
Preprint 0 (2000) ?–? 1

Master-Worker: An Enabling Framework for

Applications on the Computational Grid ∗

Jean-Pierre Goux a Sanjeev Kulkarni b Jeff Linderoth c Michael Yoder d

a Department of Electrical and Computer Engineering

Northwestern University

Mathematics and Computer Science Division

Argonne National Laboratory

9700 South Cass Avenue Argonne, Illinois 60439

E-mail: goux@mcs.anl.gov
b Computer Sciences Department

University of Wisconsin - Madison

1210 West Dayton Street, Madison, WI 53706

E-mail: sanjeevk@cs.wisc.edu
c Mathematics and Computer Science Division

Argonne National Laboratory

9700 South Cass Avenue, Argonne, Illinois 60439

E-mail: linderot@mcs.anl.gov
d Computer Sciences Department

University of Wisconsin - Madison

1210 West Dayton Street, Madison, WI 53706

E-mail: yoderme@cs.wisc.edu

The goal of this work is to create a tool that allows users to easily distribute large

scientific computations on computational grids. Our tool MW relies on the simple

master-worker paradigm. MW provides both a top level interface to application

software and a bottom level interface to existing grid computing toolkits. Both

interfaces are briefly described. We conclude with a case study, where the necessary

Grid services are provided by the Condor high-throughput computing system, and

the MW-enabled application code is used to solve a combinatorial optimization

problem of unprecedented complexity.

Keywords: Grid Computing, Metacomputing, Master-Worker Paradigm

∗ This work was supported in part by Grants No. CDA-9726385 and CDA-9623632 from the

National Science Foundation.

2 /

1. Introduction

By its very definition, the Grid [14] is a powerful and complex computing
environment. In order to help harness its power, a large number of different
programming efforts are underway that seek to provide robust middleware ser-
vices [13] [17] [21] [12] [4] [27]. For users hoping to parallelize a large, single,
coordinated application over the Grid, the overhead required to learn and as-
semble these Grid-enabling software components could (at this stage of their
implementation) be discouraging. Thus, to enable a larger community of users
to build applications running in parallel on the Grid, higher-level programming
frameworks leveraging existing Grid services software are needed. NetSolve [7]
provides an API to access and schedule Grid resources in a seamless way but it
is not suited for writing non-embarrassingly parallel codes. Everyware [28] is a
heroic effort that shows that an application can draw computational power trans-
parently from the Grid, but Everyware is not abstracted as a programming tool
at this stage of its implementation. CARMI/Wodi [25] was a useful programming
interface for developing master-worker based parallel applications to run on the
Grid, but it was strongly tied to the Condor-PVM [24] software tool, limited to
applications with fixed work cycles, and finally abandoned.

Our abstract programming framework MW is a complete, easy to use tool
whereby users can distribute large, diverse, scientific computations in a Grid
computing environment. To parallelize such algorithms on Grid computing plat-
forms, users must address issues such as fault tolerance, task scheduling, and
interprocess communication. By handling some of these issues automatically and
exposing others, MW provides an API for rapidly implementing Grid-enabled
master-worker algorithms. MW also abstracts an Infrastructure Programming
Interface (IPI) such that it can be ported to use various Grid software toolkits
without any changes from the application developer. MW has been used in the
MetaNEOS project [23] to implement efficient parallel numerical optimization
algorithms with complex control structures. The marriage of efficient algorithms
with Grid computational resources has allowed the solution of problems of record-
breaking sizes [3] [19]. Other authors have also focused on providing support for
master-worker applications in a dynamic computing environment; Piranha [15]
and Bayanihan [26] are notable examples.

The paper is organized as follows. In Section 2 we explain the goals of
our Grid computing tool, and we argue that the master-worker paradigm is well

/ 3

suited to meeting these goals. In Section 3, we introduce MW, and we describe
the interfaces to both application software and Grid infrastructure software. Sec-
tion 4 discusses additional features of MW that help developers build efficient and
robust applications. Section 5 presents a case study where the Grid services are
provided by Condor[21], and the application code is used to solve a combinatorial
optimization problem of unprecedented complexity. Conclusions about this line
of research are also given.

2. The Master-Worker Paradigm

The dynamic and heterogenous nature of the Grid makes parallel algorithm
implementation a daunting issue for potential users. We aim to ease this burden
on the users with a runtime support library. Ideally, the runtime support library
should have the following characteristics:

(I) Programmability. Users should easily be able to take an existing applica-
tion code and interface it with the system.

(II) Adaptability. The system should transparently (to the user) adapt to the
dynamic and heterogeneous execution environment. Thus, new resources of
varying types should be seamlessly integrated into the computation at any
point.

(III) Reliability. The system should perform the correct computations in the
presence of processors failing.

(IV) Efficiency. The system should be effective in the high-throughput sense
[22]. That is, the resources should do useful work over long time periods.

In this section, we address the effectiveness of the master-worker paradigm
in light of its ability to meet each of these design goals.

The master-worker paradigm is very easy to program. All algorithm control
is done by one processor—the master. The user need not be burdened with the
difficult issue of how to distribute algorithm control information to the various
processors. Moreover, the typical parallel programming hurdles of load balancing
and termination detection are circumvented. Having a central point of control
facilitates the collection of a job’s statistics. Furthermore, a surprising number
of sequential approaches to large-scale problems can be mapped naturally to
the master-worker paradigm. Tree search algorithms [18], genetic algorithms [6],

4 /

parameter analysis for engineering design [1], and Monte Carlo simulations [5] are
just a few examples of natural master-worker computations. All these features
increase a system’s ease of use, accomplishing goal (I) of our Grid runtime support
library.

Programs with centralized control are easily able to adapt to a dynamic and
heterogeneous computing environment. If additional processors become available
during the course of the computation, they simply become workers and are given
portions of the computation to perform. Having centralized control also eases the
burden of adapting to a heterogeneous environment, since only the master need be
concerned with the matchmaking process of assigning tasks to resources making
the best use of the resource characteristics. Thus, we are able to accomplish goal
(II) for our Grid runtime support library.

Using the master-worker paradigm, we can easily achieve goal (III) of our
Grid computing tool and ensure that the computation is fault-tolerant. If a
worker fails and is executing a portion of the computation, the master simply
reschedules that portion of the computation. A small difficulty is that the basic
master-worker paradigm is not robust in the presence of failure of the master. To
overcome this liability, the state of the computation can be occasionally check-
pointed. This is a simple matter, since all state information is located in the
master process.

Bulding efficient parallel implementations with the master-worker paradigm
is not straightforward, especially considering the number of resources that the
Grid can provide. In this context, there are two main roadblocks to efficiency:
scalability and task dependence. To overcome these problems, it may be necessary
to exploit algorithm characteristics such as dynamic grain size or a weak synchro-
nization requirement. These characteristics may be inherent in the algorithm, or
the algorithm may be modified in order to highlight these characteristics. The
specific details on how to use these advantageous characteristics is problem de-
pendent and beyond the scope of this paper, but our Grid runtime support library
must give the users the flexibility to exploit them when necessary.

In short, the master-worker paradigm is simple enough so that implemen-
tation difficulties associated with the computational grid can be easily resolved,
yet we feel that the paradigm is flexible enough to accomidate a wide range of
algorithms.

/ 5

3. MW

MW is a software framework that allows a user to easily parallelize a master-
worker application on Grid resources. MW is a set of C++ abstract classes pro-
viding interfaces to both application programmer and Grid-infrastructure pro-
grammer. To Grid-enable an application with MW, the application programmer
must re-implement a small number of virtual functions. Likewise, to port the MW
framework to a new Grid software toolkit, the Grid infrastructure programmer
need only re-implement a small number of virtual functions.

3.1. Infrastructure Interface

To distribute a master-worker computation on the Grid, we at least require
software that can perform

• Communication – Portions of the computation and results must be passed
between master and workers,

• Resource Management – The state of the available computational resources
on the Grid must be known.

Our usage of the term resource management is a bit broader than most. In
this context, resource management encompasses

• Resource request and detection – Asking for and identifying available proces-
sors,

• Infrastructure querying – Determining information about processors and the
interconnections between them,

• Fault-detection – Noticing when processors leave the computation,

• Remote execution – Starting processes on remote machines when they become
available.

There are a number of tools being built that provide these basic services, as
well as features necessary to other Grid applications (such as security and remote
data access). The Infrastructure Programming Interface (IPI) abstracts the core
communication and resource management requirements for master-worker appli-
cations into the MWRMComm class. To allow MW applications to interact with
existing Grid-services software, a concrete instance of the abstract MWRMComm
class is derived, where the functionality required by MWRMComm is provided
by the services in the specific Grid software toolkit.

6 /

3.1.1. Communication
The sole communications functionality required by MWRMComm is that

point-to-point messages can be sent between the master and the worker processes.
As such, MWRMComm has the (pure) virtual functions:

• pack(<type> array, int size)

• unpack(<type> array, int size)

• send(int to whom, int message tag)

• recv(int from whom, int message tag)

All messages must be buffered by the MWRMComm implementation, and
the send() function should be implemented as a nonblocking call. These design
criteria are due to the fact that processors may disappear during the course of
the computation. Since the Grid is heterogeneous, the pack() and unpack()

functions must account for different native data types. In MWRMComm, the
recv() routine should be implemented as a blocking function call, for reasons
described in Section 3.1.2.

3.1.2. Resource management
The application programmer may make a resource requests by calling the

function MWRMComm::set target num workers(int num workers). It is up to
the MWRMComm implementation to make appropriate resource requests in an
attempt to garner this number of workers for the master-worker application, and
also to make new requests if participating workers leave the computation.

An important design decision for MW is that both communication and re-
source management functionality is included in a common class. MW relies on an
upcall mechanism from the resource management software to signal changes in
the state of the computational resources. The changes are signalled as messages
received by the master with specific tags such as HOSTADD and HOSTDELETE. Thus,
an implementation of the (blocking) MWRMComm::recv() function on the master
process should not only test for incoming messages from workers, but also check
for changes to the state of the existing computational resources and report these
changes as messages.

For example, when a HOSTADD message is received, the MWRMComm spec-
ification requires that the function call MWRMComm::start worker(MWWorkerID

*w) will (attempt to) start a remote process on the machine that has been
added, and will assign a unique process identifier in the MWWorkerID. When

/ 7

a HOSTDELETE message is received, MWRMComm requires that the unique pro-
cess identifier be packed in the message buffer.

A final important function in the MWRMComm class is
MWRMComm::get worker info(MWWorkerID *w). This function uses underly-
ing Grid services to populate the MWWorkerID class with “useful” information
about the remote processor. Data members of the MWWorkerID class include
the architecture, operating system, amount of memory, disk space, and speed of
the remote machine.

Clearly, this is not the entire specification of the MWRMComm class. In-
deed, we consider the IPI that we have laid out in MW to be a work in progress.
The interface will likely change, and additional functionality will be added as
warranted. Due the layered design of MW, application programs will be shielded
from the interface changes.

3.1.3. Example MWRMComm Implementations
There are currently two implementations of the MWRMComm class. Both

rely on the resource management facilities provided by the Condor high-
throughput computing system [21]. As such, MW must deal with many processor
faults, since the default Condor behavior is to vacate a running process when the
owner of the machine returns. In one implementation, communication is done
with PVM, and in the other, communication is done by using Condor’s remote
I/O mechanism [20] to write a series of shared files. Preliminary plans are being
made for a port to the Globus software toolkit [13]. Table 1 highlights how the
Grid service software provides (or could provide) the functionality required by
MWRMComm.

3.2. MW Application Programming Interface

In Section 2, we argue that many scientific applications can be parallelized
quite effectively for a Grid environment by using the master-worker paradigm.
Algorithms that are best suited for a master-worker implementation share the
following characteristics:

• Incremental Data Requirement,

• Weak Synchronization,

• Dynamic Grain Size.

8 /

Services Condor-PVM Condor-Files Globus

Communi-

cation

Messages buffered

and passed through

default PVM

mechanisms

Messages passed

through shared

worker files via

Condor Remote I/O.

Messages passed and

handled via Nexus

nexus send rsr().

Resource

Request

and

Detection

Requests formulated

with Condor Class

Ads, served by

Condor

matchmaking, and

detection is notified

by pvm notify().

Requests formulated

with Condor Class

Ads, served by

Condor matchmaking

and detected, by

checking Condor logs.

Requests in Globus

RSL handled and

queued by GRAM via

gram client job

request().

Info

Querying

Information collected

via condor status

command

Information collected

via condor status

command

Information queried

from MDS via LDAP

protocol.

Fault

Detection

Faults detected by

Condor-PVM and

passed through pvm

notify().

Faults detected by

checking Condor logs.

Faults detected by

HBM local monitors

are collected by HBM

data collector agent

running on master.

Remote Exe-

cution

Job started by pvm

spawn().

Job started by

condor startd

daemon on remote

resource.

Job started by GRAM

when requests are

served.

Table 1

Summary of How Grid Services are Provided

The MW API was designed to provide an interface that would be easy for
application programmers to use, but also would allow these algorithmic charac-
teristics to be exploited to build efficient master-worker applications.

In order to parallelize an application with MW, the application program-
mer must re-implement three abstract base classes – MWDriver, MWTask, and
MWWorker.

/ 9

3.2.1. MWDriver
To create the MWDriver, the user need only implement four pure virtual

functions:

• get userinfo(int argc, char *argv[]) – Processes arguments and does
basic setup.

• setup initial tasks(int *n, MWTask ***tasks) – Returns a set of tasks
on which the computation is to begin.

• pack worker init data()– Packs the initial data to be sent to the worker
upon startup. Use of this function allows the application to exploit an incre-
mental data requirement.

• act on completed task(MWTask *task) – Is called every time a task finishes.
Some actions that the user could take include adding more tasks or making
calculations based on the result of the task. Tasks are added by calling the
MWDriver::addTasks(MWTask **tasks) base method.

By carefully deciding on actions to take in the act on completed task()

method, the user can take advantage of weak synchronization inherent in the
parallel application.

The MWDriver manages a set of MWTasks and a set of MWWorkers to ex-
ecute those tasks. The MWDriver base class handles workers joining and leaving
the computation, assigns tasks to appropriate workers, and rematches running
tasks when workers are lost. All this complexity is hidden from the applica-
tion programmer. Further, the MWDriver offers more advanced functionality, as
explained in Section 4.

3.2.2. MWTask
The MWTask is the abstraction of one unit of work. The class holds both the

data describing that task and the results computed by the worker. By deciding on
the size of the task, the application can use dynamic grain size to its advantage,
easing contention at the master process, and increasing parallel efficiency. The
derived task class must implement functions for sending and receiving its data be-
tween the master and worker. The names of these functions are self-explanatory:
pack work(), unpack work(), pack results(), and unpack results(). These
functions will call associated pack() and unpack() functions in the MWRM-
Comm class.

10 /

3.2.3. MWWorker
The MWWorker class is the core of the worker executable. Two pure virtual

functions must be implemented:

• unpack init data()– Unpacks the initialization information passed in the
MWDriver’s pack worker init data().

• execute task(MWTask *task)– Given a task, computes the results.

After doing some basic initialization, the MWWorker sits in a simple loop.
Given a task, it computes the results, reports the results back, and waits for
another task. The loop finishes when the master asks the worker to end. It is
an easy matter to bring in other libraries, such as highly optimized FORTRAN
routines to the worker. They can be linked with the C++ code, and called by
the execute task() function.

3.3. The MW Software Layer

Figure 1 depicts relationships between the software components enabling an
application to utilize the computation grid. MW adds an addition software layer
and acts as a filter, hiding complexity of Grid service software, but also potentially
hiding underlying functionality and knowledge of how the communication and
resource management services are performed. A significant challenge is how to
impart this functionality and knowledge to the application programmer, while
still presenting a simple interface. MW errs on the side of simplicity, with the
thought that additional Grid service functionality will be made available to the
application programmer as needed.

An advantage of the layered approach is that some advances in Grid services
software can be leveraged by the application programmers to increase applica-
tion performance. For our Condor-based MWRMComm implementations, two
examples include flocking [11], where geographically distributed Condor pools
are conceptually linked as one, and glide-in [10], where processors from an exist-
ing Globus resource can be added to a Condor pool on a temporary basis. These
advanced Condor features are used by the application presented in Section 5.

4. Additional Functionality

In this section, we outline a number of other useful features that are available
through methods in the base MWDriver class.

/ 11

Figure 1. Components used to Grid-enable Application Software

The Grid

�������
�������
�������

�������
�������
�������Monte Carlo

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������Application

MW

QAP

Resource
Management

Condor PVM

Communication

Globus Nexus

4.1. Checkpointing

Because the MWDriver reschedules tasks when the processors running these
tasks fail, applications running on top of MW are fault tolerant in the presence of
all processor failures—except for the master processor. In order to make compu-
tations fully reliable, MWDriver offers features to logically checkpoint the state
of the computation on the master process on a user-defined frequency. To enable
checkpointing, the user must implement functions for writing and reading the
state contained in its application’s master and task classes. Use of the master
checkpoint facility is demonstrated in Section 5.

12 /

4.2. Normalized Performance Measurement

The heterogeneous and dynamic nature of a computational grid makes ap-
plication performance difficult to assess. Standard performance measures such as
wall clock time and cumulative CPU time do not separate application code per-
formance from computing platform performance. By normalizing the CPU time
spent on a given task with the performance of the corresponding worker, MW

aggregates time statistics that are comparable between runs. The normalization
factor can be based on vendor information such as MIPS or KFLOPS, if this
information is available from the underlying Grid service software. Alternatively,
MW allows the user to register an application specific benchmark task that is
sent to all workers that join the computational pool. The speed at which the
benchmark task is completed is used as the normalization factor.

Besides the normalized CPU time statistic T , MW collects a number of
other useful statistics such as the unnormalized CPU time T , the wall clock time
(W), the amount of time worker i was available (Ui), and the amount of CPU
time (tj) spent completing task j. At the end of the run, MW reports useful
statistics such as the average number of available workers during the course of
the run (N) :

N ≡
∑

i U(i)
W ,

and the parallel efficiency (η) :

η ≡
∑

j t(j)∑
i U(i)

.

Table 4.2 shows the variations of performance statistics between runs of a
Grid-enabled application (presented in Section 5). The same problem instance
was solved eight times, each time on a different set of processors. A user-defined
benchmark task was used to define the normalization factor.

As expected, the statistics exhibit large variance of W and T due to the
dynamic and heterogenous nature of the computing platform. However, there
is little variance of T , which can therefore be used to do comparisons between
runs and assess the application performance. Use of the normalized performance
measurement has proved invaluable for tuning parameters of various Grid-enabled
applications, like the one presented in Section 5.

/ 13

Mean Std. Dev. Min Max

W 915 1019 489 1780

T 22182 27900 8844 37671

T 5864 341 5739 6054

N 27.5 21.7 16 39

η 0.87 0.07 0.84 0.92

Table 2

Mean, Variance and Extreme Value on 8 different runs.

4.3. Task Scheduling

Internally, the MWDriver manages a list of workers and a list of tasks. Task
scheduling is accomplished by assigning the first task in the task list to the first
idle worker in the worker list. In MWDriver, there is an interface to specify that
the task list be ordered by a user-defined key, ensuring that “important” tasks
are performed first. The worker list may be similarly ordered, so that “good”
machines are the first to receive tasks. By default, the worker list is ordered
using the machine KFLOPS information (if provided by the Grid software imple-
menting MWRMComm), or by the benchmark factor if the user has registered
an application specific benchmark task.

While this is a rudimentary scheduling algorithm, it has proven sufficient
for all applications implemented to date with MW. The applications have had no
need to match specific tasks with specific workers. Also, the applications to date
have not been data-intensive, so use of advanced services such as the Network
Weather Service [29] to improve scheduling has not been warranted.

5. Application to Combinatorial Optimization

MW has been used in the MetaNEOS project [23] to implement several
grid-enabled parallel optimization solvers [9] [16] [19]. One solver has been spe-
cialized to solve the quadratic assignment problem (QAP) [8]. Despite its simple
statement—to minimize the assignment cost of n facilities to n locations—it is
extremely difficult to solve even modest sized instances of the QAP. Problems
with n > 20 are difficult; problems with n > 30 were thought unsolvable. By
embedding a new relaxation technique [2] into a branch-and-bound framework,

14 /

and implementing the resulting solver within MW, we managed to solve what is
regarded by experts in the field as the most difficult QAP instance (size n=27)
to provable optimality [3].

In order to use the computational resources with maximum efficiency, the
parallelization strategy of the branch-and-bound tree search has been carefully
designed. Issues such as the proper ordering of the task list and the selection
of the grain size were carefully considered in order to minimize communication
overhead and contention at the master process without introducing large parallel
search anomalies. By using the intuitive MW API, implementing the parallel
version of the sequential branch-and-bound code was extremely simple and fast.
The MW-ized QAP application code was compiled to use the Condor/File-Based
MWRMComm implementation.

The computational pool was composed of machines from the Condor pool
and a Linux cluster at the University of Wisconsin, a flocked Condor pool at
the University of New Mexico, a flocked Condor pool at the National Institute
for Nuclear Physics (Bologna, Italy), and the SGI/Origin2000 at Argonne Na-
tional Laboratory acquired via Globus through the glide-in mechanism. Further
information about the computational pool is summarized in Table 3.

(Peak)
Number Arch-OS Where How GFLOPS

179 INTEL/LINUX Wisc Main Pool 13.88
34 INTEL/LINUX UNM Flocked 1.12
64 INTEL/LINUX INFN Flocked 2.76

150 INTEL/SOLARIS Wisc Main Pool 7.64

35 SUN/SOLARIS Wisc Main Pool 1.44
8 SUN/SOLARIS INFN Flocked 0.38

32 SGI/IRIX Argonne Glide-in 3.84

502 - - - 31.06

Table 3

The Computational Pool.

Figure 2 depicts the cumulative evolution of the number of machines of each

/ 15

type during our run. A few events are of note. At 11:30AM a glide-in request was
made for 32 SGI processors on Argonne’s Origin for a period of 12 hours. (The
reader can note these machines appear in Figure 2 around this time). At 6:30
PM, the Condor scheduling daemon was reconfigured to allow flocking with the
INFN Condor pool in Bologna, Italy. The job was stopped manually at 11PM,
and we restarted it at 8AM from the master’s checkpoint file, as explained in
Section 4.1. When restarted, we did not place a new glide-in request.

In all, 87,036 tasks, each consisting of a number of nodes of the branch and
bound tree, were sent from the master to workers. It is impossible to predict
the number of nodes in a task, resulting in a wide variance in task grain sizes.
The task grain sizes varied from 0.01 CPU seconds to over 1200 CPU seconds,
with a mean value of 190.6 seconds. 567,793,866 nodes were explored in solving
the problem. Figure 3 shows a moving average of the number of nodes evaluated
per second. Over the course of the computation, we used an average of 211.3
machines and with a peak of 285. The parallel efficiency obtained during the run
was η = 0.83. The average performance of the computational pool was 195 times
the performance of one of the dedicated Linux nodes. Neglecting parallel search
anomalies, the solution of this problem in sequential would have required around
over 177 days of computation with the sequential algorithm on a dedicated Linux
node. The marriage of Grid resources with the advanced algorithm allowed the
solution of a heretofore unsolved problem.

6. Conclusions and Future Work

MW has allowed algorithm developers to bring together a large number of
heterogeneous, geographically dispersed resources to solve extremely large prob-
lems. The simple API of MW provided a convenient programming model enabling
the user to focus on algorithmic features without worrying on the details of set-
ting up computations, and the IPI has allowed a better portability of the resulting
code to different grid computing environments.

It is the continued goal of this work to draw further application developers
by providing a simple interface, access to Grid resources, and useful functionality
at no expense to the application code. We also wish to entice Grid infrastructure
developers to support MW by providing a simple, well-defined interface, and
interesting and useful applications. There is still work to be done to turn these
goals into realities.

16 /

0

50

100

150

200

250

300

9AM 11PM 8AM 6PM

N
um

be
r

of
 W

or
ke

rs

Time

’UW Linux Cluster’
’+ O2K glide-in’

’+ UW Pool’
’+ UNM Flocked Pool’

’+ Italian Flocked Pool’

Figure 2. Number of Workers

Further information about MW is available from

http://www.cs.wisc.edu/condor/mw

Acknowledgments

The authors would like to sincerely thank the whole Condor team for their
tireless efforts and their timely responses to our never-ending queries. In partic-
ular, we thank Jaime Frey for his help with the glide-in feature, and Miron Livny
for his enthusiastic support. We also thank Nate Brixius and Kurt Anstreicher
for allowing us to use their application code in the case study, and for keeping
us excited about building a parallel Grid interface. The comments of anonymous
referees helped improve the presentation.

References

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A tool for performing param-

eterised simulations using distributed workstations. In Symposium on High Performance

/ 17

0

2000

4000

6000

8000

10000

12000

14000

9AM 11PM 8AM 6PM

N
od

es
/S

ec
.

Time

Figure 3. Nodes Per Second

Distributed Computing, Virginia, August 1995. Available from http://www.dgs.monash.

edu.au/~davida/papers/nimrod.ps.Z.

[2] K. Anstreicher and N. Brixius. A new bound for the quadratic assignment problem based

on convex quadratic programming. Technical report, Department of Management Sci-

ences, University of Iowa, 1999. Available from http://www.biz.uiowa.edu/faculty/

anstreicher/qapqp.ps.

[3] K. Anstreicher, N. Brixius, J.-P. Goux, G. Hudek-Davis, and J. Linderoth. Location the-

ory gives rise to QAP problem. data link, March 2000. The Alliance Online Technical

News Letter, available from http://www.ncsa.uiuc.edu/SCD/Alliance/datalink/0003/

QA.Condor.html.

[4] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing on the

Web. International Journal on Future Generation Computer Systems, 15:559–570, 1999.

[5] J. Basney, R. Raman, and M. Livny. High throughput Monte Carlo. In Proceedings of

the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio,

Texas, 1999.

[6] E. Cantu-Paz. Designing efficient master-slave parallel genetic algorithms. In J. Koza,

W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. Fogel, M. Garzon, D. E. Goldberg,

H. Iba, and R. Riolo, editors, Genetic Programming: Proceedings of the Third Annual

Conference, San Francisco, 1998. Morgan Kaufmann.

18 /

[7] Henri Casanova and Jack Dongarra. NetSolve : Network enabled solvers. IEEE Computa-

tional Science and Engineering, 5(3):57–67, 1998.

[8] E. Cela. The Quadratic Assignment Problem – Theory and Algorithms. Kluwer, 1998.

[9] Q. Chen, M. Ferris, and J. Linderoth. Fatcop 2.0: Advanced features in an opportunistic

mixed integer programming solver. Annals of Operations Research, 2000. To appear,

Available from http://www.mcs.anl.gov/metaneos/fatcop2.ps.

[10] The Condor Team. Extending your Condor pool by Gliding into Globus-controlled machines,

2000. http://www.cs.wisc.edu/condor/manual/v6.1/2_12Extending_your.html.

[11] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide flock

of Condors: Load sharing among workstation clusters. Journal on Future Generation

Computer Systems, 12:67–85, 1996.

[12] G. Fagg, K. Moore, and J. Dongarra. Scalable networked information processing environ-

ment (SNIPE). International Journal on Future Generation Computer Systems, 15:595–

605, 1999.

[13] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl. J. Su-

percomputer Applications, 1997. Available as ftp://ftp.globus.org/pub/globus/papers/

globus.ps.gz.

[14] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.

Morgan-Kaufmann, 1999.

[15] D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage : preliminary

experience with Piranha. In ACM, International Conference on Supercomputing,, July

1992.

[16] J.-P. Goux and Sven Leyffer. Mixed-integer nonlinear programming on metacomputing

platform. Working Paper, 1999.

[17] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Legion: An operating system for

wide-area computing. Available as http://legion.virginia.edu/papers/CS-99-12.ps.Z,

1999.

[18] V. Kumar, K. Ramesh, and V. N. Rao. Parallel best-first search of state-space graphs: A

summary of results. In Proceedings of the 1988 National Conference on Artificial Intelli-

gence, pages 122–127, August 1988.

[19] J. Linderoth and S. Wright. Solving large stochastic programs in a metacomputing envi-

ronment. Invited Presentation at APMOD – Applied Modelling for Optimization, April

2000.

[20] M. Litzkow. Remote Unix – Turning idle workstations into cycle servers. In Proceedings

of Usenix Summer Conference, 1987.

[21] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high throughput

computing. SPEEDUP, 11, 1997. Available from http://www.cs.wisc.edu/condor/doc/

htc_mech.ps.

[22] M. Livny and R. Raman. High-throughput resource management. In Ian Foster and Carl

Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure. Morgan

Kauffmann, 1999.

/ 19

[23] The MetaNEOS Project. Metacomputing Environments for Optimization, 2000. http:

//www.mcs.anl.gov/metaneos.

[24] J. Pruyne and M. Livny. Providing resource management services to parallel applications.

In Proceedings of the Second Workshop on Environments and Tools for Parallel Scien-

tific Computing, 1994. Available as http://www.cs.wisc.edu/condor/doc/condor_pvm_

framework.ps.Z.

[25] J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cycles of workstation

clusters. Journal on Future Generations of Computer Systems, 12:53–65, 1996.

[26] L. Sarmenta and S. Hirano. Bayanihan: Building and studying volunteer computing sys-

tems using java. Future Generation Computer Systems, 15(5/6):675–686, 1999.

[27] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A wide-area distributed system.

IEEE Concurrency, 7:70–78, 1999.

[28] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Spring, and A. Su. Running Everyware

on the computational Grid. In SC99 Conference on High-performance Computing, 1999.

Available from http://www.cs.utk.edu/~rich/papers/ev-sc99.ps.gz.

[29] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A distributed resource

performance forecasting service for metacomputing. Future Generations of Computer Sys-

tems, 15:757–768, 1999.

