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Abstract

We describe flexible optimization models for the production and distribution of liquefied atmo-

spheric gases. A simulation engine that interacts with the optimization models is used to test the

effectiveness of the models in the presence of uncertainty in customer demand and product availability.

The paper concludes with a case study using data from Air Products.

Keywords: Enterprise-wide Optimization; Simulation Optimization;

1 Introduction

Liquid oxygen (lox) and liquid nitrogen (lni) are typically produced in bulk through a cryogenic air
separation process. Air Products plans its production and distribution of lox and lni to customers
with the help of a linear program. The planning to set rough production levels and customer demand
assignments is typically done at a monthly level. In operations, the company must dynamically adjust
the rough monthly production plan as the state of the system evolves. With recent market conditions and
competitive demands, the schedule adjustment is becoming more frequent and complicated. This leads
to a natural question of why the schedule adjustment is so often necessary. There are two reasonable
explanations for the necessity of frequent rescheduling:

1. Aggregation of customer demands into monthly time buckets does not account for the (known)
normal monthly fluctuations of the demands and available supply, or

2. Uncertainty surrounding aspects of the model, e.g. customer demands and plant outages.
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The company’s course of action to resolve the frequent rescheduling issue is dependent on the reason why
the rescheduling is necessary. In the first case, a finer-grain production-distribution model should be used,
while in the latter case, the uncertainty should be explicitly considered in the model, perhaps through
stochastic programming or robust optimization. To help the company study this and related questions
involving strategic and operational aspects of its industrial gas business, we built various optimization
models for the production and distribution of bulk liquid gases. Instances of the models with real and
simulated data and with various time aggregations were solved in an effort to draw meaningful conclusions
about the best course of action to reduce the frequency and severity of intra-month schedule adjustments.

Hand-in-hand with flexible optimization models for the production and distribution of industrial gases,
a simulation tool was also built so that the quality of the proposed decisions from the optimization model
could be assessed independent from the instance data used to create the model. This is an important
point—just because the solution to an optimization model indicates that gains can be achieved does not
necessarily imply that the gains will be achieved in practice. More convincing evidence is obtained by
simulating the “improved” policies and measuring key performance indicators. This requires the develop-
ment of a simulation model alongside the optimization model. In a recent article in a series on the Great
Unsolved Problems in Operations Research, Fu (2007) argues that current software combining simulation
and optimization “offers mainly marriages of convenience rather than well-integrated partnerships,” and
that attempts at combining the two “usually lead to one partner dominating the other.” We agree with
this assessment. In fact, we consider ourselves guilty of this marriage of convenience—the optimization
models of our system are more sophisticated than the simulation. However, we have built the simulation
system from the ground up, and the company will continue to develop the entities built as part of the
simulation, hopefully fashioning the combined system into a marriage that truly works. Developing a
simulation model has a number of additional benefits. The simulation engine can be used independently
from the optimization model. It allows planners to perform what-if analysis, and planners can obtain
entire distributions of performance statistics of the system under study.

Simulation has a long and distinguished history of use in the Chemical Engineering community. It
has evolved into an indispensable and ubiquitous tool for plant design and analysis (Evans, 1987). More
recently, optimization methods have been combined with the simulation models for a variety of problem
faced by chemical engineers. The applications are too numerous to mention in full here, but the interested
reader is directed to the references to simulation in the survey papers on Enterprise-Wide Optimization
by Varma et al. (2007) and Grossmann (2005). Another thrust of Enterprise-Wide Optimization very
similar to this research effort has been to develop models and algorithms for the integration of production
planning and distribution across different time scales, similar to the proposal in this work. For example,
Wilkinson et al. (1996) propose a Resource-Task-Network (RTN) framework to solve a large-scale multisite
system. Dimitriadis et al. (1997) propose rolling-horizon algorithms for the solution of multipurpose plant
scheduling problems. Papageorgiou and Pantelides (1996a,b) describe a decomposition-based approach
to improve computational tractability of a batch and semi-continuous chemical process.

To our knowledge, this is the first work demonstrating the combination of simulation and optimization
for liquid bulk-gas production distribution problems. A related work of Harper (2006) describes how a
company uses an ant colony optimizer as part of its production and distribution planning for liquid gases.
The contributions of this paper are the following:

• Definition of an approximate model for the production and distribution of bulk-industrial gases;
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• Extension of the model to account for uncertainty in the system, both via a minimax formulation
and a two-stage stochastic program;

• Development of a simulation engine capturing the production and customer demand uncertainties
faced by the company;

• Combination of simulation with various optimization models to assess important strategic questions
for an industrial partner, using both random and authentic data sets.

The remainder of the paper is divided into five sections. In Section 2, we give an overview of the
company’s production and distribution process for bulk atmospheric gases, and we describe three different
optimization models that plan the production and distribution of gases: a linear program, a minimax ver-
sion of the linear program, and a stochastic program. Section 3 describes a simulation engine developed
to mimic the behavior of real production-distribution systems of atmospheric gases and explains how the
simulation engine is used to measure the expected actual performance of various production-distribution
plans produced by the different optimization models. Section 4 explains a number of different experimen-
tal studies using the simulation-optimization engine undertaken on behalf of the company to help them
understand the impact of various modeling approximations and strategic business decisions. Section 5
describes a case study of the simulation-optimization tool on a real-life system faced by Air Products.
We offer some conclusions and directions of future work in Section 6.

2 The Production Distribution Model

In this section, we describe a multi-period model for the production and distribution of bulk atmospheric
gases. The model described here is only an approximation of the production-distribution problem faced
by Air Products, but it does capture many of the important and distinctive features of such a model.
Specifically,

• Plants can be modeled as operating in two different modes—a “regular” mode and an “extended”
mode in which separated components of air are recycled in order to obtain a higher fraction of lox

than possible in regular separation modes;

• The company enters into “take-or-pay” contracts that allow competitors to take product from
certain company sites, and the company can remove an equal amount of product from competitor
sites;

• The distribution of products is constrained by the availability of drivers and trucks at each site.

The true model in place at the company is more complicated and more accurate, as it can account for
nonlinearities from complications such as electricity contract terms and plant startups and shutdowns.
The focus in this work is on the interplay of strategic decisions, operational considerations, and data
uncertainty in the production-distribution process. For these purposes, the approximate models we use
are sufficient.
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Figure 1: lox-lni Production
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A simplified model of production of lox

and lni is depicted in Figure 1. In the fig-
ure, a “regular mode” amount of lox (χ)
and a “regular mode” amount of lni (η)
are produced. Each of these quantities is
constrained via physical production limits:
χ ≤ X, η ≤ N . Next, depending on the
plant setup, a (variable) amount (e) of lni

can be re-processed in order to produce an
extra amount (Ψe) of lox, where Ψ is a lox

to lni conversion ratio. The amount of lni

re-processed can be at most E. The total
lox that is produced is then x = χ + Ψe, while the final quantity of lni that is produced is n = η − e.
There is a limit on the total production capacity at the plant, expressed via the constraint χ + η ≤ M.

For simplification, the variables χ = x−Ψe and η = n + e may be substituted out, yielding the following
constraints for production at a site:

x + n + (1 + Ψ)e ≤ M,

x−Ψe ≤ X,

n + e ≤ N,

e ≤ E.

2.1 Model Entities

The problem is characterized by a set of two bulk gas products (P) = {lox, lni} that are produced at
various sites (S), picked up or taken out from contract locations (Q,R) and delivered to customers (C)
over a time horizon (T ) = {1, 2, . . . , T}.

Even the simplified version of the model we present here contains a large number of parameters. The
parameters used in the model are the following:

• Mst : Maximum total production amount at site s in period t;

• Xst : Maximum total lox production amount at site s in period t;

• Nst : Maximum total lni production amount at site s in period t;

• Est : Maximum extended production amount at site s in period t (Est = 0∀s ∈ Q, as the company
can not command extended production of lox at competitor pick-up sites.);

• Kpst : Truck hours available for shipping product p from site s in period t;

• Dst : Driver hours available at site s in period t;

• dsc : Number of driver and truck hours required to deliver one unit of product from site s to
customer c;

• fsc : Dollars per unit delivery cost from site s to customer c;

• Bpct : Demand for product p from customer c in period t;

• Ips0 : Initial units of inventory for product p at site s;
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• Ups : Upper bound on inventory for product p at site s;

• αpst : Regular mode per unit cost of producing product p (The production cost for pick-up sites is
αpst = 0,∀s ∈ Q), since by contract competitors will remove an equal amount of product from the
company’s sites.);

• βst : Extended mode per unit cost at site s in period t;

• γps : Inventory cost of product p at site s;

• Γps : Inventory change fraction for product p at site s;

• Φp : Contract amount for product p for the planning horizon;

• zpst : Amount of product p contract partner takes out at site s in period t (These can be estimated,
but typically

∑
r∈R

∑
t∈T zprt = Φp, so equal amounts are taken by competitors and given to

competitors. Also, zpst = 0 ∀s ∈ S \ R, expressing that competitors may only take product from
the designates take-out sites R);

• Ψs : lox/lni conversion ratio at site s.

The following decision variables are required to build the optimization models:

• xst : Units of lox produced at site s in period t;

• nst : Units of lni produced at site s in period t;

• est : Extended mode production quantity at site s in period t;

• Ipst : Inventory of product p at site s at the end of period t;

• ypsct : Units of product p shipped from site s to customer c in period t;

• upct : Inventory of product p at customer c by the end of period t;

• vpct : Shortage of product p for customer c by the end of period t.

In reality, the number of driver and truck hours required to deliver one unit of product from site
s to customer c is a complicated function of the routings used in the delivery. We approximate these
quantities with the formula:

dsc =
2δsc

$Υ
, (1)

where δsc is the distance from site s to customer c, $ is the estimated average truck speed, and Υ is the
truck volume. The dollars per unit delivery cost are then computed as

fsc = ζδsc + γsdsc,

where ζ is an estimated mileage cost (combining gas costs and truck depreciation), and γs is the (nego-
tiated) driver hourly rate from site s.

2.2 Mathematical Program

Given the definitions of the sets, parameters, and decision variables, the problem of finding a minimum
cost production and distribution schedule of the liquid gas products P meeting forecast customer demands
is given by the following linear program:
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min
∑
s∈S

∑
t∈T

αlox,stxst + αlni,stnst + βstest +
∑
p∈P

γpsIpst


+

∑
p∈P

∑
s∈S

∑
c∈C

∑
t∈T

(fscypsct) +
∑
p∈P

∑
c∈C

∑
t∈T

(δpcvpct)

s.t xst + nst + (1 + Ψs)est ≤ Mst, ∀s ∈ S, ∀t ∈ T , (2)

xst −Ψsest ≤ Xst ∀s ∈ S, ∀t ∈ T , (3)

nst + est ≤ Nst ∀s ∈ S, ∀t ∈ T , (4)

est ≤ Est ∀s ∈ S, ∀t ∈ T , (5)∑
s∈S

ypsct + upc,t−1 − vpc,t−1 −Bpct = upct − vpct ∀p ∈ P, ∀c ∈ C, ∀t ∈ T \ {1}, (6)∑
s∈S

ypsc1 −Bpc1 = upc1 − vpc1 ∀p ∈ P, ∀c ∈ C, (7)∑
c∈C

ylox,sct − Ilox,s,t−1 − xst + Ilox,st = −zlox,st ∀s ∈ S, ∀t ∈ T (8)∑
c∈C

ylni,rct − Ilni,s,t−1 − nst + Ilni,st = −zlni,st ∀s ∈ S, ∀t ∈ T , (9)∑
q∈Q

∑
t∈T

xqt ≤ Φlox, (10)

∑
q∈Q

∑
t∈T

nqt ≤ Φlni, (11)

∑
p∈P

∑
c∈C

dscypsct ≤ Dst ∀s ∈ S, ∀t ∈ T , (12)

∑
c∈C

dscypsct ≤ Kpst ∀p ∈ P, ∀s ∈ S, ∀t ∈ T , (13)

Ipst ≤ Ups ∀p ∈ P, ∀s ∈ S, ∀t ∈ T , (14)

IpsT ≥ ΓpsIps0 ∀p ∈ P, ∀s ∈ S, (15)

xst, nst, est ≥ 0 ∀s ∈ S, ∀t ∈ T , (16)

Ipst ≥ 0 ∀p ∈ P, ∀s ∈ S, ∀t ∈ T , (17)

ypsct ≥ 0 ∀p ∈ P, ∀s ∈ S, ∀c ∈ C, ∀t ∈ T , (18)

upct, vpct ≥ 0 ∀p ∈ P, ∀c ∈ C, ∀t ∈ T . (19)

The objective function minimizes a combination of the production costs, inventory costs, distribution
costs, and penalty terms for not meeting a customer’s entire demand. Constraints (2)–(5) are the con-
straints to approximately model the production process at each site and each time period. Constraints (6)
and (7) ensure that customer demand for each product will be met in each period or a shortage will be
tracked. Constraints (8) and (9) are the inventory balance constraints at each site in each period for lox

and lni respectively. Constraints (10) and (11) limit the total amount of each product picked up from
contract sites over the planning horizon. Constraints (12) and (13) enforce that number of driver/truck
hours required to deliver the products from each site are not greater than the available driver/truck
hours, respectively. Note that the truck hours are constrained for each product, as the trucks are product
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specific. Constraint (14) enforces an upper bound on the inventory of each product at each site and in
each time period, and Constraint (15) states that the ending inventory must be at a certain percentage
of the initial inventory.

The take-or-pay parameters zpst pose a particular modeling challenge. They are not entirely variables,
in the sense that the company cannot determine when, where, and how much its competitor can remove
from the system. Nor are they parameters that can be specified a priori with great certainty. In reality,
there is a negotiation that takes place during the month to determine reasonable amounts and locations.
Likewise, the amounts taken out from competitor sites ypsct, s ∈ Q is not entirely a variable in this model,
as these amounts need to be negotiated. It is treated as a variable in our system, however. One potential
use of the simulation-optimization system is to examine the impact of take-or-pay contracts, and we give
preliminary results along this direction in Section 4.3.

2.3 Modeling Uncertainty

There are many significant sources of uncertainty in atmospheric gas production and distribution. For
example, customer demands Bpct can only be forecast and may not be known with reasonable accuracy,
the competitor product-removal amounts zpst cannot be directly controlled, and the production capacities
Mst may unexpectedly drop to zero should there be a plant failure.

In order to address the uncertainty explicitly via optimization, new models were built. Uncertainty in
the models is represented with a set of outcomes O. The outcomes are possible realizations of demands
for the customers Bpcto and possible competitor removal amounts zpsto. A future use of the model and
simulation engine will be to hedge against unplanned plant outages, in which case the outcomes can be
augmented to force plant production maximum quantities Msto = 0.

There are many ways to create optimization models that attempt to hedge against uncertainty. One
simple computational model that fairly accurately reflects the production reality is to ensure that the
production quantities of lox and lni are the same regardless of the outcome, while the deliveries and
inventories are allowed to vary based on the outcome. Gas production is a unique process in that the
production levels can be changed with relatively little lead-time or without the necessity of incurring great
additional costs, so it may seem overly conservative to not allow these decision variables to depend on the
outcome. However, in the simulation used to truly assess the performance of a particular optimization
model, the production rates are allowed to vary on a daily basis.

2.3.1 Minimax Model

The first extension of the model presented in Section 2.2 is a minimax model whose aim to to find
a schedule that will minimize the maximum production and distribution cost over all the outcomes.
To model this extension, we introduce (and minimize) a new variable ω representing the value of the
maximum cost outcome, and simply enforce that ω is at least as large as the (production-distribution)
cost in each outcome. Williams (1999) gives an explanation of this well-known modeling artifice.

minω
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s.t ω ≥
∑
s∈S

∑
t∈T

αlox,stxst + αlni,stnst + βstest +
∑
p∈P

γpsIpsto


+

∑
p∈P

∑
s∈S

∑
c∈C

∑
t∈T

(fscypscto) +
∑
p∈P

∑
c∈C

∑
t∈T

(δpcvpcto), ∀o ∈ O, (20)

xst + nst + (1 + Ψs)est ≤ Mst ∀s ∈ S, ∀t ∈ T , (21)

xst −Ψsest ≤ Xst ∀s ∈ S, ∀t ∈ T , (22)

nst + est ≤ Nst ∀s ∈ S, ∀t ∈ T , (23)

est ≤ Est ∀s ∈ S, ∀t ∈ T , (24)∑
s∈S

ypscto + upc,t−1,o − vpc,t−1,o −Bpcto = upcto − vpcto ∀p ∈ P, ∀c ∈ C, ∀t ∈ T \ {1}, ∀o ∈ O,(25)∑
s∈S

ypsc1o −Bpc1o = upc1o − vpc1o ∀p ∈ P, ∀c ∈ C, ∀o ∈ O, (26)∑
c∈C

ylox,scto − Ilox,s,t−1,o − xst + Ilox,sto = −zlox,sto ∀s ∈ S, ∀t ∈ T , ∀o ∈ O, (27)∑
c∈C

ylni,rcto − Ilni,s,t−1,o − nsto + Ilni,sto = −zlni,sto ∀s ∈ S, ∀t ∈ T , ∀o ∈ O, (28)∑
q∈Q

∑
t∈T

xqt ≤ Φlox, (29)

∑
q∈Q

∑
t∈T

nqt ≤ Φlni, (30)

∑
p∈P

∑
c∈C

dscypscto ≤ Dst ∀s ∈ S, ∀t ∈ T , ∀o ∈ O, (31)

∑
c∈C

dscypscto ≤ Kpst ∀p ∈ P, ∀s ∈ S, ∀t ∈ T , ∀o ∈ O, (32)

Ipsto ≤ Ups ∀p ∈ P, ∀s ∈ S, ∀t ∈ T , ∀o ∈ O, (33)

IpsTo ≤ ΓpsIps0o ∀p ∈ P, ∀s ∈ S, ∀o ∈ O, (34)

xst, nst, est ≥ 0 ∀s ∈ S, ∀t ∈ T , (35)

Ipsto ≥ 0 ∀p ∈ P, ∀s ∈ S, ∀t ∈ T , ∀o ∈ O, (36)

ypscto ≥ 0 ∀p ∈ P, ∀s ∈ S, ∀c ∈ C, ∀t ∈ T , ∀o ∈ O, (37)

upcto, vpcto ≥ 0 ∀p ∈ P, ∀c ∈ C, ∀t ∈ T , ∀o ∈ O. (38)

2.3.2 Stochastic Model

A simple two-stage stochastic model can be made from the minimax model simply by removing the
variable ω that is used to measure the worst-case cost and instead replace the objective function with
the average cost incurred over all the outcomes. Specifically, the constraints (20) are removed, and the
objective is replaced with

min
∑
s∈S

∑
t∈T

αlox,stxst + αlni,stnst + βstest + |O|−1
∑
o∈O

∑
p∈P

γpsIpsto


+

∑
p∈P

∑
s∈S

∑
c∈C

∑
t∈T

∑
o∈O

|O|−1(fscypscto) +
∑
p∈P

∑
c∈C

∑
t∈T

∑
o∈O

|O|−1(δpcvpcto).
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More sophisticated (multi-stage) models that capture the decision-event process more accurately are
being considered as a future extension of this work.

2.3.3 Outcome Generation

The outcomes (or scenarios) are generated by sampling from the customer demand distributions and
the competitor removal distributions. More details of how this is implemented is given in subsequent
sections. The outcomes could also be chosen specifically by the company as coming from a worst-
case set of scenarios. The models on which we experiment in Sections 4 and 5 contain only a small
number of outcomes. There is some theoretical and empirical evidence that for two-stage problems
involving uncertainty, very few outcomes are necessary to ensure that a good solution is achieved with
high probability. For example, Shapiro and Homem-de-Mello (2000) give an example of a simple stochastic
program that has 3200 scenarios, yet by sampling only 120 of these scenarios, the probability of obtaining
the true optimal solution to the problem with this sampled approximation is 95%. Linderoth et al.
(2006) provide computational results on practical instances that show a similar effect. Limiting the
number of outcomes minimizes the increased computational overhead incurred by these more complicated
optimization models.

3 Simulation

A fundamental issue that limits the broad acceptance of optimization as a tool for decision making is
the ability to convince a user that a solution optimized for an abstract model is a useful solution in
reality. Moreover, the optimization models for production and distribution of industrial gases introduced
in Section 2 are by themselves of little value to the company, as the models alone do not help the company
understand the impact of uncertainty or the impact of planning production and distribution in a time-
aggregated fashion. A reliable simulation engine can help bridge the gap between theory and practice
and can give evidence as to the practical quality of solutions obtained from the optimization models. In
addition, with a simulation, entire distributions of important statistics about the system can be produced,
yielding valuable insights that could not otherwise be obtained. In the case we study here, distributions
of the estimated production cost, the delivery cost, the number of customer outages, and the average
site and customer inventories can be collected and displayed in a useful graphical format. Managers
making decisions about production and distribution can compare different solutions with regards to the
distributions of these key performance indicators before deciding which policy to follow.

3.1 Simulation Objects

The engine built to simulate the production-distribution process in place at the company consists of over
4000 lines of C++ code. The program is constructed of objects representing physical entities or attributes
in the company’s planning problem. The objected-oriented features of C++ are used for abstracting
certain objects. In this section, we briefly describe features and methods of the most important objects
comprising the simulation.
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Site: The Site class contains information about a site. A site may be of one of thee types: A competitor
pick-up site, indexed in the optimization model by the set Q, a take-out site, indexed in the optimization
model by the set R, or neither of these (S \ Q \ R). The site object contains the location of the site,
the number of drivers and trucks available at the site, and all operating parameters for production at the
site: (Mst, Xst, Nst, Est, Ups).

Customer: The Customer class contains attributes for the customer’s location, the capacity of its tank,
a safety-stock inventory level, and the inventory level at the beginning of the planning horizon. Each
customer has a demand for one type of product, either lox or lni. For information about a cus-
tomer’s usage pattern for this product, the Customer class also contains an abstract object known as a
DemandDistribution. The DemandDistribution class is subsequently explained in more detail.

InstanceFamily: A design principle of the simulation-optimization engine was to allow for the creation,
solution, and simulation of different optimization instances all representing the same physical system. To
allow for different optimization instances to be created from the same production-distribution problem
and the resulting policies simulated, the entities in the problem are collected into a class known as an
InstanceFamily. The InstanceFamily class is an object to which the simulation can be applied, so the
class has attributes that record the state of the production-distribution system when it is being simulated.
For example, the current day of the simulation and the production and delivery costs incurred to date
are attributes in the InstanceFamily class.

DemandDistribution: The DemandDistribution is an abstract class via which a variety of different
customer product usage patterns can be modeled. In order for the results of the experimental simulations
to be of use to the company, it is vital that the uncertain parameters of instances behave as they do in
practice. To that end, a customer’s usage pattern can be classified into one of four main categories:

1. Normally-Distributed: The customer’s daily demand Bc is modeled as a normally distributed ran-
dom variable with mean µc and variance σ2

c , Bc ∼ N (µc, σ
2
c ).

2. Specific-Needs: Customer c has a typical daily demand that is normally distributed with mean µc

and variance σ2
c . However, for certain periods during the planning horizon (perhaps when a new

production process is being tested), the customer requires a significantly larger daily volume: which
can be modeled as a normally distributed random variable with mean µ′c and variance σ2

c
′.

3. On-Off: For a majority of days (e.g. Monday-Friday), this class of customer has a daily demand
that can accurately be modeled with a normally distributed random variable, Bc ∼ N (µc, σ

2
c ).

However, on the other days, the customer does not use any product.

4. Call-In: The class of customer is used to model the customer whose daily demand is typically zero.
But then at certain points during the planning horizon, for a specified number of days, the customer
will require a (known, deterministic) daily demand of mc.

Figures 2(a)—2(d) show a sample demand distribution for each type of customer. For normally-distributed
customers, the daily usage amounts may accurately be treated as independent random variables. How-
ever, for the other classes of customers, there is a correlation between the usage amounts on consecutive
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days. Thus, when simulating the customer usage patterns over the course of a month, we need to keep
track of the current date of the simulation which is stored in the InstanceFamily object.

Amt

Day

(a) Normally Distributed

Day

Amt

(b) Specific Needs

Day

Amt

(c) On-Off

Amt

Day

(d) Call-In

Figure 2: Sample Realizations of Customer Demands

The DemandDistribution class has a virtual method

vector<double> getDemandProfile(vector<int>& daysInEachPeriod)

that must be implemented. The argument to the method is a container of integers representing the
number of days in each planning period. The method returns a sample realization of the customer’s
demand for each of the period. Concrete implementations of the DemandDisribution class were created
to implement the distributions shown in Figures 2(a)—2(d): NormalDemandDistribution,
SpecificNeedsDemandDistribution, ZeroOrNormalDemandDistribution, and
CallInDemandDistribution.

These classes are used when a random production-distribution system is to be simulated, but in case
the simulation engine is to be instantiated with real customer data, an additional implementation is
required. The company’s database does not categorize the customers into the classes described above,
but it does contain forecast and historical demands for the customers from their ERP system. An
interesting question we faced in this work was how to (easily) represent distribution information for the
uncertain entities in the model. In fact, Greenberg (2007) posed the representation of uncertainty in
OR models as a Great Unsolved Problem in OR. For our purposes, we chose to model each customer’s
demand as containing both a daily part that is normally distributed with specified mean and variance
and also a temporal part that captures the portion of the customer demand that is correlated in time.
Mathematically, a customer’s demand on day d of the planning horizon is computed as

Bcd = max{0, ξc + Ic(d)},

where ξ ∼ N (µc, σ
2
c ) and Ic(d) is a random variable for specifying the amount of customer c’s demand

that is dependent on day d. For input purposes, the random variable Ic(d) is given as a list of possible
scenarios for each customer. For each scenario, the probability of that scenario occurring is given, as is
the customer’s daily demand for each day in the planning horizon in that scenario. These scenarios are
sampled to create realizations of the demand. As implemented in the simulation engine, these customer
demands are encapsulated using the class NormalWithImpulseDemandDistribution.

The quantity of product that a competitor removes from a take-out site zpst is also simulated via a
DemandDistribution object.
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Instance: The Instance class is an object representing a mathematical program than can be solved.
The Instance class is an abstract class, as it can be used to represent the nominal production-distribution
model of Section 2.2, the minimax model of Section 2.3.1, or the stochastic program of Section 2.3.2.
In each case, the optimization models are created using Mosel v1.6.2, a modeling language from Dash
Optimization (Colombani and Heipcke, 2002). In particular, the engine makes use of the Mosel Run
Time Library to execute models that need to be solved as part of the simulation process and to read the
results of the solution back from XPRESS-MP v2006A linear programming solver (XPRESS).

In order to create a concrete Instance object, the user must implement the method
void writeMosel(string &fileName), which writes the data describing the instance to a data file
that can be read by XPRESS. The second method that must be implemented is the method int

setSolution(XPRMmodel &ewoMod), which takes the optimization instance object from XPRESS, reads
the solution, and fills appropriate solution containers with objects corresponding to the decisions variables
that are greater than zero. Most important are the RegProductionAmount class for the decision variables
relating to production (xst, nst) and the Delivery class for the solution variables (ypsct). The writeMosel
and setSolution methods were written for each of the types of instances we wish to simulate, resulting
in the classes NominalInstance, MinimaxInstance, and StochasticProgram. Each instance also has an
associate Mosel model file describing the model.

Instances of varying time-grain can be created with the method

void create(const InstanceFamily &instanceFamily, const vector<int>&daysInEachPeriod).

The user must specify the number of period in the planning model and the days in each of the planning
periods. The information of sites and customers contained in InstanceFamily object are then aggregated
into periodic time buckets accordingly.

3.2 Simulation Execution

The production and distribution process is simulated over a period of length δ referred to as the simulation
increment. Typically δ is one day. The process repeats until the end of the planning horizon. Statistics
about the total production cost, distribution cost, and number of customer outages are collected and
reported at the end of the simulation. An outline of the execution of one loop of the simulation is given
below. In this section, we also give more details of the specific steps of the simulation.

Step 1. An optimization instance is created given the initial operating conditions (site inventories and
customer inventories) and estimated customer demands and competitor product removal amounts.

Step 2. The optimization instance is solved, yielding production quantities for each site and customer
deliveries.

Step 3. The (simulated) site inventories are increased by a quantity related to the suggested solution from
the optimization instance.

Step 4. The resources hours (for both drivers and trucks) are incremented by appropriate quantities.

Step 5. Competitor quantities are taken out from the sites.

Step 6. Deliveries are made.
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Step 7. Customer inventories are updated, and customer outages are counted. Return to Step 1.

Steps 3&4. Let τ be the number of days in the first period of the optimization model producing
suggested production amounts x̂ and n̂. The site inventories are increased by an amount x̂s1δ/τ and
n̂s1δ/τ for each site s. This is equivalent to having the simulation use the suggested production amounts
from the optimization model, but pro-rated to run at this rate only for δ days. Similarly, at each loop
of the simulation, the site is “renewed” with driver and truck hours with which it can feasibly make
deliveries.

Step 5. Random quantities resampled from the same distribution that is used to derive the zpst param-
eters in the optimization model are taken from each of the sites designated as competitor pick-up sites
(s ∈ Q). The getDemandProfile method of the DemandDistribution object is used to implement this
step of the algorithm, by asking for a demand profile for δ days.

Step 6. The suggested deliveries from the model ŷpsct, as collected in the container of Delivery objects,
are used to suggest the sourcing decisions. In reality, the company does not deliver exact amounts ŷpsct

to its customers, but rather the scheduling of trips and deliveries is a complicated process that takes
into account delivery rules and routing costs. We approximate the delivery process in the simulation as
follows.

First, the deliveries ŷpsct are priority-sorted such that deliveries for customers that will have the lowest
expected inventory if the delivery is not made are attempted first. Deliveries for which it is not expected
that the customer inventory will fall below the customer safety-stock volume are not made. Deliveries
to customers are made in increments of 1/2 truckloads in order to meet the predicted demand for the
delivery period. The hours used to make the delivery are estimated in a similar fashion to equation (1),
and the product is removed from the site and the resources hours for that site are reduced. If a site
does not have enough product or resource in order to make the delivery suggested by the solution to the
optimization instance, an auxiliary delivery will be made from the next closest site that has the resources
necessary to make the delivery.

Step 7. After the deliveries are made, the true customer demands are revealed and the inventories are
updated. At this point the simulation checks to see if a customer’s inventory has fallen below a minimum
“run out” volume. A customer may be run out in the simulation for one of two reasons. The first reason
is because there was not enough product produced anywhere in the system for a delivery to be made.
This rarely happens. The more likely reason for a customer outage in the simulation is that the true
customer demand is quite different than the predicted demand that was used to make the delivery, and
for which the optimization instance was created.

4 Computational Experiments

In this section, we described the results of three experiments designed to both demonstrate the flexibility
and utility of the simulation-optimization engine and to address open questions about the planning
process at the company. First, we attempt to provide insight as to the impact of planning production-
distribution using a more finely-aggregated model. Next, we assess the impact of demand variability and
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show that the simple minimax and stochastic programming models we developed can significantly help
in this regard. Finally, we demonstrate how the simulation-optimization engine could be used as a tool
for contract pricing for take-or-pay arrangements.

4.1 Time Aggregation

The first question we attempt to answer for the company with the simulation-optimization engine is the
following: “Does a finer time-grain model lead to less manual intervention in the scheduling during the
planning process?” We consider two useful statistics from the simulation in order to measure the amount
of manual intervention that would be required in reality. The first is the number of customer outages
reported by the simulation, and the second is the average cost per delivery. In reality, in these cases,
production planners would need to manually adjust production and deliveries to ensure that customers
did not run out of product, and if the average cost of delivery increases in the simulation, it typically
indicates that the product is not being delivered from the “primary” site suggested by the optimization.

For this experiment, 10 random InstanceFamilies were created, each consisting of 10 sites and 200
customers for which we will simulate behavior over a planning horizon of 28 days. The simulated site
s had a 20% and 30% chance of being designated as a pick-up location (s ∈ Q) or a take-out location
(s ∈ R), respectively. The simulated customer had a 75% probability of being a lox customer and a
25% chance of being a lni customer. Customer demand distributions were chosen to be of each type
described in Section 3.1 with the following probabilities: 33% Normally Distributed, 12% Specific Needs,
50% On-Off, and 5% Call-In. The mean customer demand µc are chosen uniformly and randomly from
an interval that is typical of the company’s customers. The customer demand variance is randomly set
to be between 5% and 50% of the mean. For each of these random systems, the demand and production
data were aggregated so as to make different instances of the model of varying time fidelity. Specifically,
multi-period models consisting of 1 period, 2 periods, 4 periods, 7 periods, and 14 periods were created
and simulated.

Figures 3(a) and 3(b) show the average cost per delivery and average number of customer outages for
the 10 simulated systems using each fidelity of planning model for the optimization.
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Figure 3: Effectiveness of Finer-Grain Model

The results of this experiment are quite striking and clearly show that there is potential benefit for
Air Products to consider additional periods in the planning model. This is not a trivial undertaking at
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the company, as the true models used for planning are larger and more complex. Thus, adding many
additional periods might lead to unacceptable computational times.

4.2 Dealing with Uncertainty

The second experiment is aimed at quantifying the impact of uncertainty on the production-distribution
process, and studying whether it can be reasonably controlled with the simple models we suggest in
Sections 2.3.1 and 2.3.2. Specifically, we demonstrate how the total simulated cost and number of customer
outages change as a function of the variance of customer demand.

In this experiment, we compare the effectiveness of three models, the nominal model of Section 2.2,
the minimax model of Section 2.3.1, and the stochastic program of Section 2.3.2. For each model, four
periods were used (|T | = 4), and five outcomes were used (|O| = 5) for both the minimax model and
stochastic program. Again, 10 random InstanceFamilies objects were created as in the experiment
in Section 4.1. All parameters used for creation of the objects were the same, save for the variance of
customer demand. In this case, customer demand variance was allowed to increase by setting the upper
bound of each customer’s variance to be 25%, 50%, 75%, and 100% of the mean.

Figure 4 and 5 show the average total simulated production-distribution cost and the average number
of customer outages for different customer demand variability levels. In these figures, the 95% confidence
intervals on the values are plotted as vertical bars.
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Figure 4: Total Cost

Two results of the experiment are worthy of note. First, it was striking that both the minimax model
and stochastic program were able to mitigate the high uncertainty remarkably well, even considering an
extremely low number of outcomes in the optimization model. The nominal model has great difficulty
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planning effectively as the variance increases. Second, the “conservative” minimax model outperformed
the stochastic program when the resulting policies were simulated, even in terms of total cost.

4.3 Contract Pricing

The third experiment is aimed to demonstrate the utility of the simulation-optimization engine. Specif-
ically, the engine can be used to estimate the value of entering into “take-or-pay” contract agreements
with competitors.

To estimate the value of a take-or-pay contract, we simply simulate the same InstanceFamily object
with and without a contract arrangement in place. The “take-or-pay” contracts can be withdrawn by
setting the Φp and zprt parameters to zero.

In this case, we used a four-period nominal model for planning on a random InstanceFamily object
created using the parameters described in Section 4.1. Table 4.3 compares the average total cost and the
average number of customer outages with and without the contract agreements.

Total Cost Production Cost Delivery Cost Number of
($M) ($M) ($M) Customer Outages

With Contract 4.42 2.47 1.95 372
No Contract 4.51 2.48 2.03 366

Table 1: Effectiveness of Contract Agreements

Without a take-or-pay contract, we are still able to satisfy customer demand equally well. However,

16



the average total cost increases from the fact that some customers are served by a different site that is
farther away, incurring higher delivery cost. In this case, the simulation-optimization engine has estimated
the value of the contract at $4.51M - $4.42M = $.09M/month.

5 A Case Study

In this section, we present results of a case study conducted for the company. The company provided
us with data from a small region that would be typical of the planning models they face worldwide.
The region consists of 7 sites (|S| = 7), 3 of which are competitor sites, (|Q| = 3), and there are
823 customers in the region (|C| = 823). A majority of the customers are of the normally-distributed
variety, but 10 customers have demand distributions that could be accurately modeled as being indepen-
dent each day. As discussed in Section 3.1, these customer demand distributions were simulated using
NormalWithImpulseDemandDistribution objects, and the company also provided us with between two
and five different scenarios for possible customer demands over the course of the planning horizon.

On this real data set, we performed the same three experiments as for the random data sets described
in Section 4. The first experiment tested the effectiveness of multi-period versions of the nominal planning
model of Section 2.2. Figures 6(a) and 6(b) demonstrate that the company benefits from using the finer-
grain model to save on the average total cost per delivery and better serve the customers. However, in
the case of real data, it seems that the marginal benefit of increasing the model to more than four periods
is small.
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Figure 6: Effectiveness of Finer-Grain Model

The next experiment tested the effectiveness of minimax and stochastic programming models. Like
in Section 4.2, four-period versions of the nominal model, the minimax model (with five outcomes), and
the stochastic program (with five outcomes) were simulated. Table 5 summarizes the results for this
experiment. Like in the random instances, it seems that use of the conservative minimax model for
planning production and distribution could lead to lower costs.

The final experiment measured the value of the contract agreement for the region by simulating the
cost of the four-period nominal model both with and without the contract agreement in place. Table 5
shows that the cost of the agreement in this case is roughly $.03M/month.

All results in the case study coincide with the simulated instances. The company can reduce the
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Model Total Cost Number of
($M) Customer Outages

Nominal 2.03 7
Minimax 1.94 5

SP 2.02 7

Table 2: Effectiveness of Different Models

Total Cost Production Cost Delivery Cost Number of
($M) ($M) ($M) Customer Outages

With Contract 2.03 1.45 0.58 7
No Contract 2.06 1.45 0.61 7

Table 3: Effectiveness of Contract Agreements

average total cost per delivery and the number of customer outages by considering a finer-grain planning
model. The minimax model and stochastic program deal with customer demand variability better than
the nominal model—the company manages to satisfy more customers with less total cost. The contract
agreements help the company save on delivery cost by removing products from competitor sites that is
closer to its customers.

6 Conclusions

This work describes a mechanism for combining optimization and simulation in the production and
distribution of atmospheric gases. Three optimization models were presented, each capable of being
connected to a simulation engine that was able to assess practical performance of the models at time
time-aggregation levels.

Using the tool has demonstrated convincingly that production-distribution decisions made using a
multi-period model of up to four periods are likely to be significantly better than those from a one period
model. Further, optimization models that specifically account for uncertainty via outcomes or scenarios
can be significantly better than those that rely on point-estimates for unknown parameters. Finally,
it was demonstrated how to use the simulation-optimization tool to perform contract pricing. These
conclusions were drawn as a result of runs both on randomly generated instances and on real data from
a large industrial gas company.

Many of the conclusions of this work are indeed intuitive, but the concept of combining simulation and
optimization for decision-making is broadly applicable. Many planning problems suffer from a disconnect
between planning and operations, and “Enterprise-Wide Optimization” initiatives are underway that
seek to close this gap (Varma et al., 2007). However, an important question that any Enterprise-Wide
Optimization initiative must address is to measure the real impact one can expect in operations if planning
is done differently. Simulation can be a very useful tool to help answer this question. Further, having
a simulation model of the enterprise-wide system allows the production of an an entire distribution of
performance statistics.
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Continuing work includes incorporating the prototype simulation and optimization model more broadly
in the company, and in identifying additional novel uses for the simulation tool besides in contract pric-
ing. More complicated decision planning models, such as robust optimization models and multi-stage
stochastic programs are also being considered for future extensions.
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