for each problem. For all problems except apl-1p, we

do not know the optimal objective value, so we use the expected actual cost for N = 50, 000

with LH sampling as the reference value. In Figure 5, one can easily see that both AV and

LH dramatically reduce variance as compared to IS. The statistical tests reveal reduction

in bias for some values of N , but the improvement in the estimate of E[z∗MPN
] for this

problem comes mostly from variance reduction. Consider the N = 100 case specifically.

With independent sampling and N = 100, the bias is approximately 0.38 while the variance

is approximately 34.4. With LH sampling, the bias and variance estimates are 0.02 and

0.05. So, while bias is substantially reduced, it is the variance reduction that drives a large

improvement in MSE.

Figures 6 and 7 tell a different story for problem ssn. For this problem, bias reduction

plays a far more substantial role in improving MSE. Again, consider the N = 100 case.

Under IS, bias is approximately 3.03 and variance is approximately 2.95. Under LH, bias and

variance are approximately 1.03 and 1.4. For the N = 10 case with ssn, LH and AV decrease

bias but actually increase variance. These were the only instances in our experiments where

variance was increased in a statistically significant way. This result appears to be driven

by the fact that the random variables in this problem represent demand demand flows on a

capacitated network. With independent sampling and N = 10, the optimal objective value

for the sampled problems is nearly always zero; all demand is met. The recurrence of this

zero value gives low variance (albeit biased) estimate of the optimal objective value. LH and

AV reduce the bias, but in doing so reduce the frequency of zero values and thus increase

the variance. This phenomenon disappears for larger values of N .
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Bias Reduction (t-test) Variance Reduction (F-test)
Instance N AV � IS LH � IS LH � AV AV � IS LH � IS LH � AV

10 0.0298 0.0041 0.0326 0.0000 0.0000 0.0001

25 0.0173 0.0041 0.0000 0.0000 0.0000

50 0.0049 0.0000 0.0000 0.0000
20 75 0.0000 0.0000 0.0000

100 0.0000 0.0000 0.0000

500 0.0000 0.0000
1000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.0000 0.0000 0.0342 0.0000 0.0000 0.0000

apl-1p 50 0.0022 0.0004 0.0000 0.0000 0.0000
75 0.0277 0.0010 0.0000 0.0000 0.0000

100 0.0011 0.0006 0.0000 0.0000 0.0000

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000
50 0.0204 0.0000 0.0014 0.0000 0.0000 0.0000

fleet 75 0.0001 0.0084 0.0000 0.0000 0.0000

100 0.0042 0.0000 0.0000 0.0000
500 0.0003 0.0000 0.0263

1000 0.0135 0.0000 0.0001

10 0.0005 0.0244 0.0000 0.0000 0.0000

25 0.0000 0.0000 0.0000
50 0.0102 0.0000 0.0000 0.0000

gbd 75 0.0000 0.0000 0.0000

100 0.0090 0.0000 0.0000 0.0000
500 0.0000 0.0000

1000 0.0000 0.0000

10 0.0000 0.0000

25 0.0259 0.0000 0.0000 0.0000
50 0.0142 0.0000 0.0000 0.0000

LandS 75 0.0104 0.0068 0.0000 0.0000 0.0000

100 0.0279 0.0260 0.0000 0.0000 0.0000
500 0.0000 0.0000 0.0000

1000 0.0000 0.0000 0.0095

10 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.0000 0.0000 0.0000 0.0000 0.0000
50 0.0000 0.0000 0.0000 0.0000 0.0000

snip 75 0.0000 0.0000 0.0000 0.0000 0.0000

100 0.0328 0.0000 0.0000 0.0000 0.0000 0.0000
500 0.0006 0.0000 0.0000

1000 0.0000 0.0000

10 0.0006 0.0028

25 0.0006 0.0000 0.0000 0.0000 0.0000
50 0.0417 0.0000 0.0000 0.0000 0.0000

ssn 75 0.0000 0.0000 0.0391 0.0000 0.0000
100 0.0000 0.0000 0.0000 0.0000
500 0.0000 0.0000 0.0010 0.0004
1000 0.0010 0.0000 0.0302 0.0213

10 0.0004 0.0000 0.0000 0.0000

25 0.0000 0.0000 0.0000
50 0.0024 0.0000 0.0000 0.0000

storm 75 0.0000 0.0000 0.0000

100 0.0000 0.0000 0.0000
500 0.0000 0.0000 0.0000

1000 0.0000 0.0000 0.0000

Table 3: p-values (from t and F test) for cases where LH or AV sampling methods result in
a statistically significant (at 5% or better) reduction of bias or variance
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Bias Reduction (t-test) Variance Reduction (F-test)
Instance N AV � IS LH � IS LH � AV AV � IS LH � IS LH � AV

10 44.76 % 62.23 % 31.63 % 90.12 % 92.36 % 22.66 %
25 55.30 % 68.12 % 84.17 % 88.01 % 24.22 %

50 54.82 % 89.27 % 92.96 % 34.44 %

20 75 88.58 % 92.49 % 34.24 %
100 87.71 % 92.42 % 38.34 %

500 91.52 % 92.72 %
1000 89.81 % 93.33 %

10 58.68 % 88.01 % 70.98 % 67.19 % 97.41 % 92.10 %
25 74.32 % 90.30 % 62.24 % 63.07 % 95.61 % 88.12 %

apl-1p 50 75.96 % 67.69 % 69.06 % 98.56 % 95.33 %

75 52.99 % 75.69 % 69.54 % 97.73 % 92.55 %

100 73.31 % 62.14 % 69.82 % 98.54 % 95.16 %

10 45.19 % 64.26 % 34.79 % 50.81 % 74.26 % 47.66 %

25 50.71 % 69.83 % 38.79 % 52.19 % 80.26 % 58.71 %

50 35.13 % 71.08 % 55.43 % 42.83 % 79.92 % 64.87 %
fleet 75 63.51 % 46.97 % 48.14 % 80.09 % 61.61 %

100 50.32 % 42.72 % 78.79 % 62.97 %
500 65.42 % 81.83 % 47.46 %

1000 51.17 % 84.55 % 68.37 %

10 93.15 % 85.55 % 47.90 % 98.65 % 97.42 %

25 43.03 % 95.97 % 92.93 %

50 101.94 % 38.79 % 99.89 % 99.83 %
gbd 75 44.25 % 98.57 % 97.44 %

100 100.04 % 41.96 % 100.00 % 100.00 %
500 100.00 % 100.00 %

1000 100.00 % 100.00 %

10 99.38 % 98.90 %

25 90.47 % 95.32 % 99.68 % 93.14 %

50 60.01 % 99.30 % 99.81 % 73.07 %
LandS 75 88.69 % 93.77 % 97.87 % 99.82 % 91.72 %

100 92.81 % 94.08 % 99.35 % 99.85 % 77.03 %
500 98.83 % 99.85 % 87.01 %

1000 99.64 % 99.83 % 52.91 %

10 51.26 % 49.41 % 32.34 % 83.54 % 75.67 %

25 77.12 % 74.33 % 28.30 % 90.57 % 86.85 %

50 82.32 % 79.11 % 30.41 % 91.82 % 88.25 %

snip 75 75.01 % 74.58 % 33.51 % 93.27 % 89.87 %

100 33.91 % 85.98 % 78.78 % 29.97 % 93.93 % 91.34 %
500 63.53 % 92.28 % 78.83 %
1000 94.86 % 93.50 %

10 1.39 % 1.24 %

25 4.35 % 53.83 % 51.73 % 24.60 % 31.43 %
50 3.27 % 52.38 % 50.77 % 51.25 % 54.47 %

ssn 75 53.43 % 53.16 % 12.25 % 47.70 % 40.40 %

100 65.81 % 64.55 % 52.84 % 46.63 %
500 102.27 % 102.27 % 61.80 % 64.56 %

1000 66.89 % 78.15 % 46.61 % 48.70 %

10 52.31 % 99.76 % 99.90 % 59.62 %
25 95.89 % 99.92 % 98.10 %
50 72.38 % 99.75 % 99.91 % 65.65 %

storm 75 98.22 % 99.91 % 95.08 %

100 99.73 % 99.91 % 65.53 %
500 98.40 % 99.87 % 91.91 %

1000 99.65 % 99.92 % 77.83 %

Table 4: Estimates of percentage reduction in bias and variance for cases where bias and
variance reduction are statistically significant (at 5% or better)
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MSE Reduction
Instance N AV � IS LH � IS LH � AV

10 89.73% 92.23% 24.40%
25 84.10% 88.04% 24.75%

50 88.89% 92.89% 36.04%

20 75 88.45% 92.39% 34.17%
100 87.70% 92.32% 37.59%

500 91.31% 92.76%
1000 87.99% 92.89%

10 68.81% 97.57% 92.20%
25 64.54% 95.80% 88.16%

apl1p 50 68.89% 98.56% 95.38%

75 69.74% 97.75% 92.57%

100 69.73% 98.55% 95.22%

10 55.65% 77.54% 49.34%

25 55.68% 81.84% 59.02%

50 43.59% 80.51% 65.45%
fleet 75 48.31% 80.34% 61.96%

100 43.04% 78.67% 62.56%
500 64.17% 82.24% 50.42%

1000 54.20% 84.95% 67.13%

10 48.27% 98.66% 97.42%

25 43.05% 95.98% 92.94%

50 39.00% 99.89% 99.83%
gbd 75 44.28% 98.57% 97.44%

100 41.68% 100.00% 100.00%
500 100.00% 100.00%

1000 100.00% 100.00%

10 99.36% 98.89%

25 95.32% 99.68% 93.09%

50 99.29% 99.81% 73.26%
LandS 75 97.88% 99.82% 91.63%

100 99.35% 99.85% 76.87%
500 98.81% 99.85% 87.19%

1000 99.62% 99.83% 55.61%

10 34.00% 85.41% 77.90%

25 29.56% 91.54% 87.99%

50 31.52% 92.53% 89.09%

snip 75 35.64% 94.49% 91.44%

100 29.61% 94.66% 92.41%
500 67.14% 87.65% 62.43%
1000 94.20% 93.17%

10 1.84% 1.68%

25 7.06% 74.42% 72.48%
50 4.45% 73.50% 72.26%

ssn 75 3.58% 71.65% 70.60%

100 79.66% 77.87%
500 83.09% 83.66%

1000 64.10% 76.96%

10 99.76% 99.90% 59.62%
25 95.89% 99.92% 98.10%
50 99.75% 99.91% 65.65%

storm 75 98.22% 99.91% 95.08%

100 99.73% 99.91% 65.53%
500 98.40% 99.87% 91.91%

1000 99.65% 99.92% 77.83%

Table 5: Estimates of percentage reduction in mean squared error for cases where there is a
statistically significant (at 5% or better) reduction in bias or variance.
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Figure 5: Expected Perceived Cost Estimates for LandS
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4. Conclusion

Sample path optimization is a convenient method for solving stochastic programs; however a

gap is introduced between the optimal solution and both the expected actual and expected

perceived cost of the sample path solution. We have investigated two variations of sample

path optimization where samples are drawn in antithetic pairs or using Latin Hypercube

sampling. For a version of the simple newsvendor problem, we show that both the anti-

thetic samples approach and the Latin Hypercube approach, techniques commonly used for

variance reduction, reduce the solution bias as compared to sample path optimization with

independent samples. For the newsvendor problem, the Latin Hypercube approach reduces

variance of the sample path solution, while antithetic variates may increase or decrease the

variance, depending on the cost parameters.

Using a computational grid, we perform extensive computational experiments investi-

gating these same sampling methods on large-scale, two-stage, stochastic programs from

the literature. We find that both sampling techniques are frequently effective at reducing

variance, and Latin Hypercube sampling is often effective at reducing bias. The relative

importance of bias and variance reduction is problem specific.
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