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ABSTRACT. We study mixed integer nonlinear programs (MINLP) that are driven by a collection of indicator
variables where each indicator variable controls a subset of the decision variables. An indicator variable, when
it is “turned off”, forces some of the decision variables to assume a fixed value, and, when it is “turned on”,
forces them to belong to a convex set. Most of the integer variables in known MINLP problems are of this type.

We first study a mixed integer set defined by a single separable quadratic constraint and a collection of
variable upper and lower bound constraints. This is an interesting set that appears as a substructure in many
applications. We present the convex hull description of this set. We then extend this to produce an explicit
characterization of the convex hull of the union of a point and a bounded convex set defined by analytic func-
tions. Further, we show that for many classes of problems, the convex hull can be expressed via conic quadratic
constraints, and thus relaxations can be solved via second-order cone programming. Our work is closely related
with the earlier work of Ceria and Soares (1996) as well as recent work by Frangioni and Gentile (2006) and,
Aktürk, Atamtürk and Gürel (2007).

Finally, we apply our results to develop tight formulations of mixed integer nonlinear programs in which the
nonlinear functions are separable and convex and in which indicator variables play an important role. In par-
ticular, we present strong computational results with two applications – quadratic facility location and network
design with congestion – that show the power of the reformulation technique.
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1. INTRODUCTION

In this work, we study mixed integer nonlinear programs (MINLP) that are driven by a collection of
indicator variables where each indicator variable controls a subset of the decision variables. In particular,
we are interested in MINLPs where an indicator variable, when it is “turned off”, forces some of the decision
variables to assume a fixed value, and, when it is “turned on”, forces them to belong to a convex set. We call
such programs indicator-induced {0,1}-mixed integer nonlinear programs.

A generic indicator-induced {0-1}-MINLP can be written as

min
(x,z)∈X×(Z∩Bp)

{cT x + dT z | gj(x, z) ≤ 0 ∀j ∈ M, (xVi , zi) ∈ Si ∀i ∈ I} (1)

where z are the indicator variables, x are the continuous variables and xVi denotes the collection of con-
tinuous variables (i.e. xj , j ∈ Vi) controlled by the indicator variable zi. Sets X ⊆ Rn and Z ⊆ Rp are
polyhedral sets of appropriate dimension and Si is the set of points that satisfy all constraints associated
with the indicator variable zi:

Si
def=

{
(xVi , zi) ∈ R|Vi| × B

∣∣∣∣ xVi = x̂Vi if zi = 0
xVi ∈ Γi if zi = 1

}
,

where
Γi

def= {xVi ∈ R|Vi| | fj(xVi) ≤ 0 ∀j ∈ Ci, uk ≥ xk ≥ `k ∀k ∈ Vi}.
is bounded for all i ∈ I . The objective function in (1) is assumed to be linear without loss of generality
(if necessary, an additional variable can be used to move the nonlinearity from the objective function to the
constraint set.)

In this paper we study the convex hull description of the sets Si when Γi is a convex set. Note that Γi

can be convex even when some of the fj defining it are non-convex. Let Sc
i = conv(Si). Using Sc

i , one can
write a “tight” continuous relaxation of (1)

min
(x,z)∈X×Z

{cT x + dT z | gj(x, z) ≤ 0 ∀j ∈ M, (xVi , zi) ∈ Sc
i ∀i ∈ I} (2)

where Si in (1) is replaced by its convex hull and integrality requirement on z is dropped. We assume that Z
already contains bound constraints for z. We call (2), the perspective relaxation of (1) as description of Sc

i
involves perspective functions which we discuss later. We also present computational results and show that
(2) indeed gives a strong relaxation when applied to a number of problems. We also show that in some cases,
Sc

i is representable as a second-order cone and this improves computational effectiveness of our approach
even further.

Indicator-induced MINLPs can be used to model many interesting problems. Two applications that we
study in detail in this paper are: (i) the quadratic-cost uncapacitated facility location problem recently studied
by Günlük et al. [14], and, (ii) network design problem under queuing delay, first discussed by Boorstyn and
Frank [8]. For other examples see[20, 6, 15] for portfolio optimization problems; or, Aktürk et al. [1] for a
job-scheduling problem with controllable processing times. In addition, certain classes of unit commitment
problems for electrical power generation can be formulated as indicator-induced MINLPs.

There has been some recent work on generating strong relaxations for convex MINLPs. One line of work
has been on extending general classes of cutting planes from mixed integer linear programs. Specifically,
Stubbs and Mehrotra [21] explain how the disjunctive cutting planes of Balas et al. [3] can be applied
for MINLP, Cezik and Iyengar [11] extend the Gomory cutting plane procedure [13], and Atamtürk and
Narayanan [2] extend the mixed integer rounding procedure of Nemhauser and Wolsey [18] to conic mixed
integer programs. A second line of work has focused on generating problem specific cutting planes, for
example see Günlük et al. [14] for different families of inequalities for a quadratic cost facility location
problem. In some cases these inequalities can be used to strengthen the perspective relaxation even further.

There are two recent papers that are closely related with our work. Frangioni and Gentile [12] have
introduced a class of linear inequalities called perspective cuts for indicator-induced MINLPs. As we discuss
later, perspective cuts are essentially outer approximation cuts for Sc

i and therefore the perspective relaxation
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(2) can be viewed as implicitly including all (infinitely many) perspective cuts to a straightforward relaxation
of (1). Very recently, Aktürk et al. [1] independently gave a strong characterization of Sc

i when Γi = {x ∈
R2 | xt

1 − x2 ≤ 0, u ≥ x1, x2 ≥ 0} for t ≥ 1. They use this characterization in an algorithm for solving
some classes of nonlinear machine scheduling problems.

2. A QUADRATIC SET WITH VARIABLE BOUNDS

In this section we present a convex hull description of the following set

Q =
{

w ∈ R, x ∈ Rn, z ∈ ×Bn : w ≥
n∑

i=1

qix
2
i , uizi ≥ xi ≥ lizi, xi ≥ 0, i = 1, 2, . . . , n

}
where qi ∈ R+ and ui, li ∈ R for all i = 1, 2, . . . , n. We then use this insight to define the convex hull
of more complicated mixed integer nonlinear sets. Set Q appears in a number of non-linear mixed-integer
programs as a substructure and we present some examples of this in Section 4. To our knowledge, the first
convex hull description of Q was stated without proof in the unpublished Ph.D. thesis of Stubbs [22].

2.1. A Simple Set. To understand the set Q, we first study a simpler mixed-integer set with only 3 variables,
which can be obtained by setting n = 1 and q1 = 1. Let

S =
{

(x, y, z) ∈ R2 × B : y ≥ x2, uz ≥ x ≥ lz, x ≥ 0
}

where u, l ∈ R. We next show that the convex hull of S is given by

Sc =
{
(x, y, z) ∈ R3 : yz ≥ x2, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x, y ≥ 0

}
.

FIGURE 1: The set Sc

x
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z
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Note that even though yz ≥ x2 is not a convex constraint
(as its Hessian is not positive semi-definite), it still defines a
convex set in R3

+.

Lemma 1. conv(S) = Sc.

Geometrically, the set Sc consists of all points that lie
above a line segment connecting the origin to the point
(t, t2, 1) for each t ≥ 0. The set is shown in Fig-
ure 2.1.

2.2. An extended formulation. Consider the following ex-
tended formulation of Q

Q̄ =
{

w ∈ R, x ∈ Rn, y ∈ Rn, z ∈ Rn : w ≥
∑

i

qiyi, (xi, yi, zi) ∈ Si, i = 1, 2, . . . , n
}

where Si has the same form as the set S discussed in the previous section except the bounds u and l are
replaced with ui and li. Note that if (w, x, y, z) ∈ Q̄ then (w, x, z) ∈ Q, and therefore proj(w,x,z)(Q̄) ⊆ Q.
On the other hand, for any (w, x, z) ∈ Q, letting let y′i = x2

i gives a point (w, x, y′, z) ∈ Q̄. Therefore, Q̄ is
indeed an extended formulation of Q, or, in other words, Q = proj(w,x,z)(Q̄).

Before we present a convex hull description of Q̄ we first define some basic properties of mixed-integer
sets which are not necessarily polyhedral. Using these definitions, we then show some elementary observa-
tions which are known for polyhedral sets.

Definition 1. Given a closed set P ⊂ Rn, point p ∈ P is called an extreme point of P if it can not be
represented as p = 1/2p1 + 1/2p2 for p1, p2 ∈ P , p1 6= p2. Set P is called pointed if it has extreme points.

Definition 2. A closed, pointed set P ⊂ Rn is called integral with respect to a subset of the indices
I ⊆ {1, . . . , n} if for any extreme point p ∈ P , pi ∈ Z for all i ∈ I .
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Lemma 2. For i = 1, 2 let Pi ⊂ Rni be a closed and pointed set which is integral with respect to indices
Ii. Furthermore, let P ′ = {(x, y) ∈ Rn1+n2 : x ∈ P1, y ∈ P2}.

(i) P ′ is integral with respect to I1 ∪ I2.
(ii) conv(P ′) = {(x, y) ∈ Rn1+n2 : x ∈ conv(P1), y ∈ conv(P2)}.

Lemma 3. Let P ⊂ Rn be a given closed, pointed set and let P ′ = {(w, x) ∈ Rn+1 : w ≥ ax, x ∈ P}
where a ∈ Rn.

(i) If P is integral with respect to I , then P ′ is also integral with respect to I .
(ii) conv(P ′) = P ′′ where P ′′ = {(w, x) ∈ Rn+1 : w ≥ ax, x ∈ conv(P )}.

We are now ready to present the convex hull of Q̄. Let

Q̄c =
{

w ∈ R, x ∈ Rn, y ∈ Rn, z ∈ ×Rn : w ≥
∑

i

qiyi, (xi, yi, zi) ∈ Sc
i , i = 1, 2, . . . , n

}
.

Lemma 4. The set Q̄c is integral with respect to the indices of z variables. Furthermore, conv(Q̄) = Q̄c.

Proof. Let D = {x ∈ Rn, y ∈ Rn, z ∈ ×Rn : (xi, yi, zi) ∈ Si, i = 1, 2, . . . , n} so that Q̄ = {w ∈
R, x ∈ Rn, y ∈ Rn, z ∈ ×Rn : w ≥

∑n
i=1 qiyi, (x, y, z) ∈ D}. By Lemma 3, the convex hull of Q̄ can

be obtained by replacing D with its convex hull in this description. By Lemma 2, this can simply be done
by taking convex hulls of Si’s, that is, by replacing Si with conv(Si) in the description of D. Finally, by
Lemma 3, Q̄c is integral.

2.3. Convex hull description in the original space. Let

Qc =
{

(w, x, z) ∈ R1+n+n : w
∏
i∈S

zi ≥
∑
i∈S

(qix
2
i

∏
l∈S\{i}

zl), S ⊆ {1, 2, . . . , n} (Π)

uizi ≥ xi ≥ lizi, xi ≥ 0, i = 1, 2, . . . , n
}

.

Notice that a given point p̄ = (w̄, x̄, z̄) satisfies inequality (Π) for a particular S ⊆ {1, 2, . . . , n} if an
only if one of the following conditions hold: (i) z̄i = 0 for some i ∈ S, or, (ii) if all zi > 0, then
w̄ ≥

∑
i∈S qix̄

2
i /z̄i. Based on this observation we next show that these (exponentially many) inequalities

are sufficient to describe the convex hull of Q in the space of the original variables.

Lemma 5. Qc = proj(w,x,z)(Q̄c).

Proof. Let p̄ = (w̄, x̄, ȳ, z̄) ∈ Q̄c and define S(p̄) = {i : zi > 0}. Clearly uiz̄i ≥ x̄i ≥ liz̄i and x̄i ≥ 0 for
all i = 1, 2, . . . , n. Furthermore, inequality (Π) is satisfied for all S such that S 6⊆ S(p̄). In addition, notice
that, as q ≥ 0,

w̄ ≥
∑

i∈S(p̄)

qiȳi ≥
∑

i∈S(p̄)

qix̄
2
i /z̄i ≥

∑
i∈S′

qix̄
2
i /z̄i

for all S′ ⊆ S(p̄). Therefore p̄ satisfies inequality (Π) for all S and proj(w,x,z)(Q̄c) ⊆ Qc.
Next, let p̄ = (w̄, x̄, z̄) ∈ Qc be given and let

ȳi =
{

0 z̄i = 0
x̄2

i /z̄i otherwise.

It is easy to see that (x̄i, ȳi, z̄i) ∈ Si for all i ∈ {1, 2, . . . , n}. Furthermore,

w̄ ≥
∑

i∈S(p̄)

qix̄
2
i /z̄i =

∑
i∈S(p̄)

qiȳi =
n∑

i=1

qiȳi

implying that (w̄, x̄, ȳ, z̄) ∈ Q̄c and therefore Qc ⊆ proj(w,x,z)(Q̄c).
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2.4. SOCP Representation. A second-order cone constraint is a constraint of the form

‖Ax + b‖2 ≤ cT x + d. (3)

The set of points x that satisfy (3) forms a convex set, and efficient and robust algorithms exist for solving
optimization problems containing second-order cone constraints [23, 17]. An interesting and important
observation from a computational standpoint is that the nonlinear inequalities in the definitions of the sets
Sc and Q̄c can be written as second-order cone constraints. All the nonlinear constraints in the definition Sc

and Q̄c are of the simple form
x2 ≤ yz with y ≥ 0, z ≥ 0, (4)

and this is algebraically equivalent to the second-order cone constraint

‖(2x, y − z)T ‖ ≤ y + z.

Constraints of the form (4) are often called rotated second order cone constraints. The computational benefit
of dealing with inequalities (4) as second-order cone constraints rather than general nonlinear constraints
will be demonstrated in Section 4.1.

3. A GENERALIZATION AND CONNECTIONS TO PREVIOUS WORK

We next extend the observations presented in Section 2 to describe the convex hull of a point x̄ ∈ Rn and
a bounded convex set defined by analytic functions. In other words, using an indicator variable z ∈ {0, 1},
define W 0 =

{
(x, z) ∈ Rn+1 : x = x̄, z = 0

}
, and

W 1 =
{
(x, z) ∈ Rn+1 : fi(x) ≤ 0 for i ∈ I, u ≥ x− x̄ ≥ l, z = 1

}
where u, l ∈ Rn

+, and I = {1, . . . , t}. We are interested in the convex hull of W = W 1 ∪W 0. Clearly, both
W 0 and W 1 are bounded and W 0 is a convex set. Furthermore, if W 1 is also convex then

conv(W ) = {p ∈ Rn+1 : p = αp1 + (1− α)p0, p1 ∈ W 1, p0 ∈ W 0, 1 ≥ α ≥ 0}.

We next present a description of conv(W ) in the space of original variables.

3.1. Reformulation in the original space. To simplify notation we assume that x̄ = 0 in the remainder of
this section. Note that there is no loss of generality as this is an affine transformation. We next write the
description of conv(W ) in open form

conv(W ) =
{

(x, z) ∈ Rn+1 : 1 ≥ α ≥ 0,

x = αx1 + (1− α)x0, z = αz1 + (1− α)z0,

x0 = x̄, z0 = 0,

fi(x1) ≤ 0 for i ∈ I, u ≥ x1 − x̄ ≥ l, z1 = 1
}

. (XF)

The additional variables used in this description can be projected out to obtain a description in the space
of the original variables.

Lemma 6. If W 1 is convex, then conv(W ) = W− ∪W 0, where

W− =
{

(x, z) ∈ Rn+1 : fi(x/z) ≤ 0 for i ∈ I, uz ≥ x ≥ lz, 1≥ z > 0
}

.

Proof. As x0, z0 and z1 are fixed in (XF), it is possible to substitute out these variables. In addition, as
z = α after these substitutions, we can eliminate α. Furthermore, as x = αx1 = zx1, we can eliminate x1

by replacing it with x/z provided that z > 0. If, on the other hand, z = 0, clearly (x, 0) ∈ conv(W ) if and
only if (x, 0) ∈ W 0.

We next show that W 0 is contained in the closure of W−.
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Lemma 7. For 1 ≥ z > 0, let Qc(z) =
{
x ∈ Rn : fi(x/z) ≤ 0 for i ∈ I, uz ≥ x ≥ lz

}
. If all fi(x) are

bounded in [l, u], then,

limz→0+ Qc(z) =
{

x ∈ Rn : x = 0
}

Proof. Let {zk} ⊂ (0, 1) be a sequence converging to 0. As, by definition, Qc(z) 6= ∅ for z ∈ (0, 1), there
exists a corresponding sequence {xk} such that xk ∈ Qc(zk). Clearly, uz ≥ xk ≥ lz and therefore {xk}
converges to 0.

Combining the previous lemmas, we obtain the following result.

Corollary 1. conv(W ) = closure(W−).

We would like to emphasize that even when f(x) is a convex function fi(x/z) may not be convex.
However, for z > 0 we have

fi(x/z) ≤ 0 ⇔ ztfi(x/z) ≤ 0 (5)

for any t ∈ R. In particular, taking t = 1 gives zfi(x/z) which is known to be convex provided that
f(x) is convex. We discuss this further in Section 3.2. We also note that if f(x) is SOCP-representable,
then zfi(x/z) is also SOCP-representable and in particular, if W 1 is defined by SOCP-representable func-
tions, then so is conv(W ). We will show the benefits of employing SOC solvers for (non-quadratic) SOC-
representable sets in Section 4.2.

When next show that when all fi(x) that define W 1 are polynomial functions, convex hull of W can be
described explicitly.

Lemma 8. Let fi(x) =
∑pi

t=1 cit
∏n

j=1 x
qitj

j for all i ∈ I . Let qit =
∑n

j=1 qitj and qi = maxt{qit}. If [what
exactly are the conditions we need here?] all fi(x) are convex and bounded in [l, u], then conv(W ) = W c,
where

W c =
{

(x, z) ∈ Rn+t+1 :
pi∑

t=1

citz
qi−qit

n∏
j=1

x
qitj

j ≤ 0 for i ∈ I, zu≥ x ≥ lz, 1 ≥ z ≥ 0,
}

.

Proof. Note that fi(x/z) =
∑pi

t=1 citz
−qit

∏n
j=1 x

qitj

j . Therefore, multiplying fi(x/z) ≤ 0 by zqi , one
obtains the expression above. Clearly, W c ∩ {z > 0} = W− and W c ∩ {z = 0} = W 0

3.2. Convex hulls of convex sets. Given a collection of bounded convex sets, it is easy to define an ex-
tended formulation to describe their convex hull using additional variables, similar to (XF). It is however,
not possible to produce a description in the space of original variables. The particular case we considered
in the previous section involves only two sets, one of which consists of a single point. For the sake of
completeness we next summarize some related results from Ceria and Soares [10].

Ceria and Soares [10] use perspective functions of the functions that define the original sets to produce
an extended formulation for the convex hull description. If the original sets are defined by convex functions,
their perspective functions are also convex. More precisely, for t = 1, . . . , p, let Gt : Rn → Rmt be a
mapping defined by convex functions and assume that the corresponding set

Kt = {x ∈ Rn : Gt(x) ≤ 0}

is bounded. Let G̃t : Rn+1 → Rmt be the perspective mapping defined as

G̃t(λ, x) =

 λGt(x/λ) if λ > 0
0 if λ = 0
∞ otherwise

We next state a important observation from Ceria and Soares [10] that shows the use of perspective
functions to obtain convex hulls of convex sets.
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Lemma 9 ([10]). Let Kt be defined as above for t ∈ T = {1, . . . , T |}, and let K = conv(∪|T |t=1K
t). Then,

x ∈ K if and only if the following nonlinear system is feasible:

x =
|T |∑
t=1

xt ; G̃t(λt, x
t) ≤ 0,

|T |∑
t=1

λt = 1, λt ≥ 0, t ∈ T

Furthermore, all G̃t are convex mappings provided that all Gt are convex.

Put into this context, our observations in Section 3.1 specialize Lemma 9 to the case when |T | = 2 and
one of the sets contain a single point. In this special case Corollary 1 and Lemma 8 show that a description
of the convex hull in the original space can be obtained easily.

3.3. Perspective Cuts. Building on the work of Ceria and Soares [10], Frangioni and Gentile [12] introduce
the class of perspective cuts for mixed integer programs of the form

min
(x,z)∈Rn×B

{
f(x) + cz | Ax ≤ bz

}
,

where (i) X = {x |Ax ≤ b} is bounded (also implying {x |Ax ≤ 0} = {0}), (ii) f(x) is a convex function
that is finite on X , and (iii) f(0) = 0. Under these assumptions, they are able to show that for any x̄ ∈ X
and s ∈ ∂f(x̄), the following (linear) inequality

v ≥ f(x̄) + c + sT (x− x̄) + (c + f(x̄)− sT x̄))(z − 1) (6)

is valid for the equivalent mixed integer program

min
(x,z,v)∈Rn×B×R

{
v | v ≥ f(x) + cz,Ax ≤ bz

}
.

Frangioni and Gentile [12] derive the inequalities (6) from a first-order analysis of the convex envelope of
the perspective function of f(x). A similar first-order argument can be used to derive inequality (6) from
the characterization of the convex hull of the union of a convex set and a point given in Section 3. First
define P 0 def=

{
(x, z, v) ∈ Rn+2 : x = 0, z = 0, v = 0

}
, and

P 1 def=
{
(x, z, v) ∈ Rn+2 : Ax ≤ b, f(x) + c− v ≤ 0, ux ≥ x ≥ lx, uv ≥ v ≥ lv, z = 1

}
where bounds on variables x and v are introduced without loss of generality. Corollary 1 states that
conv(P 0 ∪ P 1) is the closure of

P− def=
{

(x, z, v) ∈ Rn+2 | Ax ≤ b, zf(x/z)+ cz−v ≤ 0, uxz ≥ x ≥ lxz, uvz ≥ v ≥ lvz, 1 ≥ z ≥ 0
}

.

For any z̄ > 0, a first-order (outer)-approximation of the nonlinear constraint zf(x/z) + cz − v ≤ 0
about the point (x̄, z̄, v̄) gives

0 ≥ z̄f(x̄/z̄) + cz̄ − v̄ +

 s
(−1/z̄)x̄T sx/z + f(x̄/z̄) + c

−1

T  x− x̄
z − z̄
v − v̄

 ,

where s ∈ ∂f(x̄) and sx/z ∈ ∂f(x̄/z̄). Taking z̄ = 1, v̄ = f(x̄) + c, and rearranging terms gives inequality
(6) above.

4. APPLICATIONS

In this section, two applications are described: a quadratic uncapacitated facility location problem and
a network design problem with nonlinear congestion constraints. In each case, the positive impact of the
perspective reformulation and the ability to model the nonlinear inequalities in the reformulations as second-
order cone constraints is demonstrated.
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4.1. Separable Quadratic UFL. The Separable Quadratic Uncapacitated Facility Location Problem (SQUFL)
was introduced by Günlük et al. [14]. In the SQUFL, there is a set of customers (N = {1, 2, . . . , n}), a set
of facilities (M = {1, 2, . . . ,m}), and each customer must have its demand for a single commodity met by
an open facility. There is a fixed cost ci for opening a facility i ∈ M . Meeting the demand of customer
j ∈ N from facility i ∈ M costs an amount proportional to the square of the quantity delivered. A mixed
integer nonlinear program for the SQUFL is

z∗
def= min

(x,z)∈Rmn
+ ×Bm

∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijx
2
ij | xij ≤ zi ∀i ∈ M,∀j ∈ N,

∑
i∈M

xij = 1 ∀j ∈ N

 .

(7)
The variables zi indicate if facility i ∈ N is open, and xij is a decision variable representing the fraction of
customer j’s demand met from facility i. We let zR be the optimal solution value of the relaxation of (7) in
which the constraints zi ∈ {0, 1} are replaced by zi ∈ [0, 1].

To write SQUFL as an indicator-induced MINLP, the auxiliary variables yij ∀i ∈ M, j ∈ N are intro-
duced. The objective function is changed to the linear function

min
∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijyij ,

and the constraints
x2

ij − yij ≤ 0 ∀i ∈ M, j ∈ N (8)

are added. In this reformulation, if the indicator variable zi = 0, then xij = 0 ∀j ∈ N and the constraints
(8) become redundant, while if zi = 1, the constraints (8) become active. Thus, the constraints (8) can be
replaced by their perspective counterparts

x2
ij − ziyij ≤ 0 ∀i ∈ M,∀j ∈ N, (9)

and the resulting relaxation should be significantly tighter. We will let zP denote the optimal solution value
of the relaxation of the perspective reformulation.

4.1.1. Computational Results. To test the strength of the perspective reformulation, random instances were
constructed with facilities and locations uniformly distributed in the unit square. The fixed cost of opening
facility i ∈ M was taken to be ci = bU(1, 100)c. If pi ∈ [0, 1]2 was the location of facility i ∈ M
and rj ∈ [0, 1]2 was the location of customer j ∈ N , then the variable cost parameter was calculated as
qij = 50‖pi − rj‖. Günlük et al. [14] constructed instances in a similar manner. For m ∈ {10, 20, 30, 20}
and n ∈ {30, 50, 100, 200}, ten instances were created and solved using the nonlinear branch-and-bound
algorithm available in the open-source MINLP code BONMIN [7]. The instances were solved using both the
original formulation (7) and the perspective reformulation. All instances were solved on a 1.8GHz AMD
Opteron CPU.

Table 1 shows the results of this experiment. In the table, z̄R represents the average value of the relaxation
of the original formulation, z̄P the average value of the relaxation of the perspective reformulation, and z̄∗

the average value of the optimal solution found by BONMIN. The table also displays the number of instances
(out of 10) that were solved within a time limit of 8 hours, the average number of nodes N̄ required to solve
the instances, and the average CPU time (T̄ ) in seconds for both the original and perspective formulations.
Clearly, reformulating the problem via the perspective reformulation has an enormous impact on the ability
to solve the problem.

The results in Table 1 indicate that the CPU time required to solve one node of the branch-and-bound
tree increases dramatically when the perspective formulation is applied. BONMIN uses the interior-point
solver Ipopt [24] for solving relaxations that arise at nodes of the branch-and-bound tree. Ipopt is a
solver for general nonlinear programs and is unable to exploit the special second-order cone structure of
the inequalities in the perspective reformulation. Even more disturbing is the fact that since the functions
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TABLE 1. Relaxation Values and Solution Times for SQUFL

Original Formulation Perspective Formulation
m n z̄R z̄P z̄∗ # Solved N̄ T̄ # Solved N̄ T̄
10 30 105.8 196.5 197.9 10 333 8.9 10 15 3.7
10 50 160.4 312.6 314.6 10 406 18.0 10 11 4.9
10 100 266.5 460.4 462.0 10 441 36.7 10 9 7.7
10 200 470.7 733.6 737.0 10 350 59.7 10 7 15.2
20 30 81.7 186.1 185.6 10 3452 213.7 10 37 39.9
20 50 111.6 274.8 276.2 10 5526 601.4 10 31 85.9
20 100 166.3 412.7 414.5 7 25901 12263.9 10 35 677.1
20 200 283.5 650.8 653.1 0 - - 10 27 1925
30 30 64.1 157.8 159.4 9 17837 1822.7 10 62 192.8
30 50 82.1 241.6 243.3 1 61062 23760.2 10 56 650.3
30 100 126.0 343.4 345.6 0 - - 10 51 4565.4
30 200 200.7 545.8 547.4 0 - - 9 44 16858.5
40 30 58.6 146.4 147.7 7 55660 9319.6 10 71 224.3
40 50 74.1 198.7 200.0 0 - - 10 85 3030.6
40 100 109.6 309.8 311.2 0 - - 10 64 8420.8
40 200 161.4 478.3 - 0 - - 0 - -

TABLE 2. Solution Times for SOC-Perspective Reformulation of SQUFL

m n T N
30 200 141.9 63
40 100 76.4 54
40 200 101.3 45
50 100 61.6 49
50 200 140.4 47

x2 − yz appearing in the perspective reformulation are not convex, Ipopt cannot guarantee convergence
to a stationary point and its performance is highly dependent on the quality of the initial iterate provided.

To eliminate the obstacles faced by a general NLP solver, the conic formulations were solved with Mosek
[17], a code specialized for problems of this type. Table 2 shows the number of nodes (N ) and CPU seconds
(T ) required by Mosek v5.0 to solve large random instances of SQUFL formulated with the perspective
reformulation wherein the nonlinear inequalities are represented in second-order-cone form. Note the order-
of-magnitude improvement in solution time, which comes solely from the reduced time to solve relaxations
at nodes of the branch-and-bound tree.

Table 3, taken from Table 1 of the paper of Günlük et al. [14], shows the effectiveness of three classes
of cutting planes introduced there at closing the optimality gap at the root node. In the table zR is the
value of the relaxation of the original formulation, zGLW is the value of the relaxation with three classes
of valid inequalities added, zP is the value of the relaxation of the perspective reformulation, and z∗ is the
optimal solution value. The table shows that the perspective reformulation is significantly better at closing
the integrality gap than are the cutting planes of Günlük et al. [14].

The largest of the instances in Table 3 was solved to optimality by Lee [16] using BONMIN. The solution
required ‘16697 CPU seconds and 45,901 nodes for the original formulation, and a 21206 CPU seconds and
29277 nodes for the formulation with additional inequalities added. The same instance was solved using
Mosek v5 on the perspective reformulation wherein the nonlinear inequalities were written as second-order
cone constraints. Solution of the instance required only 44 branch-and-bound nodes and 23 CPU seconds to
solve on Intel Pentium 4 CPU with a clock speed of 2.60GHz, a speedup factor of more than 700.
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TABLE 3. Comparison of Relaxation Bounds for SQUFL

m n zR zGLW zP z∗

10 30 140.6 326.4 346.5 348.7
15 50 141.3 312.2 380.0 384.1
20 65 122.5 248.7 288.9 289.3
25 80 121.3 260.1 314.8 315.8
30 100 128.0 327.0 391.7 393.2

4.2. Network Design with Congestion Constraints. In this section, a model for constructing a communi-
cation network at minimum cost meeting a design specification for total queuing delay is presented. Similar
models appear in the work of Boorstyn and Frank [8], Bertsekas and Gallager [5], and Borchers and Mitchell
[9]. In the problem, there is a set of commodities K to be shipped over a capacitated directed network
G = (N,A). The capacity of arc (i, j) ∈ A is uij , and each node i ∈ N supplies or demands a specified
amount bk

i of commodity k. There is a fixed cost cij of opening each arc (i, j) ∈ A, and we introduce {0-1}
decision variables zij to indicate whether arc (i, j) ∈ A is opened. The quantity of commodity k routed
on arc (i, j) is measured by the decision variable xk

ij . A typical function to measure the total weighted
congestion (or queuing delay) of a flow fij =

∑
k∈K xk

ij in the network is

ρ(f) def=
∑

(i,j)∈A

rij
fij

1− fij/uij
,

where rij ≥ 0 is a user-defined importance parameter for the queuing delay that occurs on arc (i, j). We
use a decision variables yij to measure the contribution of the congestion on arc (i, j) to the total congestion
ρ(f). The network should be designed so as to keep the total queuing delay less than a given value β, and
this is to be accomplished at minimum cost. The resulting optimization model can be written as

min
(x,y,z,f)∈R|A|×|K|

+ ×R|A|
+ ×B|A|×R|A|

+

∑
(i,j)∈A

cijzij

subject to
∑

(j,i)∈A

xk
ij −

∑
(i,j)∈A

xk
ij = bk

i ∀i ∈ N,∀k ∈ K

∑
k∈K

xk
ij − fij = 0 ∀(i, j) ∈ A

fij ≤ uijzij ∀(i, j) ∈ A (10)

yij ≥ rijfij

1− fij/uij
∀(i, j) ∈ A (11)∑

(i,j)∈A

yij ≤ β

An observation not previously made in the literature regarding this network design problem is that the
congestion inequalities (11) can be written as second-order cone constraints. Multiplying both sides of the
inequality by 1− fij/uij > 0, adding rijf

2
ij to both sides of the inequality, and factoring the left-hand-side

gives an equivalent constraint
(yij − rijfij)(uij − fij) ≥ rijf

2
ij . (12)

Because yij ≥ rijfij and uij ≥ fij , (12) is precisely a constraint in rotated second-order conic form (4).
The relaxation can be strengthened by noting that if zij = 0, then the constraints (10) force fij = 0, and

the constraints (11) are redundant for the arc (i, j). However, if zij = 1, then the definitional constraint (11)
for the corresponding yij must hold. We can then strengthen the formulation by applying the perspective
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reformulation. Specifically, each constraint (11) can be replaced by its perspective counterpart:

zij

[
rijfij/zij

1− f/(uijzij)
− y

z

]
≤ 0. (13)

The constraints (13) can also be written as second order cone constraints in a similar fashion to the non-
perspective version (11). Specifically, simplifying the left-hand size of the inequality (13), adding rijf

2
ij to

both sides of the simplified inequality and factoring gives the equivalent constraints

(yij − rijfij)(uijzij − fij) ≥ rijf
2
ij ,

which is a rotated second-order cone constraint since yij ≥ rijfij and uijzij ≥ fij . The fact that the
inequalities in the perspective reformulation of (11) are SOC-representable is no surprise. In fact, Ben-
Tal and Nemirovski [4] (Page 96, Proposition 3.3.2) show that the perspective transformation of a function
whose epigraph is a SOC-representable set is nearly always SOC-representable.

4.2.1. Computational Results. To assess the strength of the perspective reformulation of this nonlinear net-
work design problem, three test instances were created. The first instance was the atlanta network from
SNDLIB [19]. The second and third instances were generated randomly. MPS files for all of the instances
are available on request from the authors.

Each of the instances in the test suite was solved using Mosek v5.0 using both the original and perspective
formulations of the problem on an Intel Pentium 4 CPU with a clock speed of 2.60GHz. A time limit of
one CPU hour was imposed on each run. Table 4 shows the sizes of each instance in the test suite, as well
as various characteristics of the solution. zroot is the value of the relaxation of the root node of the branch-
and-bound tree, (zL, zU ) are the best lower and upper bounds found in one hour of CPU time, # Nodes is
the number of nodes in the enumeration tree, and T is the CPU seconds on an Intel Pentium 4 CPU with a
clock speed of 2.60GHz.

TABLE 4. Impact of Perspective Reformulation on Network Design Instances

Original Form. Perspective Form.
Instance |N | |K| |A| zroot (zL, zU ) # Nodes T zroot (zL, zU ) # Nodes T

ATL 15 15 22 40.7 (55.4,55.4) 752 116.9 48.3 (55.4,55.4) 464 66.8
R1 20 20 44 37.7 (135.9,172.2) 2488 3600 78.8 (147.5,158.4) 5781 3600
R2 30 30 108 46.8 (140.8,326.9) 253 3600 59.9 (201.5,∞) 394 3600

For the network design problems, the perspective formulation is always quite useful for improving the
lower bounds, and in two of the cases, this translates into improved performance. For the instance R2, Mosek
was unable to find a feasible solution to the instance when reformulated via the perspective transformation.

5. CONCLUSIONS

In this work we derive an explicit characterization of the convex hull of the union of a point and a bounded
convex set defined by analytic functions. This characterization can be used to produce strong “perspective”
reformulations of many practical mixed integer nonlinear programs. We also show that in many cases,
the nonlinear inequalities in the perspective reformulation can be cast as second-order cone constraints,
a transformation that greatly improves an instance’s solvability. Computational results on two practical
applications show the power of the proposed techniques—in one case solving instances multiple orders of
magnitude faster than reported in the literature. Continuing work has two primary thrusts: (1) Automatic
detection of structures to which the perspective transformation can be applied; and (2) Studying additional
simple structures occurring in practical MINLPs in the hope of deriving strong relaxations.
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