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Abstract We consider the effectiveness of a lookahead branching method for the selection of
branching variable in branch-and-bound method for mixed integer programming.
Specifically, we ask the following question: by taking into account the impact of the
current branching decision on the bounds of the child nodes two levels deeper than
the current node, can better branching decisions be made? We describe methods for
obtaining and combining bound information from two levels deeper in the branch-and-
bound tree, demonstrate how to exploit auxiliary implication information obtain in
the process, and provide extensive computational experience showing the effectiveness
of the new method. Our results show that the new search method can often signifi-
cantly reduce the number of nodes in the search tree, but the computational overhead
of obtaining information two levels deeper typically outweighs the benefits.
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1. Introduction
A mixed integer program (MIP) is the problem of finding

zMIP = max{cT x+ hT y : Ax +Gy≤ b, x∈Z|I|, y ∈R|C|}, (MIP)

where I is the set of integer-valued decision variables, and C is the set of continuous decision
variables. The most common algorithm for solving MIP, due to Land and Doig [23], is a
branch-and-bound method that uses the linear programming relaxation of MIP to provide an
upper bound on the optimal solution value (zMIP ). Based on the solution of the relaxation,
the feasible region is partitioned into two or more subproblems. The partitioning processes
is repeated, resulting in a tree of relaxations (typically called a branch-and-bound tree) that
must be evaluated in order to solve MIP. See [29] or [34] for a more complete description of
the branch-and-bound method for MIP.

A key decision impacting the effectiveness of the branch-and-bound method is how to
partition the feasible region. Typically, the region is divided by branching on a variable.
Branching on a variable is performed by identifying a decision variable xj whose solution
value in the relaxation (x̂j) is not integer-valued. The constraint xj ≤ bx̂jc is enforced in one
subproblem, and the constraint xj ≥ dx̂je is enforced in the other subproblem. In a given
solution (x̂, ŷ) to the LP relaxation of MIP, there may be many decision variables for which
x̂j is fractional. A branching method prescribes on which of the fractional variables to base
the branching dichotomy.

The effectiveness of the branch-and-bound method strongly depends on how quickly the
upper bound on zMIP , obtained from the solution to a relaxation, decreases. Therefore, we
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would like to branch on a variable that will reduce this upper bound as quickly as possible.
In fact, a long line of integer programming research in the 1970’s was focused on developing
branching methods that estimated which variables would be most likely to lead to a large
decrease in the upper bound of the relaxation after branching [6, 19, 28, 8, 17, 18].

In the 1990’s, in connection with their work on solving large-scale instances of traveling
salesperson problems, Applegate et al. proposed the concept of strong branching [4]. In
strong branching, the selection of a branching variable is made by first selecting a set C of
candidates. Each variable in the candidate set is tentatively (and partially) branched on by
performing a fixed, limited number of dual simplex pivots on the resulting child nodes. The
intuition behind strong branching is that if the subproblem bounds change significantly in a
limited number of simplex pivots, then the bounds will also change significantly (relative to
other choices) should the child node relaxations be fully resolved. Strong branching has been
shown to be an effective branching rule for many MIP instances and has been incorporated
into many commercial solvers, e.g. CPLEX [10], FICO-Xpress [11]. In full strong branching,
the set C is chosen to be the set of all fractional variables in the solution of the relaxation,
and there is no upper limit placed on the number of dual simplex pivots performed. Full
strong branching is a computationally expensive method, so typically C is chosen to be a
subset of the fractional variables in the relaxation solution, and the number of simplex pivots
performed is small.

The fact that strong branching can be a powerful, but computational costly, technique
has led some researchers to consider weaker forms of strong branching that only perform
the necessary computations at certain nodes. For example, Linderoth and Savelsbergh [25]
suggest performing the strong branching computations for variables that have yet to be
branched upon. The commercial package LINDO performs strong branching at all nodes
up to a specified depth d of the branch-and-bound tree [26]. The work of Linderoth and
Savelsbergh is improved by Achterberg, Koch, and Martin, in a process called reliability
branching in which the choice of the set C and the number of pivots to perform is dynamically
altered during the course of the algorithm [3].

In this paper, we consider the exact opposite question as that of previous authors. That
is, instead of performing less work than full strong branching, what if we performed more?
Specifically, by accounting for the impact of the current branching decision on the bounds of
the descendent nodes two levels deeper than the current node, can we make better branching
decisions? The intuition behind studying this question comes from viewing strong branching
as a greedy heuristic for selecting the branching variable. By considering the impact of the
branching decision not just on the child subproblems, but on the grandchild subproblems
as well, can we do better? And if so, at what computational cost? Karzan, Nemhauser, and
Savelsbergh [22] have also recently introduced a branching rule that considers the combined
impact of multiple branching decisions. Their work uses information about fathomed nodes
from an incomplete search. As such, it falls into the family of branching methods that
leverage logical information when making branching decisions [1, 2, 32].

Obviously, obtaining information about the bounds of potential child nodes two levels
deeper than the current node may be computationally expensive. In this work, we will for
the most part focus on the question of if attempting to obtain this information is worthwhile.
A secondary consideration will be on how to obtain the information in a computationally
efficient manner. However, even if obtaining this information is extremely costly, we note two
factors that may mitigate this expense. First, in codes for mixed integer programming that
are designed to exploit significant parallelism by evaluating nodes of the branch-and-bound
tree on distributed processors [15, 24, 31], in the initial stages of the algorithm, there are
not enough active nodes to occupy available processors. If obtaining information about the
impact of branching decisions at deeper levels of the tree is useful, then these idle processors
could be put to useful work by computing this information. Second, as noted by numerous
authors [17, 25], the branching decisions made at the top of the tree are the most crucial.
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Perhaps the “expensive” lookahead branching techniques need only be done at for the very
few first nodes of the branch-and-bound tree.

We are not aware of a work that considers the impact of the branching decision on
grandchild nodes. Anstreicher and Brixius consider a “weak” (but computationally efficient)
method of two-level branching as one of four branching methods described in [9]. In the
method, k1 “pivots” are made to consider one branching decision; then, using dual infor-
mation akin to the penalties of Driebeek [13], one more “pivot” on a second branching
entity is considered. The current paper is an abbreviated version of the Master’s Thesis of
Glankwamdee [20], wherein more complete computational results can be found.

The paper has three remaining sections. In Section 2, we explain the method for gathering
branching information from child and grandchild nodes, and we give one way to use this
information to make a branching decision. We also show that auxiliary information from
the branching variable determination process can be used to tighten the LP relaxation and
reduce the size of the search tree. Section 3 presents methods to speed up the lookahead
branching method. Extensive computational experiments are performed to determine good
parameter settings for practical strong branching and lookahead methods. These branching
methods are compared to that of MINTO, a sophisticated solver for mixed integer programs.
Conclusions are offered in Section 4.

2. Lookahead Branching
In this section, we examine the question of whether or not significantly useful branching
information can be obtained from potential grandchild nodes in the branch-and-bound tree.
We explain our method for gathering this information and describe a simple lookahead
branching rule that hopes to exploit the branching information obtained.

Figure 1 shows a potential two-level expansion of the search tree from an initial node. The
set F is the set of fractional variables in the solution to the initial LP relaxation (x∗). By
definition, the solution value of an infeasible linear program is denoted as zLP =−∞, and
the best lower bound on the optimal solution value zMIP is denoted at zL. If the constraint
xi ≤ bx∗i c is imposed on the left branch, and the relaxation is resolved, a solution of value
z−i is obtained, and there is a set of variables F−i ⊆ I that takes fractional values. We
use the parameter ξ−i = 1 to indicate if the left branch would be pruned (i.e. if z−i ≤ zL);
otherwise ξ−i = 0. Similarly, if the bound constraint xi ≥ dx∗i e is imposed on the right branch,
a solution of value z+

i is obtained, a set of variables F+
i ⊆ I is fractional, and the parameter

ξ+
i indicates if the child node would be pruned.
Continuing to the second level in Figure 1, if the variable j ∈F−i is chosen as the branching

variable for the left child node, then the solution values for the two grandchild nodes are
denoted as z−−ij and z−+

ij , and the indicator parameters ρ−−ij and ρ−+
ij are set to 1 if the

corresponding grandchild nodes would be pruned, otherwise the indicators are set to 0. The
notation for grandchild nodes on the right is similar.

2.1. Branching Rules
Once the branching information from the grandchild nodes is collected, there is still the
question of to how to use this information to aid the current branching decision. Two reason-
able objectives in choosing a branching variable are to minimize the number of grandchild
nodes that are created and to try to decrease the LP relaxation bounds at the grandchild
nodes as much as possible. Various combinations of these objectives are explored in [20].
To keep the exposition short, we mention only one such method here. We use the following
definitions. Let

G−i def= {j ∈F−i |ρ−−ij = 0, ρ−+
ij = 0} (1)

and
G+

i
def= {k ∈F+

i |ρ+−
ik = 0, ρ++

ik = 0} (2)
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Figure 1. Notations for Lookahead Search Tree

be the sets of indices of fractional variables in child nodes both of whose grandchild nodes
would not be pruned. To combine the progress on bound reduction of two child nodes into
one number, we use the weighting function

W(a, b) def= {µ1 min(a, b)+ µ2 max(a, b)}, (3)

as suggested by Eckstein[14]. In this paper, the parameters of the weighting function are
set to µ1 = 4 and µ2 = 1. Linderoth and Savelsbergh verifies empirically that these weights
resulted in good behavior over a wide range of instances [25]. Let the reduction in the LP
relaxation value at the grandchild nodes be denoted by

Ds1s2
ij

def= zLP − zs1s2
ij , where s1, s2 ∈ {−,+}. (4)

Note that Ds1s2
ij ≥ 0. The symbol ηi counts the total number of potential grandchild nodes

that would be fathomed if variable i is chosen as the branching variable i.e.

ηi
def=

∑

j∈F−i

(ρ−−ij + ρ−+
ij )+

∑

k∈F+
i

(ρ+−
ik + ρ++

ik ). (5)

The two goals of branching, bound reduction and node elimination, are combined into one
measure through a weighted combination. The branching rule employed in the experiments
chooses to branch on the variable i∗ that maximizes this weighted combination, namely

i∗ = argmax
i∈F

{
max
j∈F−i

{W(D−−
ij ,D−+

ij )}+ max
k∈F+

i

{W(D+−
ik ,D++

ik )}+ ληi

}
, (6)

where λ =
1
|G−i |

∑

j∈G−i

W(D−−
ij ,D−+

ij )+
1
|G+

i |
∑

k∈G+
i

W(D+−
ik ,D++

ik ) (7)

is the average (weighted) reduction in LP value of all potential grandchild nodes in the sets
G−i and G+

i . This value of λ is chosen to give the terms in equation (6) the same scale.
Note that in equation (6), the variables j ∈ F−i and k ∈ F+

i that maximize the weighted
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degradation of the grandchild nodes LP relaxation value may be different. To implement
full strong branching, we let

Ds
i

def= zLP − zs
i , where s∈−,+, (8)

and we branch on the variable

i∗ = argmax
i∈F

{W(D−
i ,D+

i )}. (9)

2.2. Implications and Bound Fixing
When computing the LP relaxation values for many potential child and grandchild nodes,
auxiliary information that can be useful for tightening the LP relaxation and reducing the
size of the search tree is obtained.

2.2.1. Bound Fixing When tentatively branching on a variable xi, either in strong
branching or in lookahead branching, if one of the child nodes is fathomed, then the bounds
on variable xi can be improved. For example, if the child node with branching constraint
xi ≥ dx∗i e is infeasible (ξ+

i = 1), then we can improve the upper bound on variable i to be
xi ≤ bx∗i c. Likewise, if there exists no feasible integer resolution for a variable j after branch-
ing on a variable i, then the bound on variable i can be set to its complementary value. The
exact conditions under which variables can be fixed are shown in Table 1.

Condition Implication
ξ−i = 1 xi ≥ dx∗i e
ξ+
i = 1 xi ≤ bx∗i c

ρ−−ij = 1 and ρ−+
ij = 1 xi ≥ dx∗i e

ρ+−
ik = 1 and ρ++

ik = 1 xi ≤ bx∗i c
Table 1. Bound Fixing Conditions

2.2.2. Implications By examining consequences of fixing 0-1 variables to create poten-
tial grandchild nodes, simple inequalities can be deduced by combining mutually exclusive
variable bounds into a single constraint. The inequality identifies two variables, either origi-
nal or complemented, that cannot simultaneously be 1 in an optimal solution. For example,
if variables xi and xk are binary decision variables, and the lookahead branching procedure
determines that branching “up” on both xi and xk (i.e., xi ≥ 1, xk ≥ 1) results in a sub-
problem that may be pruned, then the inequality xi +xk ≤ 1 can be safely added to the LP
relaxation at the current node and all descendant nodes. These inequalities are essentially
additional edges in a local conflict graph for the integer program [33, 5]. As a line of future
research, we intend to investigate the impact of adding these edges to the local conflict graph
and performing additional preprocessing. Further grandchild inequalities can be added if any
of the grandchild nodes are pruned as specified in Table 2.

Condition Inequality
ρ−−ij = 1 (1−xi)+ (1−xj)≤ 1
ρ+−

ij = 1 (1−xi)+ xj ≤ 1
ρ+−

ik = 1 xi +(1−xk)≤ 1
ρ++

ik = 1 xi + xk ≤ 1
Table 2. Grandchild Implications
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2.3. Experimental Setup
The lookahead branching rule has been incorporated into the mixed integer optimizer
MINTO v3.1, using the appl divide() user application function that allows the user to
specify the branching variable [30]. In all the experiments, the default MINTO option,
including preprocessing and probing, automatic cut generation, and reduced cost fixing, are
used. The focus of the lookahead branching method is to reduce the upper bounds of the
relaxations obtained after branching. We will measure the quality of a branching method
by the number of nodes in the branch-and-bound tree. Therefore, for these experiments, the
lower bound value zL is initialized to be objective value of the (known) optimal solution. By
setting zL to the value of the optimal solution, we minimize factors other than branching
that determine the size of branch-and-bound tree. To solve the linear programs that arise,
we use CPLEX(v8.1) [10]. To speedup the testing of the algorithm, we run the experiments
on a Beowulf cluster at Lehigh University. The code is compiled with gcc version 2.96 (Red
Hat Linux 7.1) and run on Intel(R) Pentium(R) III CPU, with clock speed 1133MHz. The
CPU time is limited to a maximum of 8 hours, and the memory is limited to a maximum
of 1024MB. We have limited initial test to a suite of 16 instances from MIPLIB 3.0 [7] and
MIPLIB 2003 [27].

2.4. Computational Results
Our first experiment runs an implementation of full strong branching, with and without
bound fixing and implications, and lookahead branching, with and without bound fixing
and implications. The focus of the experiment is not on the speed of the resulting methods,
but instead on the following two questions:

• Does lookahead branching often make different branching decisions compared to full strong
branching? If so, what are the positive impacts of these branching decisions?

• Do bound fixing and grandchild inequalities coming from implications found in the looka-
head branching procedure have a positive impact on the size of the search tree?

Tables 4, 5 and 6 in the Appendix display full details of the experimental runs. To sum-
marize the results of the experiments, we use performance profiles plotted in log scale, as
introduced by Dolan and Moré [12]. A performance profile is a relative measure of the effec-
tiveness of a solver s when compared to a group of solvers S on a set of problem instances
P . To completely specify the performance profile, we need the following definitions:

• γps is a quality measure of solver s when solving problem p,
• rps = γps/(mins∈S γps), and
• ρs(τ) = |{p∈ P | rps ≤ τ}|/|P |.
Hence, ρs(τ) is the fraction of instances for which the performance of solver s is within a
factor of τ of the best. A performance profile for solver s is the graph of ρs(τ). In general,
the higher the graph of a solver, the better the relative performance. Eleven of the six-
teen instances are solved to provable optimality by one of the four methods, and for these
instances, we use the number of nodes as the quality measure γps. Under this measure, ρs(1)
is the fraction of instances for which solver s evaluated the fewest number of nodes to verify
optimality, and ρs(∞) is the fraction of instances for which solver s verified the optimality
of the solution of value zL. Figure 2 shows the performance profile plot for these eleven
instances. SB and LA denote strong branching and lookahead branching respectively while
Implication indicates that bound fixing and implications are added to the algorithms. Two
conclusions can evidently be drawn from Figure 2.

(1) Using bound fixing and grandchild inequalities can greatly reduce the number of nodes
in the branch-and-bound tree, and
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Figure 2. Performance Profile of Number of Evaluated Nodes in Solved Instances

(2) Neither full strong branching nor lookahead branching seems to significantly outperform
the other in these tests.

The fact that full strong branching and lookahead branching seem to be of comparable
quality is slightly surprising, more so when one considers the fact that lookahead branching
quite often chooses to branch on a different variable than full strong branching does. In
Table 3, the second column lists the percentage of nodes at which lookahead branching
and full strong branching would make different branching decisions. For example, for the
instance danoint, the two methods choose a different branching variable 86% of the time.
Also in Table 3, we list the number of times a variable’s bound is improved per node, and
the number of grandchild inequalities per node that is added.

For five of the sixteen instances, none of the branching methods is able to prove the
optimality of the solution. For these instances, we use the quality measure (γps), the final
integrality gap after eight hours of CPU time. Figure 3 shows the performance profile of the
four branching methods on the unsolved instances. Again, we see that the bound fixing and
grandchild (implications) inequalities can be very effective, and that lookahead branching
and full strong branching are of similar quality for these instances.

The final performance profile (in Figure 4) uses the solution time as the quality parameter
for the eleven solved instances and also includes a profile for the default MINTO branching
rule. The profile demonstrates that

• As expected, the running time of the strong branching and lookahead branching are in
general worse than the default MINTO.

• However, the added implications and bound fixing help to solve the pk1 instance which
is unsolved with the default MINTO.
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Name % Diff # of Bound Fixing # of Inequalities
(per node) (per node)

aflow30a 76 1.53 47.80
aflow40b 59 0.72 26.24
danoint 86 0.85 3.48
l152lav 25 2.56 267.56
misc07 73 1.32 32.35

modglob 50 1.00 17.13
opt1217 46 1.00 0
p0548 100 3.00 15.33
p2756 0 0.67 15.00
pk1 53 0.87 10.71

pp08a 75 1.02 0.86
qiu 100 3.60 120.60
rgn 71 0.64 2.75

stein45 60 1.19 72.08
swath 84 0.73 1.51
vpm2 54 0.83 8.81

Table 3. Lookahead Branching Statistics
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3. Abbreviated Lookahead Branching
The initial experiment led us to believe that measuring the impact on grandchild nodes
when making a branching decision can reduce the number of nodes of the search tree, in
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large part due to additional bound fixing and implications that can be derived. However,
the time required to perform such a method can be quite significant. Our goal in this section
is to develop a practical lookahead branching method. An obvious way in which to speed
the process up is to consider fixing bounds on only certain pairs of variables and then to
limit the number of simplex iterations used to gauge the change in bound at the resulting
grandchild nodes.

3.1. Algorithm
To describe the method employed, we use similar notation as for the original method
described in Section 2. Figure 5 shows the notation we use for the values of the LP relaxations
of the partially-expanded search tree and the indicator variables if a particular grandchild
node would be fathomed.

For a pair of variables (xi, xj) whose values in the current LP relaxation are fractional, we
create the four subproblems denoted in Figure 5 and do a limited number of dual simplex
pivots in order to get an upper bound on the values z−−ij , z−+

ij , z+−
ik , and z++

ik . The obvious
questions we must answer are how to choose the pair of variables (xi, xj), and how many
simplex pivots should be performed.

3.2. Strong Branching Implementation
The questions of how to choose candidate variables and how many pivots to perform on each
candidate must also be answered when implementing a (one-level) strong branching method.
Since our goal is to show possible benefits of the lookahead method, we also implement
a practical strong branching method with which to compare the abbreviated lookahead
method. When implementing strong branching, there are two main parameters of interest:
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• The number of candidate variables to consider, (or the size of the set C), and
• the number of simplex pivots (down and up) to perform on each candidate.

Our choice to limit the size of the candidate set is based on how many fractional variables
there are to consider in a solution (x̂, ŷ) whose objective value is zLP . Specifically, we let
the size of this set be

|C|= max{α|F|,10}, (10)

where F is the set of fractional variables in x̂, and 0 ≤ α ≤ 1 is a parameter whose value
we will determine through a set of experiments. When branching, the variables are ranked
from largest to smallest according to the fractionality of x̂i, i.e. the criteria min(fi,1 −
fi), where fi = x̂i − bx̂ic is the fractional part of x̂i. The top |C| variables are chosen as
potential branching candidates. For each candidate variable xi, β dual simplex iterations
are performed for each of the down and up branch, resulting in objective values z−i and z+

i .
The variable selected for branching is the one with

i∗ ∈ argmax
i∈F

{W(zLP − z−i , zLP − z+
i )}. (11)

More sophisticated methods exist for choosing the candidate set C. For example, the
variables could be ranked based on the bound change resulting from one dual simplex pivot
(akin to the penalty method of Driebeek [13]), or even a dynamic method, in which the size
of the set considered is a function of the bound changes seen on child nodes to date, like the
method of Achterberg, Koch, and Martin [3]. We denote by SB(α̂, β̂) the strong branching
method with parameters α̂ and β̂. In our experiments, strong branching is implemented
using the CPLEX routine CPXstrongbranch() [10].

3.3. Lookahead Branching Implementation
When implementing the abbreviated lookahead branching method, we must determine

• the number of candidate variable pairs to consider, and
• the number of simplex iterations to perform on each of the four grandchild nodes for each

candidate pair.

Our method for choosing the set of candidate pairs D works as follows. First, a limited
strong branching SB(α̂, β̂) is performed, as described in Section 3.2. Then, the variables
are ranked from largest to smallest using the same criteria as in strong branching, namely
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W(zLP − z−i , zLP − z+
i ). From these, the best γ candidates are chosen, and for each pair of

candidate variables coming from the best γ, δ dual simplex iterations are performed on the
four grandchild nodes, resulting in the values zs1s2

ij and ρs1s2
ij of Figure 5. If α̂ and β̂ are

the parameters for the limited strong branching, and γ̂, δ̂ are the parameters defining the
size of the candidate set of variable pairs and number of pivots on each grandchild node
to perform, then we will refer to the branching method as LA(α̂, β̂, γ̂, δ̂). Note that the set
D consists of all pairs of the best γ candidate variables from the limited strong branching.
It may not be necessary to consider each pair, and we will consider other mechanisms for
choosing the variable pairs as a line of future research.

3.4. Computational Results
A first set of experiments is performed to determine good values for the branching parameters
α,β, γ, and δ. Subsequently, we compare the resulting strong branching and abbreviated
lookahead branching methods with the default branching scheme of MINTO v3.1. MINTO
v3.1 uses a combination of (once-initialized) pseudocosts and the penalty method of Driebeek
[13]. See Linderoth and Savelsbergh [25] for a complete explanation of this method. For
these experiments, we use a test suite of 89 instances from MIPLIB 3.0 [7] and MIPLIB
2003 [27]. Besides the test suite of problems, all other characteristics of these experiments
are the same as those described in Section 2.3.

3.4.1. Strong Branching Parameters Our first goal is to determine reasonable values
for α and β to use in our strong branching method SB(α,β). Doing a search of the full param-
eter space for α and β would have required prohibitive computational effort, so instead we
employ the following mechanism for determining reasonable default values for α and β. The
number of simplex iterations is fixed to β = 5, and an experiment is run to determine a good
value of α given that β = 5. An experiment was run for values α = 0.25,0.5,0.75,and 1.0.
Details of this experiment, including a performance profile plot, can be found in the tech-
nical report version of this work [21]. The result of the experiment shows that α = 0.5 gives
good relative results. Namely, considering a half of the fractional variables as branching
candidates results in good computational behavior.

Next, we run an experiment comparing the branching rules SB(0.5, β) for β = 5,10,and 25.
Again, details of this experiment can be found in the technical report [21]. The results of
the experiment are inconclusive in determining a best value for the parameter β, but the
value β = 10 appears to perform reasonably well.

3.4.2. Lookahead Branching Parameters This experiment is designed to determine
appropriate values for the number of branching candidates and the number of simplex piv-
ots, i.e. parameters γ and δ respectively, in the abbreviated lookahead branching method,
LA(α,β, γ, δ). In this experiment, we have fixed the values for (α∗, β∗) = (0.5,10) as deter-
mined in Section 3.4.1. To find appropriate values for γ and δ, we follow the similar strategy
to the one that is used to determine α∗ and β∗. First, we fix a value of δ = 10 and com-
pare the performance of branching rules LA(0.5, 10, γ, 10). The results of this experiment
are summarized in Figure 6. We conclude from the experiment that γ = 3 is a reasonable
parameter value.

Given that γ = 3, the next experiment compared branching methods LA(0.5,10,3, δ) for
δ ∈ {5,10,15,20,25}. The results of this experiment are summarized in the performance
profile in Figure 7. There is also no clear winner in this experiment, but we prefer the
smaller number of simplex pivots. Therefore, we select the good parameter settings for the
abbreviated lookahead branching method to be (α∗, β∗, γ∗, δ∗) = (0.5,10,3,10).
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Figure 6. Performance Profile of Running Time as γ Varies

3.4.3. Full Strong Branching and Abbreviated Lookahead Branching Compar-
ison This experiment is aimed at determining if the limited grandchild information
obtained from the abbreviated lookahead branching method could reduce the number of
nodes in the search tree significantly. Namely, we compare the branching methods SB(α∗, β∗)
and LA(α∗, β∗, γ∗, δ∗). The abbreviated lookahead branching method will not be at all effec-
tive if the number of nodes in LA(α∗, β∗, γ∗, δ∗) is not significantly less than SB(α∗, β∗)
since the amount of work done to determine a branching variable is significantly larger in
LA(α∗, β∗, γ∗, δ∗) than for SB(α∗, β∗).

Figure 8 is the performance profile comparing the number of nodes evaluated in the two
methods. The number of evaluated nodes in the abbreviated lookahead method is substan-
tially less than the strong branching. A somewhat more surprising result is depicted in
Figure 9, which shows that LA(α∗, β∗, γ∗, δ∗) also dominates SB(α∗, β∗) in terms of CPU
time.

3.4.4. Final Comparison The final experiment is the most practical one, aimed at deter-
mining for a fixed maximum number of simplex iterations, whether these iterations are most
effectively used evaluating potential child node bounds or grandchild node bounds. Namely,
we would like to compare the strong branching strategy against the abbreviated lookahead
branching strategy for parameter values such that

2|C1|β = 4
γ(γ− 1)δ

2
. (12)

The LHS of equation (12) is the maximum number of pivots that the strong branching
method will perform, where |C1| is computed from equation (10). Similarly, the RHS is the
maximum number of pivots that the lookahead branching method can perform.
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Figure 7. Performance Profile of Running Time as δ Varies

For this experiment, we implement the strong branching with bound fixing and the abbre-
viated lookahead branching with bound fixing as part of MINTO options. The variables in
the set C are ranked as described earlier according to the fractionality while the variables in
the set D are ranked from largest to smallest using the pseudocosts. We use CLP [16] to solve
the linear programs. The strong branching parameters are fixed at the setting determined
in Section 3.4.1, namely α∗ = 0.5 and β∗ = 10. We fix the lookahead branching parameter
δ∗ = 10 as determined in Section 3.4.2. Finally, γ is computed from equation (12).

We compare the effectiveness of these methods with the default MINTO branching. We
also implement another branching strategy, LA-5, that applies the abbreviated lookahead
branching at the top of branch-and-bound tree, i.e. only to nodes with depth less than 5, and
use the default MINTO scheme otherwise. The experimental results are summarized in the
performance profiles of Figure 10 and 11. Full details of the experimental runs can be found in
Table 7 in the Appendix. For a fixed number of simplex iterations, the abbreviated lookahead
branching outperforms the strong branching. In addition, the abbreviated lookahead method
leads to fewer evaluated nodes.

The average CPU time for MINTO on the instances in the test suite was 730.21 seconds,
while the average for the lookahead branching method was 558.81 seconds. The geometric
mean of the CPU time for MINTO was 9.55 seconds, and the geometric mean for the
lookahead branching was larger, 10.17 seconds. The fact that the average time for lookahead
branching is smaller, while the geometric mean is larger is an indication that performing
lookahead branching may prove beneficial on difficult instances.

4. Conclusion
We have asked and partially answered the question of whether or not consider branching
information from grandchild nodes can result in smaller search trees. We have proposed a



Glankwamdee and Linderoth: Lookahead Branching
14 ICS-2011—Monterey, pp. 000–000, c© 2011 INFORMS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

%
 o

f p
ro

bl
em

s

not more than x times worse than best solver

SB
LA

Figure 8. Performance Profile of Number of Evaluated Nodes

method for gathering the information from grandchild nodes. We verified that this informa-

tion can often be quite useful in reducing the total number of nodes in the search, can result

in fixing bounds on variables, and can often give implications between variables. Finally, we

show that by the limiting number of simplex iterations or the number of fractional variables

for which to generate the branching information, a similar branching decision can still be

made, but with less computational effort. The resulting branching rule is of comparable

quality to the advanced branching methods available in the MINTO software system. From

our experience, it seems unlikely that lookahead branching will be a good default branch-

ing scheme for general MIP, but for some classes of hard problem instances, the additional

computational effort may well pay off.
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Appendix: Tables of Results
A value of -1 indicates that the instance is not solved within the time limit of 8 hours.

Name Number of Evaluated Nodes
SB SB-Implication LA LA-Implication

l152lav 193 11 281 9
p0548 3 3 3 3
rgn 1011 127 1296 119

stein45 16437 7491 20409 8755
vpm2 4883 381 4291 527
misc07 8173 163 5219 31

modglob 159 29 199 79
p2756 7 3 7 3

aflow30a -1 15 -1 45
pk1 -1 24001 -1 13731
qiu -1 5 -1 5

Table 4. Solved MIPLIB Instances
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Name Integrality Gap
SB SB-Implication LA LA-Implication

opt1217 23.88 23.88 24.07 24.07
pp08a 10.63 10.66 11.55 11.38

aflow40b 13.25 6.91 13.09 5.90
danoint 4.38 4.38 4.49 4.41
swath 32.47 30.66 30.27 29.29

Table 5. Unsolved MIPLIB Instances

Name Total Running Time
MINTO SB SB-Implication LA LA-Implication

l152lav 8.84 1808.68 1059.83 3678.86 606.83
p0548 0.21 0.27 0.31 0.29 0.26
rgn 2.91 32.13 24.18 31.13 23.66

stein45 296.94 19820.37 15107.89 23863.70 13323.79
vpm2 23.71 522.02 144.39 483.05 107.62
misc07 790.96 13852.87 8000.36 11993.02 8201.39

modglob 2.95 115.14 41.55 148.21 44.25
p2756 2.92 18.52 14.70 18.10 15.34

aflow30a 1842.31 -1 844.3 -1 1779.79
pk1 -1 -1 4928.79 -1 4685.71
qiu 5112.87 -1 454.33 -1 472.78

Table 6. Total Running Time of Solved MIPLIB Instances
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Name Number of Evaluated Nodes Total Running Time
MINTO SB LA LA-5 MINTO SB LA LA-5

aflow30a 23293 16955 11241 14483 1524.07 2119.58 1320.62 877.76
air03 1 1 1 1 1.12 1.12 1.13 1.18
air04 1093 187 321 301 1457.67 747.19 1047.84 462.89
air05 2625 275 361 605 1205.85 622.73 809 488.19
bell3a 44779 44811 47029 44911 30.16 30.28 34.3 31.72
bell5 8243 -1 100943 8245 5.38 -1 189.42 5.83

blend2 1527 1085 2143 1613 8.27 22.21 38.58 10.68
cap6000 13067 11939 15073 15855 339.49 750.34 1421.98 403.3
dcmulti 1075 1133 841 861 5.05 25.18 13.4 4.97
disctom 1 1 1 1 9.81 9.83 9.77 9.83
dsbmip 1 1 1 1 0.95 0.95 0.99 0.95
egout 3 3 3 3 0.02 0.02 0.02 0.02

enigma 1 1 1 1 0.01 0.01 0.01 0.01
fast0507 9439 -1 -1 5677 19002.07 -1 -1 12335.81

fiber 193 43 45 57 8.11 7.41 6.25 6.62
fixnet6 81 263 105 97 2.79 12.55 5.42 3.95
flugpl 5295 7103 3593 5933 1.32 5.55 3.62 1.5
gen 3 3 3 3 0.16 0.19 0.19 0.17

gesa2 79739 -1 50911 74073 1324.28 -1 2595.98 1272.3
gesa2 o 95947 -1 42243 81313 1125.75 -1 2566.79 956.78
gesa3 1249 2327 777 821 32.99 208.02 67.57 24.18

gesa3 o 699 1555 875 765 14.19 157.02 85.33 20.35
gt2 5 11 5 5 0.05 0.1 0.06 0.06

harp2 5327 7677 6451 6583 338.85 3910.79 1864.7 387.64
khb05250 13 13 13 13 0.39 0.47 0.5 0.5
l152lav 571 435 197 279 19.41 45.55 22.75 18.68

lseu 227 103 145 211 0.94 1.57 1.39 1.27
misc03 2333 989 1363 1541 6.02 12.03 13.71 4.95
misc06 55 65 45 47 1.44 4.52 2.54 1.89
misc07 86581 30705 57279 77779 520.07 996.36 1649.02 447.34
mitre 1 1 1 1 10.64 10.55 10.65 10.74

mod008 511 259 361 557 2.28 3.83 4.46 2.38
mod010 69 41 25 61 6.61 7.72 6.99 7.44
mod011 9459 4237 12401 11851 5605.32 3964.62 9553.1 7133.23
modglob 247 237 277 273 3.57 9.54 10.41 6.18

nw04 291 177 271 325 529.64 653.21 974.36 770.89
p0033 13 9 11 11 0.07 0.1 0.09 0.09
p0201 255 177 233 235 3.16 6.55 8.19 3.47
p0282 45 41 19 19 1.3 2.8 2.1 1.97
p0548 3 3 3 3 0.24 0.27 0.26 0.26
p2756 5 5 13 13 3.67 4.15 6.46 6.46
qiu 117577 46613 56121 70456 3975.41 4908.47 4791.42 2331.61

qnet1 95 325 135 147 5.13 25.92 13.99 9.17
qnet1 o 223 152 181 320 7.38 11.72 10.12 10.67
rentacar 51 43 37 49 19.82 32.55 25.1 22.03

rgn 2657 2319 2635 2881 7.02 12 14.73 8.19
stein27 3939 2707 3107 3615 2.4 12.29 10.54 2.81
stein45 56861 38681 48937 60763 84.66 549.29 709.91 95.69
vpm1 1 1 1 1 0.04 0.04 0.04 0.05
vpm2 9307 9839 8201 10041 49.48 148.98 104.83 54.82

Average 11464.96 9927.67 9656.67 9984.02 730.21 1063.04 1173.67 558.81
Geometric Mean 298.93 260.29 250.57 267.95 9.55 18.93 17.73 10.17

Table 7. Number of Evaluated Nodes and CPU Time in Final Comparison
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