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We introduce a decision support framework for the research and development (R&D) portfolio selection

problem faced by a major U.S. semiconductor manufacturer. R&D portfolio selection is of critical importance

to high-tech operations such as semiconductor and pharmaceutical, as it determines the blend of technolog-

ical development the firm must invest in its R&D resources. This R&D investment leads to differentiating

technologies that drive the firm’s market position. We developed a general, three-phase decision support

structure for the R&D portfolio selection problem. First is the scenario generation phase where we transform

qualitative assessment and market foresight from senior executives and market analysts into quantitative

data. This is combined with the company’s financial data (e.g., revenue projections) to generate scenar-

ios of potential project revenue outcomes. This is followed by the optimization phase where a multistage

stochastic program (SP) is solved to maximize expected operating income (OI) subject to risk, product inter-

dependency, capacity, and resource allocation constraints. The optimization procedure generates an efficient

frontier of portfolios at different OI (return) and risk levels. The refinement phase offers managerial insights

through a variety analysis tools that utilize the optimization results. For example, the robustness of the

optimal portfolio with respect to the risk level, the variability of a portfolio’s OI, and the resource level usage

as a function of the optimal portfolio can be analyzed and compared to any qualitatively suggested portfolio

of projects. The decision support structure is implemented, tested, and validated with various real world

cases and managerial recommendations. We discuss our implementation experience using a case example

and explain how the system is incorporated into the corporate R&D investment decisions.

Subject classifications : Research and development/ Project Selection: R&D project interdependency, multi

period horizon. Programming/Stochastic: scenario generation; Secondary: Organizational Studies/
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1. Introduction

Effective management of the Research and Development (R&D) portfolio is critical to effective

market positioning in high-tech industries such as computers, semiconductors, and pharmaceutical.

In these industries, a firm’s market position is tied directly to its portfolio of intellectual property

(IP), which must be developed, acquired, or licensed. Studies of these industries (c.f., Boisot (1998),

Bekkers et al. (2002)) point to the important conclusion that a firm’s ability to attain significant

market share in any technology area depends on its ownership of the essential IP and its ability to

leverage essential IP from other firms.

Notable examples of using portfolio selection and management concepts in strategic planning

can be found in pharmaceutical companies. In the pharmaceutical industry, the R&D budget can

constitute over 40% of the total operating cost. The drug development portfolio drives the R&D

budget, determines the firm’s market positioning, and drives the firm’s brand image. Major firms

try to balance their portfolio of drugs such that high-risk, high-margin specialty drug development

projects are mixed with low-risk, high-volume projects. When facing R&D portfolio decisions, not

only are companies subject to risks due to market uncertainty, they are also subject to risk factors

such as prolonged FDA approval cycles and potential legal liabilities. Pharmaceutical product devel-

opment exemplifies an emerging trend in the high-tech industries where products are characterized

by short life cycle, capital intensive development cycle, and long production lead-time. While our

focus in this paper is on the specialty semiconductor industry, the methodologies developed herein

can be generalized for other industries such as pharmaceutical, computers and electronics.

Portfolio management for R&D projects involves a great deal of uncertainty. It is due to the highly

volatile nature of this industry that the portfolio management issues become so critical. In order

to assess revenue impacts of a specific project, it is necessary to consider the full life cycle of the

project, from the initiation of the product development, to product launch, to the end of the project

life cycle. In this paper we introduce an integrated framework for R&D project portfolio selection

and management at a major U.S. semiconductor manufacturer. Our contribution is two-fold. First,

we model uncertainty through a scenario structure that combines (a) milestone information during

typical R&D projects’ life-cycle, and (b) data from daily business transactions. This approach allows

us to evaluate the risk associated with each project by evaluating its dependencies to other projects

and its potential impacts to the revenue streams. The scenario structure is incorporated into a

multi-stage stochastic programming model that, in turn, optimizes the project portfolio. Second,

we develop a decision support system (DSS) by combining scenario generation, optimization, and

solution modules into an integrated tool. In the next section, we will describe the business context

of the specialty semiconductor industry and a typical R&D project’s life cycle.
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2. Semiconductor Product Development

Semiconductor manufacturers undertake the wafer fabrication, packaging, assembly, and test

responsibilities of microelectronic chips. In the specialty semiconductor industry, a majority of

the chips are custom-designed to handle special functionality of an electronic device. The brand-

carrying customer and the semiconductor manufacturer typically share the responsibilities in new

product development (NPD) project, which includes the following steps (see Figure 1):

1. Evaluation of project proposals from customers: During this stage, the customer and

the semiconductor manufacturer discuss and identify the type of technology to be used, technical

specifications, expected resource requirements, time to market, and the demand potential. If the

project proposal is for a renewal of a previous project, then most of this information already exists.

However, if the project proposal calls for NPD, typically very limited information is available. At

the end of the evaluation phase, the manufacturer must decide to accept the project or not.

2. Development Phase: If the semiconductor manufacturer commits to the project proposal,

then development begins. The duration of the development phase depends on the complexity of

the design, the skill level of the R&D staff, and the availability of relevant prior technology. If prior

technology needs to be extended, or new technology needs to be invented, then investments must

be made to develop new intellectual property (IP). A completed design leads to the development

of prototypes. If the prototypes meet the specifications, then the development phase continues

as scheduled; otherwise the date of the product release must be delayed, and more investment is

needed to develop the IP. Once the product is successfully prototyped and tested, the customer

evaluates the product design. In case the customer rejects the design, the project is terminated,

and majority of the development costs are borne by the semiconductor company. This is known as

a loss of design win and is a major source of uncertainty for the semiconductor manufacturer.

3. Production Ramp: When the customer accepts the product design, the production phase

starts. During production, market and capacity-related risks are crucial to consider. Market risks

are influenced by both external factors, such as the nature of market competition, and internal

factors, such as the product quality. Capacity risks arise from the uncertain nature of available

resources. These two market risk factors collectively affect the expected revenue streams for the

product.

The project life cycle depicted in Figure 1 is similar to projects that follow a stage-gate project

funnel (Griffin 1997), so while we have tailored our tool to support decision making in the semi-

conductor industry, its general applicability could be much broader.
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Figure 1 Project Life Cycle

Decisions on a particular project proposal must be made at the beginning of the project life

cycle, in anticipation of the uncertainties. While uncertainties in the project life cycle represent a

major challenge to the portfolio decisions, project relationships and dependencies also have to be

taken into account. The relationship between projects might be in different forms. For example,

a new project proposal might make a set of existing projects obsolete, or competing customers

might offer similar proposals. We refer to these as mutually exclusive projects. Projects may also

have prerequisite relations. Portfolio decisions must be made considering all project dependen-

cies, leading to complex trade-offs. Moreover, uncertainties associated with a project are often

amplified when the project is considered together with its prerequisite projects. This leads to the

conclusion that the value and its variability as a whole must be considered by management. In

the DSS designed for the company, the scenario analysis tool takes into account all inter-project

relationships, as well as possible outcomes of uncertainty that create the risks.

The remainder of the paper is organized as follows. We summarize relevant literature for

project/product portfolio management, followed by the problem statement and model formulation.

We then introduce the three-stage DSS for project portfolio management, and we describe the

implementation and use of this DSS at a particular semiconductor firm. We discuss the robust-

ness of the tool and key feedbacks from the management. The paper finishes with conclusions and

directions for further research.

3. Related Literature

Methods for Product Portfolio Management (PPM) can be both qualitative and quantitative. The

success of each method depends on the business environment, the information requirements, the

users’ understanding of the techniques, and the buy-in from senior management. For background

on PPM methods, the reader is referred to Cooper et al. (1998).
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In the last decade, the use of Decision Support Systems (DSS) has become popular in PPM.

DSS are interactive, computer-based systems that help decision makers in their decision process,

typically combining multiple components (both qualitative and quantitative) into an integrated

system. For example, Greiner et al. (2003) developed a system for screening weapons systems that

first develops qualitative project rankings. The priority rankings of the Analytic Hierarchy Process

(AHP) are used to represent a measure of value of each project, and a 0-1 integer model is used to

construct a “good” portfolio of projects that obeys a budget constraint. Stummer and Heidenberger

(2003) use qualitative scoring techniques to rank projects and identify the projects that are worthy

of further evaluation. Next, a multi-objective integer linear program is solved to find Pareto-

efficient portfolios. Dickinson et al. (2001) use qualitative judgement to define a dependency matrix

quantifying the interdependencies between projects. A nonlinear integer program maximizing the

Net Present Value (NPV) of the portfolio is solved, subject to budget and strategic alignment

constraints. Our proposed DSS also combines both qualitative and quantitative aspects. Qualitative

judgments are used to help model uncertainty throughout the project’s life cycle. A multi-stage

stochastic program (SP) is solved that selects the best portfolio constrained by the cost of resource

level adjustments, a risk measure, project dependencies, and strategic alignment criteria. The SP

allows for scenario-dependent solutions via recourse actions.

The idea to generate path-dependent valuation of a portfolio’s value is similar to Anderson

and Joglekar (2005)’s planning framework. In their work, recourse actions are suggested to hier-

archically manage the product development process considering contingent events in project life

cycle, including uncertainties related to market, creative, technological and process dimensions.

Our methodology can be evaluated as a specific implementation of concepts suggested in Anderson

and Joglekar (2005) into a complete, integrated tool for the semiconductor industry.

An important feature of the SP developed for the semiconductor industry is that resource levels

must be increased/decreased in conjunction with the go/no-go decisions for the projects. Loch

and Kavadias (2002) also model resource allocation among product lines in a multi-period setting.

They explicitly include carry on benefits of the previous period’s investment in the current period

and derive closed form solutions for the allocation policy under the cases where product lines

have increasing and decreasing returns. The solutions are extended for the cases where market

interaction exists and managers are risk-averse. In our case the dependency structure is too complex

to directly apply these results. For example, a project’s value depends on prerequisite projects

IP development success, design win, market structure, customer status, product quality, resource
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availability and technological status. Hence, the DSS we propose resorts to simulation to compute

the numeric valuation of projects in this business setting.

The DSS we propose will measure (and mitigate) risk using a mean-Gini approach, a concept

introduced by Shalit and Yitzhaki (1984) in the context of equity portfolio construction. Ringuest

et al. (2000) were the first to extend the use of mean-Gini risk to R&D portfolios.

As pointed out by Ringuest and Graves (2005), the estimate of a portfolio Gini considering all

available projects can be conservative, overestimating the risk of the selected portfolio. Ringuest

and Graves (2005) go on to extend the methodology of Ringuest et al. (2000) with a branch-and-

bound method that determines a portfolio using a more precise estimate of the Gini risk. Ringuest

et al. (2004) use mean Gini analysis to construct non dominated portfolios and efficient frontier

using these nondominated portfolios. A significant distinction of our method from that of Ringuest

et al. (2000) and Ringuest and Graves (2005) is that we explicitly model the scenario-based project

valuation throughout its life cycle, so our DSS generates path-dependent solutions taking into

account the Gini risk in a multi-period horizon. Next we describe the our generic model for the

project portfolio selection problem.

4. Model Formulation

4.1. Justification

Prior to our study, the management had employed two different techniques to aid their PPM

decisions. The first approach was to rank the projects based on NPV of the cash flows. Heuristic

strategic alignment criteria and a budget constraint limited the allowable projects. This methodol-

ogy was able to select projects with strategic considerations, but it was not capable of assessing and

incorporating quantitative measures of risk into the decision process, nor was the method able to

accurately model complex inter-project dependencies. In their second approach, the management

worked on a mean-variance model. The interdependencies between projects were quantified using

several factors. A disadvantage of this approach was that the required data was not captured in the

company’s routine business transaction data. Moreover the mean-variance model was not dynamic

enough to account for the fast rate of change of the semiconductor industry.

Based on the decision makers’ needs and past experience, the following design requirements for

our PPM decision support tool were put in place:

1. use data available from routine business transactions,

2. dynamically account for changes in the business environment, and

3. incorporate a risk measure for projects in the portfolio.
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Considering these requirements, a decision was made to use a Stochastic Programming(SP)

approach to the problem. First, the SP model can easily be built from scenario data generated

from routine business transactions. Second, in SP models, decision makers are able to change their

decisions as they learn new information in a dynamic environment. Last, a parameterized risk con-

straint can easily be incorporated into the model, allowing managers to obtain different solutions

depending on their view of risk. In our view, the solution to a stochastic program is neither a

number nor a policy, but a distribution for an important measure or measures of interest. In this

case, the main purpose of adding the risk constraint to the SP model was to allow managers to

tune, or shape, the distribution of expected returns based on their initial investment decisions.

4.2. Data, Uncertainty and Risk

As part of the renewed project management effort, the company keeps basic financial figures,

customer information, and technical product information in their database. At any point in time,

the company is considering a set of projects P that will consume resources from a set R. Each

project p ∈ P is associated with a set of prerequisite projects Qp ⊂ P and with a set of mutually

exclusive projects Ep ⊂ P . Forecast cost and resource information is kept at a project level for

quarterly intervals. For each project p ∈ P the following data is available for each period t in a

specified time horizon T = {1,2, . . . , T}:

• the forecast gross margin of the project p at period t: GMpt,

• the forecast fixed costs of the project p in period t: FCpt,

• the forecast usage of resource r in period t by project p: Wrpt, and

• the periodic unit cost of each resource r: cr.

As new information is available, forecast figures are updated. From the analysis of the project

life cycle and through discussions with management, we identified that a new business state can be

modeled by adjusting the gross margins, fixed costs, and resource usage (GMpt,FCpt Wrpt) based

on random events that occur during the project’s life cycle. That is, these quantities are functions

of some random variables. To fix notation, let Ωt, t ∈ T be the set of all possible random events

that occur during period t. The set of all sequences of events is then Ω def= Ω1 × Ω2 × . . . × ΩT .

We use the common notation Ω[1,t] to denote the set of all sequences of events that can occur

from stages 1 to t. The dependence of gross margin, fixed cost, and resource usage on random

variables is denoted by referring to these quantities as GMpt(ω[1,t]),FCpt(ω[1,t]), and Wrpt(ω[1,t]),

where ω[1,t] ∈Ω[1,t]. We discuss in Section 5.3 the exact manner in which the quantities are derived,

but for purpose of model discussion it suffices to know that for each project and resource we have
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all the necessary information to assess project’s value and determine resource requirements under

different sequences of realizations of random events.

The model also includes a mechanism for controlling the company’s risk in choosing collections

of projects to include in the portfolio. The mechanism is based on calculating “risk coefficients”

for each project in each stage. The approach is not unlike assessing an equity portfolio’s riskiness

by its β coefficient. In our model, the risk coefficients are based on mean-Gini considerations. The

description and exact calculation of Gini coefficients is detailed in Section 5.3.1. For purposes of

the model discussion, it suffices to know that for each project and time period, a coefficient λpt

is computed that quantifies the risk of project p in time period t. The total risk of the portfolio

is taken to be a linear combination of the individual risk coefficients chosen to be included in the

portfolio. As pointed by Ringuest and Graves (2005) this approach tends to overestimate the risk

of the chosen portfolio, and they suggest a branch-and-bound approach that accurately measures

the Gini-risk during the portfolio selection algorithm. We decided not to apply their branch-and-

bound approach for the proposed DSS for a number of reasons. First, as described in Section 5,

the DSS solves many instances of the problem at varying risk levels. The increased computational

burden of a branch-and-bound approach is not attractive in this regard. Further, in the instances we

examined, the difference between the approximate Gini risk (as measured by the Gini coefficients

λpt) and the exact Gini-risk was typically quite small. In Section 6, we demonstrate that the exact

Gini measure differs from the approximate Gini measure of the final selected portfolio by less than

4% on average for the case-study instance. Finally, a customized branch-and-bound implementation

was not desirable to the company, who wished to exclusively use off-the-shelf commercial software

in the DSS.

It is important to note that the main purpose of the risk constraint was not to accurately measure

the Gini-risk of a project portfolio, but rather to give decision makers the opportunity to adjust

the distributions of key output random variables (e.g. net profit) via a parameter in the model.

4.3. Decision Variables

In stochastic programs, decisions are made in stages, and in-between stages information about the

state of the business becomes available. To ease the exposition, we will assume that there is one

stage in the stochastic programming model for each period in the decision making process. In the

actual decision support system described in Section 5, several decision making periods might be

aggregated into one stage. There are two classes of decisions that the company must make: strategic

and operational.
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The strategic decisions are modeled with variables xpt(ω[1,t]), indicating whether or not project

p is to be included in the portfolio in time period t. An important characteristic of the model is

that xpt(·) is solely a function of the random variables that occur from periods 1 to t. The decision

of whether or not to include p in the portfolio at t is non-anticipative of random events that occur

after period t. At this point, we model the nonanticipativity implicitly by simply stating xpt(·) is a

function only of ω[1,t]. Algorithmic mechanisms for enforcing nonanticipativity will be described in

Section 4.4. Associated with each project p ∈ P is a begin time bp ∈ {1,2, . . . , T}, which indicates

the beginning time of project’s life cycle. If a project is not selected at the beginning of its life

cycle, then it cannot be selected later. However, if a project is selected at the beginning of its life

cycle, it may be discontinued later.

Completion of a project requires resources to be allocated to the project. The main resources

necessary in the model for the company are human resources. As such, there is a cost associated with

increasing the level of resources and with decreasing the level of resources from period to period.

There are two types of human resources that affect project completion: design team members and

administrative staff. The initial available level of resource r is defined by Ir. There are three classes

of operational decisions, each dependent on the random events that occur during the PPM process.

The total available level of resource r at the end of stage t under scenario ω[1,t] is modeled with

the decision variable yrt(ω[1,t]). Increase and decrease in the level of resource r at the end of stage t

under scenario ω[1,t] are modeled with the decision variables hrt(ω[1,t]) and frt(ω[1,t]), respectively.

The periodic cost of keeping one unit of resource r is given by the parameter cr. There is a cost

associated with the unit increase or decrease of resource level r, given by the parameters ηrt and

ζrt, respectively.

4.4. Model Objective and Constraints

The objective is to maximize the total expected operating income,

Eω

[∑
t∈T

∑
p∈P

(GMpt(ω[1,t])−FCpt(ω[1,t]))xpt(ω[1,t])−
∑
r∈R

(cryrt(ω[1,t])+ ηrthrt(ω[1,t])+ ζrtfrt(ω[1,t]))

]
(1)

The first summation of Equation (1) represents the total net profit associated with doing projects,

and the second summation accounts for the operating expenses and adjusting the resource levels.

Most constraints of the model contain random variables, and we enforce these constraints in a

probabilistic sense by saying that the constraints will hold with probability one, or almost surely,

represented by the notation a.s. in the constraints of the model. The required level of each type of



Gemici-Ozkan et al.: R&D Project Portfolio Analysis for the Semiconductor Industry
10 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

resource should be enough to continue selected projects at all stages and can be described by the

following constraint:∑
p∈P

Wrpt(ω[1,t])xpt(ω[1,t])≤ yrt(ω[1,t]) ∀r ∈R t∈ T ,a.s.. (2)

The headcount level for a type of resource at the end of a specific stage is the sum of headcount

level in the previous stage and the net adjustment of the level of resources at the current stage.

For the first stage, headcount level is adjusted over the initial number of headcount level, Ir,

yr1 = Ir +hr1− fr1 ∀r ∈R, (3)

yrt(ω[1,t]) = yr,t−1(ω[1,t])+hrt(ω[1,t])− frt(ω[1,t]) ∀r ∈R, t∈ T \ {1},a.s.. (4)

Project p can be undertaken if and only if all projects in its prerequisite set Qp are undertaken at

stage t, a requirement enforced by Equation (5). Similarly, Equation (6) ensure that is project p

is in the portfolio at stage t, then none of the projects in mutually exclusive set Ep are also in the

portfolio.

xpt(ω[1,t])−xqt(ω[1,t]) ≤ 0 ∀p∈ P, q ∈Qp, t∈ T a.s., (5)

xpt(ω[1,t])+xlt(ω[1,t]) ≤ 1 ∀p∈ P, l ∈Ep, t∈ T a.s.. (6)

We can only select a project p to perform when the stage of the decision coincides with the beginning

period of that project’s life cycle bp. If a product is not selected at the beginning of its life cycle,

then it cannot be selected later. We ensure these restrictions by the following constraints:

xpt(ω[1,t]) = 0 ∀p∈ P, ∀t∈ {1, . . . bp − 1}, a.s., (7)

xp,t+1(ω[1,t+1])−xpt(ω[1,t]) ≤ 0 ∀p∈ P,∀t∈ {1,2, .., T − 1}, a.s.. (8)

As explained in Section 4.2, there is a risk coefficient λpt for each product p at each stage

t, (t∈ T \ {1}). Total risk is limited to a level K in the following fashion:∑
t∈T \{1}

∑
p∈P

λptxpt(ω[1,t])≤K a.s.. (9)

Note that it is a simple matter to change constraint(9) to limit risk on a per-period basis. How-

ever, keeping the risk level parameterized by one constant (K) was desirable so that management

could easily assess the impact of varying risk on the solution output.

Again, an important consideration in the model is that the strategic and operational decisions

made at a stage t are independent of the random events ω[t+1,T ]. These nonanticipativity con-

straints are given implicitly here by defining the xpt(·) as functions of the proper arguments (ω[1,t]).

Algorithmic methods for enforcing this nonanticipativity will be discussed in the next section.
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Figure 2 Event Flow Diagram of the DSS

To make the optimization model (1-9) tractable, there must be some reasonable approximation of

the uncertainty Ω. We chose a sample-path, or sample-average approach, in which set Ω is replaced

by a randomly sampled approximation consisting of a finite number of scenarios. This approxima-

tion, or scenario generation, forms the first phase of our three phase DSS that we describe in the

Section 5. The sample average approach has been used as of late on a variety of practical planning

problems, including supply chain planning by Santoso et al. (2005) and vehicle routing by Verweij

et al. (2003). Further, recent theoretical and empirical evidence suggests that an accurate answer

to the true problem can be obtained by approximating the uncertainty set with a surprisingly

few number of scenarios (Shapiro and Homem-de-Mello 2000, Linderoth et al. 2006). The use of

scenarios also enables us to enforce the nonanticipativity of decisions by only creating decision

variables that can depend on the appropriate scenarios and previous decisions.

5. A Three-Phase Decision Support System

Rarely is a real-life problem simply “solved” by applying an optimization model. Rather, the road

from real-life problem to working solution is an iterative process. The model we propose in Section

4 is no exception; it is part of a larger decision support system (DSS) now in place at the company.

Figure 2 depicts the various components and stages of the DSS, as the user is guided through

the project portfolio planning process. Note that in order to instantiate an instance, user input

is required both before and after data is drawn from the company’s database. In this section, we

describe the components of the DSS in greater detail.
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5.1. Problem Specification

Initially, decision makers specify the planning horizon (in fiscal quarters), the set of projects to be

analyzed (P ), the customer set (C), and the set of target markets (M) for these candidate projects.

One individual project may be split over multiple customers and market segments. The decision

maker defines the exposure of project p to its markets m as a fraction αpm and the exposure of

each project to its customers c as a fraction γpc.

Once the initial instance specification data is obtained from the users, the DSS queries the

company database to retrieve the resources (R) consumed by the projects in set P , the periodic

unit cost of each resource (cr), the set of technologies used in the product development phase

(E), and the forecast gross margins (GMpt), fixed costs (FCpt), and resource usage (Wrpt) for the

specified projects, resources and periods. Further, all important time-line information about the

project life cycle, such as design-win date, are obtained.

This information is used to help describe a scenario, an instance of all possible sequences of

random events relating to projects, resources, technologies, market segments and customers from

the beginning until the end of the planning horizon. The set of all possible scenarios is denoted as

Ω[1,T ]. From analysis of the project life cycle and feedback from project managers, we concluded

that seven Risk Groups were sufficient to accurately describe Ω[1,T ]. The risk groups relate to

(1)Product Performance, (2)Resource Performance, (3)Technology Status, (4)Intellectual Property

(IP) Development Status, (5) Design-Win Status, (6) Market Performance, and (7) Customer

Performance.

The risk groups and possible outcomes of events in each risk group are the same regardless of

the instance being considered. What varies from instance to instance is the impact associated with

each outcome. Each outcome is associated with an impact parameter (ρ) that will be used to adjust

forecast data.

The outcome of events in one risk group may be correlated through time or correlated with

outcomes of events from different risk group. These event relationships, the definitions of the risk

groups, and the impact factors for each group is described in Section 5.2.

5.2. User Input

A key characteristic of the DSS in place at the company is that the project managers and high-level

executives are responsible for quantifying the impact of various random events that may occur

during the planning horizon. This domain expertise is spread among various individuals in the

company.
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Table 1 Risk Groups and Possible Outcomes

RISK GROUPS OUTCOMES IMPACT
Product Superior Expected Poor Product

ρ
PPgm
pt , ρ

PPfc
ptPerformance Performance Nominal Performance Failure

Resource Over Expected Under Loss of Key
ρR

rtPerformance Performance Nominal Performance Resources
Technology Development Expected Behind Failure ρE

etStatus Goes Well Nominal Schedule
IP Development Successfully Were not Late Time to

Status completed completed Market or continue
Design-Win Got the Did not get Zero GMpt’s or

Status design-win the design-win continue
Market Market Expected Market Market

ρM
mtPerformance Expands Nominal Contracts Collapses

Customer Superior Expected Poor
ρC

ctPerformance Performance Nominal Performance

While the impact coefficients and associated probabilities certainly may seem arbitrary, it is

important to note that they are used in a systematic manner and obtained from people within

the company who are best-poised to provide such information. The DSS is a leap forward for the

decision makers in the company who routinely did “what-if” analysis of various scenarios, but

lacked the machinery necessary to properly capture the correlations between various events and

to act intelligently in the face of uncertainty. The new DSS overcomes both of these obstacles: a

simulation is used to ensure that all events are correlated through time, and an optimization model

is used to simultaneously consider many different uncertain scenarios to choose the best action.

Typically, to create an instance, strategy meetings among executives and individuals with domain

knowledge are held, and impact factors and probabilities are assigned for each event in each risk

group.

The risk groups and their probable outcomes are given in Table 1 and may be summarized as

follows:

• Product Performance: Events related to the quality of a product or prototype. The impact of

the product performance on the gross margin GMpt is denoted by ρ
PPgm
pt and its impact on fixed

cost FCpt is denoted by ρ
PPfc
pt . The outcomes of product performance can affect the likelihood of

the “Design-Win” event if the project is in the development phase.

• Resource Performance: Events related to the performance of R&D and administrative staff.

There is one outcome for each resource r ∈R and for each stage t∈ T . The outcome has an impact

ρR
rt on the forecast resource usage rate Wrpt. If resources are lost in a stage, then projects using

that resource cannot be completed unless new resources are obtained.
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• Technology Status: Events related to the timing of the technology and project schedule. Each

project is built using one type of technology. The technology impact ρE
et is used to update the

probabilities of IP development status events.

• IP Development Status: A binary and one time event indicating the IP development status

for project p. Failure of the IP development delays the time to market of the project and hence

all other projects for which p is a prerequisite. The delay of the market release time is handled by

shifting the gross margins GMpt further out in the planning horizon. The number of stages to shift

the release and any increase in development cost FCpt is specified by the users. The probability of

successfully completing the IP development at time t, πIPt, depends on the outcome of the previous

period’s technology status.

• Design-Win Status: A binary and one time event indicating if the customers accept the pro-

totype design. If the customer accepts the design, the production phase starts and the product is

released to the market. If the customer does not accept the design, the project is not released to

the market. However, in the case of customer rejection, the dependent projects can still benefit

from the project’s IP (if the IP was successfully developed). The probability of a design-win at

time t, πDWt depends on the previous period’s product performance outcome.

• Market Performance: Events related to market condition. A product might serve more than

one market. In this case, the percentage exposure of product p to market m, αpm, is used to obtain

the overall effect of the market related outcomes. The outcomes have an impact ρM
mt on the gross

margins GMpt.

• Customer Performance: Events related to customer performance. A product might serve more

than one customer. In this case, the percentage exposure of product p to customer c, γpc, is used

to obtain the overall effect of the customer related outcomes. The customer performance outcomes

have impact ρC
ct on the product gross margins GMpt.

After the probability and impact data is collected, the product-market (αpm) and product-

customer (γpc) exposures are provided by the decision makers. Last, project dependencies are

specified in terms of prerequisite set Qp and mutually exclusive set Ep for each project p. These

sets are taken from the database, but at this point the user may override the information.

Data collection for large-scale problems is always a burden. However, the user-friendly interface

of the DSS greatly eases this overhead. The DSS is connected to the company database, so the

forecast data for the project, technology, and resource sets over the planning horizon are obtained

instantly. The DSS generates tables to gather probability and impact data, and when the data is
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collected, error-checking routines ensure that all the data are present and fall within reasonable

nominal ranges.

Even though the space of outcomes has been discretized, so that Ω[1,T ] is a finite set, the cardi-

nality of this set is too large for us to consider all possible combinations of outcomes. To create a

tractable instance of our optimization model, we sample from the set Ω[1,T ], and an instance of the

model is created when the user specify the number of stages of the stochastic programming model,

the number of random event realizations at each stage, and information on how the fiscal quarters

(periods) are spanned by stages (Figure 2, Step 4). If aggregation is needed, the system does this by

summing GMpt,FCpt, and Wrpt over the periods in that stage. In this step, the users also specify

the number of sampled instances to be created and solved and the number of different risk levels

for which each sampled instance should be solved. That is, each SP is sampled multiple times, and

each sampled instance of the SP is solved at varying risk levels K. After all the above information

is acquired, the DSS checks whether all the data required for scenario generation is complete and

logical. If the information is error free, then the DSS proceeds to the Scenario Generation Phase.

5.3. Scenario Generation

Conditional sampling is used to create a manageable sample of the discretized scenario space Ω[1,T ].

The size of the scenario tree depends on the number of stages (T ) and the number of random event

realizations at each stage t (Mt). The conditional sampling procedure works by first selecting a

random sample of size M2 for the second stage.

The probability of each realization in the second stage is 1/M2. The second stage realizations

are given by

ζi
2 =

(
GMp2(ωi

2),FCp2(ωi
2),Wrp2(ωi

2)

)
, i = 1, ...,M2.

Formulae for dependence of gross margin, fixed cost, and resource consumption (GMpt(·),FCpt(·),

and Wrpt(·) on the outcome of the random event ωi are given subsequently in Equations (10)-(12).

Next, for every i ∈ {1, ...,M2} a random sample of size M3 is generated. Thus, there are M2M3

realizations of events in the third stage, each with probability 1/(M2M3). The third stage realiza-

tions given the history of events up to this point ω[1,2] are given by

ζij
3 =

(
GMp3(ω

j
3|ωi

[1,2]),FCp3(ω
j
3|ωi

[1,2]),Wp3(ω
j
3|ωi

[1,2])

)
, i = 1, ...,M2, j = 1, ...,M3.

The procedure is called conditional sampling due to the dependence of ζij
3 on ζi

2.
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The procedure continues in this fashion until the T th stage is reached, creating a history of events

ω[1,T−1]. At the T th stage, we have M2M3 · · ·MT realizations of events, each with equal probability

1/(M2M3 · · ·MT ). Each path from root node to leaf node in this tree is a scenario.

Conditional sampling is required to capture the correlations between random events. The events

may be correlated through time and within risk groups. The relation between the outcomes is

shown in Figure 3. The figure depicts that the outcome of the product performance event in period

t will affect the outcome of the design-win status event in period t + 1. The figure also shows the

dependence of the gross margins, fixed costs, and resource consumption on the outcome of random

events. The exact functional dependence is given in Equations (10)-(12).

GMpt(ωi
t|ω[1,t−1]) = ρ

PPgm
pt GMpt

[∑
m∈M

∑
c∈C

(αpmρM
mt)(ρ

C
DW γpcρ

C
ct)

]
∀p∈ P,∀t∈ {2,3, . . . , T},

∀i∈ {1,2, ...,Mt},
(10)

FCpt(ωi
t|ω[1,t−1]) = ρ

PPfc
pt FCpt ∀p∈ P, ∀t∈ {2,3, . . . , T}, ∀i∈ {1,2, ...,Mt}, (11)

Wrpt(ωi
t|ω[1,t−1]) = ρR

rtWrpt ∀p∈ P, ∀r ∈R,∀t∈ {2,3, . . . T}, ∀i∈ {1,2, ...,Mt}. (12)

The outcome of scenario generation is a scenario tree, where each node carries information

regarding to the system state at that stage. We will denote the set of nodes that belong to stage

t as St. From this point forward, we will use node notation to describe gross margins, fixed costs

and required headcount levels. That is, at stage t, GMpn, FCpn and Wrpn will be the updated gross

margins, fixed costs and required headcount levels at node n for each n∈ St.

5.3.1. Risk Measure Once the scenario tree is created, the Gini coefficients λpt are calculated

for each product p (p∈ P ) and stage t (t∈ T ). Similar to variance, the Gini statistic is a measure

of dispersion and is defined as the expected value of the half the absolute difference between every

pair of realizations of the random variable r having cumulative distribution function (cdf), F (·) .

The Gini statistic can be mathematically written as E|r1− r2|/2 where r1 and r2 are independent

random draws from the distribution. Shalit and Yitzhaki (1989) demonstrate that the Gini statistic

of a random variable r can also be written as twice the covariance of random variable r and its

cdf, F (·) : 2 cov(r,F (r)), where F (·) is uniformly distributed over [0,1].

To compute the Gini coefficients λpt in the context of our optimization model, the return of each

available product for each realization of the uncertainty in that stage (θpn) is calculated

θpn
def= GMpn −FCpn, ∀p∈ Pt, ∀n∈ St, (13)
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Figure 3 Outcome Relations

and the total return of all products for that realization (θn) is computed

θn
def=
∑
p∈Pt

θpn ∀p∈ Pt, ∀n∈ St. (14)

In Equations (13) and (14), the symbol Pt ⊂ P is the set of all products that can be selected in

stage t (i.e. p∈ Pt ⇒ bp ≤ t). Next, the values θpn and θn are assembled into collections of length |St|

and the vector φpt is constructed from θpn by applying the same transformation made on vector

θn to sort it in ascending order hence obtain φt. The Gini coefficient is then computed as

λpt = 2Cov(φpt,Ft(φt)) ∀t∈ T \ {1}, ∀p∈ Pt, (15)

where Ft(φt) is the cumulative probability of the total return φt. Since returns are generated via

a sampling procedure, and the probability of each realization is equal, Ft(φt) is found by dividing

the rank of each element in φt by the cardinality of set St. A deeper explanation of the meaning

and calculation of the Gini coefficients can be found in Yitzhaki (1998).
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5.3.2. Complexity of Scenario Generation Algorithm Do we need this?

The time required to generate a single scenario tree depends on the number of stages, T , number

of events at each stages, (Mt t∈ T \{1}), total number of nodes, N , and the cardinality of project,

customer, market, resource and technology sets. Assuming the size of latter is small and one has

on average same number of events at each stage,M , the time complexity is O(MT−1). As seen

obviously, the choice of T and M could dramatically effect the time required to generate one

scenario tree. For example T = 2 and M = 105 is equivalent to T = 6 and M = 10 The choice of M

and T should be made considering the problem context and the solution time of the optimization

model in described in next section.

5.4. Optimization

Once the scenario tree is created, we can build a tractable approximate optimization model. The

solution of the model produces a “best” portfolio and required headcount levels for each resource.

Decision variables are the counterparts of the decision variables described in Section 4.3. The

variables xpn indicate whether or not project p is included in the portfolio at node n. The variables

yrn, hrn, frn respectively indicate the number of available resource level, the increase, and decrease

in resource levels for each resource r at node n. For any node n of the scenario tree, πn is the

path probability of node n, or probability that the sequence of events leading to node n will occur.

The sampling methodology employed implies that if n ∈ St, then πn = 1/(M1 · · ·Mt). With these

definitions, the product portfolio management problem can be modeled as follows:

Maximize:
∑
t∈T

∑
n∈St

πn

[∑
p∈P

(GMpn −FCpn)xpn −
∑
r∈R

(ηrhrn + ζrfrn + cryrn)

]
(1) (16)

subject to ∑
p∈P

Wrpnxpn ≤ yrn ∀r ∈R, ∀t∈ T , ∀n∈ St, (2) (17)

yr1 = Ir +hr1− fr1 ∀r ∈R, (3) (18)

yrn − yrρ(n) = hrn − frn ∀r ∈R, ∀t∈ T \ {1}, ∀n∈ St, (4) (19)

xpn ≤ xqn ∀p∈ P, ∀q ∈Qp, ∀t∈ T , ∀n∈ St, (5) (20)

xpn +xun ≤ 1 ∀p∈ P, ∀u∈Ep, ∀t∈ T , ∀n∈ St, (6) (21)

xpn = 0 ∀p∈ P, ∀t∈ {1,2, ..., bp − 1}, ∀n∈ St, (7) (22)

xpρ(n) ≥ xpn ∀p∈ P, ∀t∈ T \ {1}, ∀n∈ St, (8) (23)∑
t∈T \{1}

∑
p∈P

λpt

∑
n∈St

πnxpn ≤ K, (9) (24)
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xpn = 1 ∀p∈ F1, ∀t∈ T , ∀n∈ St, (25)

xpn = 0 ∀p∈ F0, ∀t∈ T , ∀n∈ St. (26)

The bold equations numbers in parenthesis represent the counterpart equations in the model

present in Section 4.4. Additionally, we include Equations (25) and (26)) to include or exclude a

specific project or set of projects for the whole planning horizon. The sets F1 and F0 are given by

the user, should he or she wish to specify a partial solution.

All of the steps in Figure 2, up to the creation and solution of the optimization model are done

using Excel VBA. The optimization models are created by the AMPL modeling language (Fourer

et al. 2002), reading and writing data from and to Excel via ODprimary market. The optimization

instances are solved using CPLEX v9.1. The DSS is responsible for ensuring that the entire batch of

optimization instances (coming from different sampled scenario trees solved at varying risk levels)

is solved, as depicted in Figure 2, Steps 5 and 6. When all the runs are complete, the DSS proceeds

with the Refinement Phase.

Do we need this?

As mentioned in Section 5.3.2 time required to reach the Refinement Phase depends on the

choice of M and T . Although time required to generate one scenario tree grows polynomially (DSS

does not allow T more than 6), required time to solve the above problem grows exponentially. For

example if one doubles M , it takes 2T−1 more time to generate the tree, however, the number of

decision variables and the constraints would grow by 2T−1. Hence, the choice of model parameters

should be carefully made. The trade off between the quality of the optimal solution and versus

time required to solve a single instance should be determined considering problem context.

5.5. Refinement

A key component of the DSS is the feedback given to decision makers about solutions obtained

from the optimization model. Once an instance is created and solved, the sampled outcomes of

uncertainty and the decision made for each outcome of the uncertainty are written to a database.

Next, charts and other visual aides are constructed from the database to help the decision maker

see the cause and effect relationships of model inputs. From our experience, the management found

two types of charts useful in the decision making process. (Specific examples of each type of chart

are given along with the case study presented in Section 6).

1. Efficient Frontier: The optimization problem (16)-(26) is solved for increasing risk levels (K),

and the optimal expected portfolio profit is plotted against K. Also, using the results from multiple

runs, quantiles of the expected profit are constructed and displayed.
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2. Portfolio Composition: Since the multi-stage stochastic program is solved at different risk lev-

els (K) and for different sampled scenario trees, the optimization offers many different suggestions

as to what projects should be included in the portfolio. The portfolio composition charts give an

indication of how often a project is included in the portfolio for the different realizations of uncer-

tainty. The charts show for each project, the percentage of cases in which the project was included

in the portfolio. One type of this chart is created on a per-year basis, in which case the solutions are

averaged over all risk levels and over all sampled scenario trees. Another type of chart is created on

a per-risk level basis, averaging first stage solutions over different sampled scenario trees. Typically,

this chart is created to demonstrate the projects that are done in the initial portfolio.

The three-phase DSS has been tested and validated with real case studies. In the next section,

we describe one of these case studies, in which a semiconductor manufacturer’s management is

on the verge of constructing project portfolio for one of their major business units. Each of the

different charts providing solution feedback will be demonstrated via this case study example.

6. Case Study

The company was faced with a strategic portfolio decision charting the course of one of their

major divisions over a four year time period. The strategic decision involved creating a portfolio of

projects to undertake from a candidate set of size 21. For this particular business decision, inferring

reasonable expected project returns from forecast values was turning out to be very difficult for

management. The various “information points”, such as IP development completion and the design-

win date, during a project’s life-cycle had a very significant impact on the project returns. Further,

there was a significant amount of interdependence (pre-requisite and exclusivity) information for

the projects that could be undertaken. For these reasons, this particular strategic portfolio decision

seemed like an ideal case study for the DSS in place at the company. The time line, cash flows,

and total resource cost of the various candidate projects is depicted in Table 2. The numbers in

parenthesis represent negative values.

In this case study, to more accurately represent business decisions that could be feasibly taken in

subsequent years, the management decided to put additional projects as “business exits”, indicating

total (P1) and partial (P2) business exit from this business area. Note the large lists of mutually

exclusive projects with these business exit projects. In order to depict the dependency of one

project’s cash flow on another project’s IP development status, an alternative cash flow line is given

under the original one. For example, the cash flow for project P7 depends on the IP development

status of project P6. If project P6 does not complete IP development on time, then the second line
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Table 2 Data from Company Database

Forecast Fixed Costs and Gross Margins
Year 1 Year 2 Year 3 Year 4

No. Proj.
IP Preq. M. Ex.

FC GM FC GM FC GM FC GM

P
t

P
r

Tot.
Depend. Proj. Proj. Wrpt Value

1 P1 - -
2,4,7,8

0.00 0.00 0.00 15.97 0.00 0.00 0.00 0.00 (35.30) (19.33)
9,10,11

2 P2 - -
1,4,7

0.00 0.00 0.00 2.45 0.00 0.00 0.00 0.00 (14.70) (12.25)
8,9,10

3 P3 - - - (0.30) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (14.70) (15.00)
4 P4 - 3 1,2,5,11 (5.00) 3.50 (3.30) 4.80 0.00 0.00 0.00 0.00 (1.30) (1.30)
5 P5 - 2,3 4 (5.00) 3.50 (3.30) 4.80 0.00 0.00 0.00 0.00 (1.30) (1.30)
6 P6 - 3 - (0.50) 0.00 (0.30) 7.00 0.00 0.00 0.00 0.00 (1.10) (5.10)

7 P7
P6 Pass

3 1,2,11
(2.80) (0.10) (6.30) 14.50 (6.50) 23.00 (0.90) 0.90

(17.90)
3.90

P6 Fail (2.80) (0.10) (8.80) 12.00 (6.50) 23.00 (0.90) 0.90 (1.10)
8 P8 - - 1,2,11 (1.00) 0.00 (6.80) 0.60 (11.30) 46.60 (9.30) 44.90 (32.50) 31.20
9 P9 - 8 1,2,11 0.00 0.00 0.00 8.00 0.00 0.00 0.00 0.00 0.00 8.00

10 P10
P8 Pass

- 1,2,11
0.00 0.00 (0.60) 0.00 (5.70) 5.20 (13.10) 60.40

(23.30)
22.90

P8 Fail 0.00 0.00 (0.60) 0.00 (12.10) 5.20 (24.60) 60.40 5.00

11 P11 - 2
1,4,7

0.00 0.00 (1.10) 0.00 (1.00) 0.00 (1.90) 0.00 (22.40) (26.40)
8,9,10

12 P12 - - - (1.10) 0.90 (0.20) 0.50 0.00 0.00 0.00 0.00 (1.90) (1.80)
13 P13 - 12 - (1.20) 1.00 (0.80) 1.40 (0.40) 0.20 0.00 0.00 (1.50) (1.30)
14 P14 - 13 - 0.00 0.00 (1.20) 0.30 (0.90) 2.30 (1.10) 1.90 (1.40) (0.10)
15 P15 - 3,12 - (0.60) 0.00 (0.19) 3.50 (2.30) 6.30 (0.80) 2.00 (3.20) 4.71
16 P16 - 15 - (0.30) 0.00 (1.60) 5.90 (1.80) 5.80 (0.60) 0.90 (0.30) 8.00
17 P17 - 11,15 - 0.00 0.00 (2.80) (0.10) (4.10) 13.60 (4.80) 24.00 (5.90) 19.90
18 P18 - 16 - 0.00 0.00 (0.10) 0.00 (1.40) 5.80 (3.80) 24.50 (3.00) 22.00)
19 P19 - 3 - (8.00) (0.50) (15.40) 7.30 (18.10) 17.00 (21.60) 46.00 0.00 6.70
20 P20 - 8,19 - 0.00 0.00 0.00 0.00 0.00 0.00 (13.00) 25.00 0.00 12.00
21 P21 - 11 - 0.00 0.00 0.00 0.00 (27.90) 48.90 (31.00) 60.30 0.00 50.30
22 P22 - 11 - 0.00 0.00 0.00 0.00 0.00 0.00 (3.30) 15.20 0.00 11.90
23 P23 - 11 - 0.00 0.00 0.00 0.00 0.00 0.00 (3.62) 18.40 0.00 14.78

Table 3 Resource Related Figures (in $ millions)

Overhead Hiring Firing Initial
cost (cr) cost (ηr) cost (ζr) level (Ir)

R&D $0.256 $0.200 $0.300 80
SGA $0.150 $0.100 $0.200 20

of P7 gives its future projected cash flows. A similar relationship holds for projects P8 and P10.

For this business area, the IP development status does not affect the time to market. However, in

other business areas, where successful IP development does impact time to market, this would by

represented by shifting all cash flows on the second line of cash flow data to the right in the figure.

A noteworthy point about Table 2 is that a project’s begin time bp is the first period when a

non-zero fixed cost or gross margin is observed for the project, and the project’s design-win event

should be considered in the period when the first nonzero gross margin is observed for the project.

If a project passes the design-win then the forecast gross margins GMpt in the table would be used

as a base to calculate the scenario dependent gross margins via Equation (10).

There are two types of resources: R&D and Administrative. Table 3 provides cost and initial

count data related to both types of resources in the case study instance.



Gemici-Ozkan et al.: R&D Project Portfolio Analysis for the Semiconductor Industry
22 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Management considers three projects vital for the company strategy. Independent of the remain-

ing portfolio selections, P3, P12 and P15 are “must do” projects. These projects are technology

development projects, and have very little or zero gross margins expected throughout their life

cycle. Thus, F1 = {P3, P12, P15} in Equation (25).

Before undertaking a careful, quantitative analysis using the DSS in place at the company, the

managers had concluded that there were likely two different “business lines” that were attractive

options to follow. The general consensus was that the first business line (BL1) was a conservative

option, that would yield reasonable returns at low risk levels, and that the second business line

(BL2) was a riskier, but potentially more profitable, undertaking. A key portfolio characteristic

that distinguishes between the business lines is the commencement of project P11. If P11 is done,

this implies that the second business line BL2 is being followed. Management was particularly

interested in gaining insight from the DSS in support of one of these business lines, or in learning

if there were portfolio options from the set of candidate projects with more desirable risk/return

characteristics than either BL1 or BL2.

For the analysis, in addition to the project specific information from the company database

shown in Table 2, management defined the key markets (M), key customers (C), and probabilities

and impact data for each risk group outcome defined in Table 1. For this instance, there are 4

markets, 5 customers, 3 technologies, 2 resource types and 23 projects (including the 2 business

exit projects). The data collection and scenario generation process are handled with Excel’s VBA

module. For this instance, it was reasonable to consider a four-stage stochastic program, as the

company can decide to start or end projects roughly at the beginning of its Fiscal Year.

Even with the relatively coarse discretization of the uncertainty space described in Table 1,

there are still on the order of a quadrillion (1015) outcomes for each stage. Sampled optimization

instances containing 10,000 scenarios were created by considering M2 = 50 realizations in the second

stage, M3 = 20 realizations in the third stage, and M4 = 10 realizations in the final stage. Twenty-

five different sampled instances of this size were created, and each instance was solved for twelve

different risk levels K, varying from K = 10 to K = 65 in increments of five units. Solving all 300

instances took roughly 6 1/2 hours, and there was not significant variation in solution time from

instance to instance. The instance size of 10,000 scenarios was chosen so that the entire family

of 300 instances could be solved overnight on a single PC. While 10,000 scenarios is a very small

fraction of the total number of scenarios, our observation has been that both the optimal solution

and its value obtained from different sampled instances tends to be very “stable”, not changing

much from instance to instance. Theoretical evidence showing that there is a high probability of
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Table 4 Number of BL1 and BL2 instances for varying risk levels

Risk Level
10 15 20 25 30 35 40 45 50 55 60 65

# BL1 instances 25 25 25 20 9 4 10 11 11 13 13 13
# BL2 instances 0 0 0 5 16 21 15 14 14 12 12 12

obtaining the true optimal solution from a small sample size in the case of two-stage stochastic

recourse problems is given by Shapiro and Homem-de-Mello (2000) and Kleywegt et al. (2001).

When the suite of 300 instances was run, the results indicated that nearly all portfolios from the

optimization fell roughly into one of two sets. Further, these two sets corresponded quite accurately

to the company’s notions of the two business lines BL1 and BL2. In subsequent analysis, each of

the 300 optimal solutions was categorized as to belong to one of BL1 or BL2.

Figure 4 shows the efficient frontier plot, described in Section 5.5, for optimal portfolios corre-

sponding to Business Line 1 and Business Line 2. The middle line in each figure is the average

expected return for each risk level, and the upper and lower lines are the 90% and 10% (resp.)

quantiles of the optimal return. One can note from the figures that at low risk levels, an optimal

portfolio always follows BL1, but at higher risk levels, the optimal portfolio sometimes follows

BL1 and sometimes follows BL2. Table 4 shows for each risk level how many of the 25 solutions

followed BL1 and BL2. In general, as more risk is allowed in the portfolio selection, more projects

are added. Figure 4 also displays the first risk level at which a project begins to appear in portfolio

solutions. With the aid of Figure 4, management was able to draw conclusions about the specific

risk of each project based on the risk level at which projects first entered an optimal portfolio. For

example P6, P10, P16 and P18 are low risk projects, P7, P8,P9 are moderate risk, and P19, P20

are high risk projects for BL1. Almost every project suggested by BL2 is a moderate risk project,

(a)Efficient Frontier for BL1 (b)Efficient Frontier for BL2

Figure 4 Efficient Frontiers for Business Lines
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Table 5 Comparison of Average Expected Return in Business Lines

Risk Level
10 15 20 25 30 35 40 45 50 55 60 65

BL1 (5.49) 4.05 9.21 13.74 15.94 16.59 16.39 30.80 31.02 31.23 31.51 31.52
BL2 0 0 0 10.54 20.27 24.74 26.18 27.70 28.51 29.77 29.77 29.77

(a)BL1 Initial Portfolio Composition (b)BL2 Initial Portfolio Composition

Figure 5 Portfolio Composition for Business Lines

save for P19.

The average optimal expected return for the business lines is compared in Table 5. Management

was very surprised to see that for the highest risk levels, BL1’s average expected return was higher

than that of BL2. Another key insight gained from the solutions was that even at the highest

risk levels, both BL1 and BL2 reveal lower expected returns than the forecast figures in Table 2.

Further analysis revealed that this shortfall is due to the fact that forecast figures do not adequately

take into account the possibility of zero gross margins when a project fails. Another driver of the

difference in forecast figures and the expected optimal figures is the probability and impact data

specified by the management. It seems that for this particular instance, the management consensus

was to be slightly “pessimistic” about a few key impact events.

Figure 5 depicts the initial portfolio composition for each business line. Specifically, for each

project and risk level, the height of the bar for P3 for the project illustrates the percentage of

instances in which the project appears in BL1’s (BL2’s) optimal portfolio for the first time period.

Since the project P3 is fixed to be included in all portfolios, the height of the bar shows the scale of

100% in the figure. For example, Figure 5a graphically shows that at risk level K = 40, the project

P20 appears in an optimal portfolio for BL1 60% of the time. Similarly, P19 at risk level K = 50

appears in an optimal portfolio 19% of the time. (Figure 5b)
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Table 6 Headcount and Profit Comparison in Time: Low Risk levels (10-25)

Year 1 Year 2 Year 3 Year 4 Total
BL1 BL2 BL1 BL2 BL1 BL2 BL1 BL2 BL1 BL2

R&D 80 142 35 54 27 36 27 36 Mean:42 Mean:67
SGA 18 31 9 14 7 9 7 9 Mean:10 Mean:16

Return (28.17) (14.21) (10.18) (8.23) 5.26 5.99 37.92 19.09 4.83 2.63

Figure 6 is another illustration of the portfolio composition for BL1 and BL2. By the height of

the bar for a specific project, the figure shows for each year, the percentage of optimal portfolios

that contain that project in that year. In this figure, the information is averaged over all risk levels.

Management found these aggregate charts useful to get an overview of the business line and the

“robustness” of projects appearing in a particular business line.

Tables 6-8 display the expected yearly required headcount levels of each type of resources for

both BL1 and BL2, averaged over low (K = 10,15,20,25), medium (K = 30,35,40,45), and high

(K = 50,55,60,65) risk levels. An important observation made by the company’s management is

that the required level of resources for BL2 dramatically reduces after the first year, yielding a

high turnover rate. The required level of resources for BL1 is relatively more stable. The last line

in the Tables 6-8 lists the average expected yearly profit for the business lines at the various risk

levels. Note that neither BL1 nor BL2 are expected to return profits for the first two years of the

planning horizon.

The choice of the portfolio depends on the degree of risk averseness. The optimization solutions

suggest to in general follow BL1 at all the risk levels except K = 30 and K = 35. After viewing the

results at various aggregations, management decided to invest in the BL1 projects. This portfolio

(a)BL1 Yearly Portfolio Composition (b)BL2 Yearly Portfolio Composition

Figure 6 Yearly Portfolio Compositions for Business Lines
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Table 7 Headcount and Profit Comparison in Time: Medium Risk levels (30-45)

Year 1 Year 2 Year 3 Year 4 Total
BL1 BL2 BL1 BL2 BL1 BL2 BL1 BL2 BL1 BL2

R&D 111 142 69 55 58 37 58 37 Mean:74 Mean:67
SGA 24 31 18 14 15 9 15 9 Mean:18 Mean:16

Return (26.82) (49.32) (13.89) (27.21) 9.82 23.98 45.10 74.55 14.21 22.00

Table 8 Headcount and Profit Comparison in Time: High Risk levels (50-65)

Year 1 Year 2 Year 3 Year 4 Total
BL1 BL2 BL1 BL2 BL1 BL2 BL1 BL2 BL1 BL2

R&D 114 137 72 52 61 36 61 36 Mean:77 Mean:65
SGA 25 30 19 13 16 9 16 9 Mean:19 Mean:15

Return (54.48) (55.87) (30.06) (31.08) 13.14 27.5 103.21 87.58 31.81 28.12

family was in general more attractive for the following reasons; First, on the average it yields higher

profit over all risk levels. Second, the portfolio and the expected profit is more responsive to the

degree of risk averseness, which, according to management would give them extra flexibility. Last,

the required level of resources to maintain this portfolio of projects is less variable.

After solving the case study problem, we conducted an analysis to quantify the impact of using

an approximate expected risk measure (Equation (20)) to limit risk as opposed to the exact Gini

risk of the portfolio. Recall that the risk measure employed for the optimization is approximate

since it assumes that all projects are included in the portfolio when computing the CDF of the

portfolio return in Equation (15). This approximation is necessary to keep the optimization problem

solved by the DSS a linear model. To perform the analysis, fifteen additional sampled instances

were created using the case study data. Each instance was solved, yielding a solution xpn. For each

instance, the Gini-statistic of the portfolio return was computed both by assuming all products

were available in the portfolio (the approximate method) and by assuming that only the products

selected by the solution xpn were available in the portfolio (the true method). For the fifteen

re-sampled instances, the true Gini-statistic for portfolio return differed from the approximate

Gini-statistic by less than 4% on average, with a maximum difference of 11%.

A final analysis was done to attempt to quantify the value of using a stochastic programming

approach against a deterministic (or mean-value) model. As such, the mean-value problem was

created by fixing all the random quantities to their mean values. The long-run average profit of

operating using the optimal suggested by the stochastic program versus the mean-value portfolio

is known as the value of the stochastic solution (VSS) (Birge and Louveaux 1997). In our case,

this analysis was performed for all levels of risk, and the long-run average cost of operating using

a given portfolio was estimated using new sampled scenario sets of size 25. Table 9 shows that
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Table 9 Average Value of Stochastic Solution (VSS) under different risk levels

Risk Level
10 15 20 25 30 35 40 45 50 55 60 65

VSS ($ millions ) 10.11 4.50 0.49 1.85 7.41 12.37 12.81 12.87 11.46 10.29 9.55 9.35

for nearly all levels of risk, the VSS was significantly greater than 0, indicating that by explicitly

considering the cost of reacting to uncertainty in the model, better decisions are being made.

7. Implementation Experience

The project portfolio selection DSS described here has been constructed, revised, and remodeled

over a two-year period via continuous interaction with the firm’s senior management. Through our

interactions with the decision makers expected to use the tools, we observed that they do not feel

comfortable tinkering with the DSS during the optimization phase, but it is intuitive for them to

comprehend the system’s recommendations through the tables and charts. Thus, we designed the

DSS such that after the initial data input, the process flows automatically, and the requisite charts

and the tables are displayed at the end. The management discusses the results using these charts

and tables. If more “what if” analysis or in-depth statistics are needed, the DSS allow them to

delve directly into the solution through a spreadsheet interface. The system also provides utilities

for decision makers to perform additional analysis by changing portions of the input. The DSS will

then automatically re-run the entire process.

During our implementation, the management decided to connect the DSS with the company

database so that information that is already available can flow in directly. A main concern of

the management is to make sure that the DSS generates the type of charts and tables that the

whole decision team can easily interpret and understand. They were heavily involved in the design

of the output format such that charts and tables generated were very similar, if not identical,

to what they have already being using in the process. Overall, the senior management has been

very satisfied with the way the DSS tool helped in their decision process. Since it is primarily

data driven while taking into consideration some human judgements, the tool creates a level of

formality and credibility to the process. The firm uses the DSS for the portfolio selection and

management process, and they are planning to use the tool for higher-level strategic decisions such

as the alignment of market potentials and business units within the company.

8. Limitations

The company has found the DSS produced on their behalf a flexible and adaptive decision-making

aid, but it is not appropriate for all R&D project portfolio problems. One limitation of the mecha-

nism is that the stochastic program (16)-(26) can quickly grow too large to be tractable for available
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software. Therefore, the approach is best applied on decision problems that have few stages–either

when making a short-term decision or where a coarse time-aggregation of the decision-making

stages is appropriate. It is important to weight the trade off between quality of the solutions

obtained and time required to solve a single instance. The decision maker can decide the problem

parameters considering the problem context and by trial and error. The recourse actions modeled

in the stochastic program were suitable for our business cases of interest, but they were rather

limited. All product decisions were of the “go/no-go” variety, and resource decisions available were

to kill a project and to adjust headcount resources appropriately. In real life the action space to

select and manage a portfolio may be much more diverse. For example, the decision maker may

wish to delay the start of a project or slow down the rate at which the project is completed. The

model also assumes that whatever additional resources are necessary to ensure project completion

can always be obtained in a timely manner, an assumption that may not be true in the business

environment. In theory, each of these complications could be accounted for by increasing the com-

plexity of the underlying stochastic program, adding additional decision variables and constraints

to model the situation. However, in practice, the increased complexity of the resulting model may

again pose difficulties for available software to solve.

9. Conclusions

As is typical in the high-tech environments, the semiconductor industry faces a dynamic and

volatile market. The development of intellectual property (IP) via R&D projects is among the

most important decisions that high-tech companies make, and the selection of a well balanced

R&D portfolio requires significant effort and analysis. In this paper, we introduced a three-phase

decision support structure for the project portfolio selection process at a major U.S. semiconductor

company. The key features of the decision support system developed for the company are the

following:

• Flexible risk modeling via scenarios, allowing the incorporation of quantitative information

from the company database with qualitative information distributed among the decision makers,

capturing human assessment of different aspects of the business environment.

• A multi-stage stochastic program that provides an effective way to synthesize operational infor-

mation such as business constraints and project interdependence, while systematically considering

and evaluating the various sources of uncertainties present in the business environment.

• An effective interface for decision makers that provides access to all components of the DSS.

The interface includes detailed information gathering from company databases, surveys for key
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decision makers, a wizard-like user interface to assist in model building, error-checking routines

that notify the users in case of missing or illogical data, interaction with sampling and optimization

tools (for advanced users), and automatically generated charts, tables, and figures.

• Sensitivity analysis tools that allow decision makers to resolve particular instances with dif-

ferent parameters and evaluate the robustness of the outcome.

We demonstrated the applicability and flexibility of the DSS with a real-work R&D portfolio

selection case study. The case study demonstrated the typical output generated by the tools and the

different ways that the decision maker may use the DSS to analyze the trade-off in different portfolio

selection alternatives, balancing risk with expected return. The optimal portfolio constructed using

the DSS has been implemented for a particular business unit within the company.
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