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Abstract. We study mixed integer nonlinear programs (MINLP)s that are driven by a col-
lection of indicator variables where each indicator variable controls a subset of the decision
variables. An indicator variable, when it is “turned off”, forces some of the decision variables
to assume fixed values, and, when it is “turned on”, forces them to belong to a convex set.
Many practical MINLPs contain integer variables of this type. We first study a mixed integer
set defined by a single separable quadratic constraint and a collection of variable upper and
lower bound constraints, and a convex hull description of this set is derived. We then extend
this result to produce an explicit characterization of the convex hull of the union of a point and
a bounded convex set defined by analytic functions. Further, we show that for many classes
of problems, the convex hull can be expressed via conic quadratic constraints, and thus relax-
ations can be solved via second-order cone programming. Our work is closely related with the
earlier work of Ceria and Soares (1999) as well as recent work by Frangioni and Gentile (2006)
and, Aktürk, Atamtürk and Gürel (2007). Finally, we apply our results to develop tight for-
mulations of mixed integer nonlinear programs in which the nonlinear functions are separable
and convex and in which indicator variables play an important role. In particular, we present
computational results for three applications – quadratic facility location, network design with
congestion, and portfolio optimization with buy-in thresholds – that show the power of the
reformulation technique.
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1. Introduction

A popular and effective approach to solving mixed integer nonlinear programs
(MINLP)s is to approximate the continuous relaxation of the MINLP with some
form of linearization and to use this relaxation in an enumeration algorithm [30,
9, 1]. Since software for nonlinear programs continues to become more efficient
and robust, it is natural to consider using strong non-linear relaxations of the
MINLP in algorithms instead. In this paper, we describe a simple and fairly
general scheme to strengthen non-linear relaxations of a class of {0,1}-mixed
integer nonlinear programs. Our approach is complementary to linear and non-
linear cutting approaches as it can be used together with cuts.
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1.1. Perspective Reformulation

We study MINLPs that are driven by a collection of indicator variables where
each indicator variable controls a subset of the decision variables. In particular,
we are interested in MINLPs where an indicator variable, when it is “turned
off”, forces some of the decision variables to assume fixed values, and, when it
is “turned on”, forces them to belong to a convex set. We call such programs
indicator-induced {0,1}-mixed integer nonlinear programs.

A generic indicator-induced {0-1}-MINLP can be written as

z∗
def= min

(x,z)∈X×(Z∩B|I|)
{cTx+ dT z | gj(x, z) ≤ 0 ∀j ∈M, (xVi , zi) ∈ Si ∀i ∈ I}, (1)

where z are the indicator variables, x are the continuous variables and xVi
de-

notes the collection of continuous variables (i.e. xj , j ∈ Vi) controlled by the
indicator variable zi. In the formulation, the sets may intersect, that is, for some
i 6= j we can have Vi ∩ Vj 6= ∅. Sets X ⊆ Rn and Z ⊆ R|I| are polyhedral sets
of appropriate dimension and Si is the set of points that satisfy all constraints
associated with the indicator variable zi:

Si
def=

{
(xVi

, zi) ∈ R|Vi| × B

∣∣∣∣∣ xVi = x̂Vi if zi = 0
xVi ∈ Γi if zi = 1

}
,

where

Γi
def= {xVi

∈ R|Vi| | fj(xVi
) ≤ 0 ∀j ∈ Ci, uk ≥ xk ≥ `k ∀k ∈ Vi}

is bounded for all i ∈ I. Notice that, due to the definition of Si, we have zi ∈
{0, 1} for all i ∈ I. The objective function in (1) is assumed to be linear without
loss of generality. If necessary, an additional variable can be used to move the
nonlinearity from the objective function to the constraint set.

In this paper we study the convex hull description of the sets Si when Γi is a
convex set. An important observation is that Γi can be a convex set even when
some of the functions fj defining the set are non-convex. Let Sc

i = conv(Si).
Using Sc

i , one can write a “tight” continuous relaxation of (1) as

zPR def= min
(x,z)∈X×Z

{cTx+ dT z | gj(x, z) ≤ 0 ∀j ∈M, (xVi
, zi) ∈ Sc

i ∀i ∈ I}, (2)

where Si in (1) is replaced by its convex hull. We call (2) the perspective relax-
ation of (1), as the description of Sc

i involves perspective functions, as described
subsequently in Section 3.

When all fj are convex and bounded for j ∈ Ci, another convex relaxation
of Si can simply be obtained as follows:

SR
i

def= {xVi ∈ R|Vi| | fj(xVi) ≤ (1− zi)fj(x̂Vi) ∀j ∈ Ci,

ukzi ≥ xk − (1− zk)x̂Vi ≥ `kzi ∀k ∈ Vi},
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which leads to what we call the natural continuous relaxation of (1):

zNR def= min
(x,z)∈X×Z

{cTx+ dT z | gj(x, z) ≤ 0 ∀j ∈M, (xVi
, zi) ∈ SR

i ∀i ∈ I} (3)

where Si in (1) is replaced with SR
i . Notice that as SR

i is convex and Si ⊂ SR
i ,

we have Sc
i ⊆ SR

i for all i ∈ I. Therefore,

z∗ ≥ zPR ≥ zNR.

In general, as Sc
i is the smallest convex set that contains Si, the perspective

relaxation (2) leads to an effective computational approach provided that (i)
it can be solved efficiently, and, (ii) it gives a good approximation of z∗. We
later present computational results that show that this indeed is the case for a
number of problems. We also show that in some cases, Sc

i is representable as a
quadratic cone and this improves computational effectiveness of our approach
even further.

1.2. Literature Review

There has been some recent work on generating strong relaxations for convex
MINLPs. One line of work has been on extending general classes of cutting
planes from mixed integer linear programs. Specifically, Stubbs and Mehrotra
[31] explain how the disjunctive cutting planes of Balas et al. [4] can be applied
for MINLP, Cezik and Iyengar [13] extend the Gomory cuts [16], and Atamtürk
and Narayanan [3] extend the mixed integer rounding cuts of Nemhauser and
Wolsey [28] to conic mixed integer programs. A second line of work has focused
on generating problem specific cutting planes, for example see Günlük et al.
[20]. In some cases these inequalities can be used to strengthen the perspective
relaxation even further.

Related to this work, Frangioni and Gentile [14] have introduced a class of lin-
ear inequalities called perspective cuts for a class of indicator-induced MINLPs.
As we discuss in Section 4.2, perspective cuts are outer approximation cuts for
Sc

i and therefore the perspective relaxation (2) can be viewed as implicitly in-
cluding all (infinitely many) perspective cuts to a straightforward relaxation of
(1). Another related work is that of Grossmann and Lee [17], who extend the
convex hull characterization of Ceria and Soares [12] to general (convex) disjunc-
tive programs. The characterization relies on perspective functions. Concurrent
with this work, Aktürk et al. [2] independently gave a strong characterization
of Sc

i when Γi = {x ∈ R2 | xt
1 − x2 ≤ 0, u ≥ x1, x2 ≥ 0} for t ≥ 1. They

use this characterization in an algorithm to solve nonlinear machine scheduling
problems.

1.3. Motivation and Contribution

A main purpose of this work is to demonstrate the application of concepts suc-
cessfully used in mixed-integer linear programming (MILP) to MINLP. For ex-
ample, successful commercial software for MILP recognizes structure and uses
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problem reformulation and cutting planes to build tight continuous relaxations.
To apply this idea in MINLP, we analyze simple sets that form substructures
in many practical MINLPs. Based on our analysis we propose a reformulation
method to produce extended formulations for these sets that yield strong relax-
ations. Our overarching goal is to demonstrate the power of these techniques
and encourage software developers for MINLP to include automatic reformula-
tion techniques in their solvers. Even though many of the ingredients we use
in our reformulation can be found in the literature, this has not yet translated
into making MINLP solvers more effective. In Section 5 we demonstrate that
commercially available MINLP solvers fail to solve certain problems unless the
reformulation ideas we discuss are incorporated.

The remainder of the paper is divided in five sections. In Section 2, we study
a mixed integer set defined by a single separable quadratic constraint and a
collection of variable upper and lower bound constraints. In Section 3, we extend
our observations to more general sets. Section 4 discusses connections between
our work and earlier work by Ceria and Soares [12] and Frangioni and Gentile
[14]. Finally in Section 5, we demonstrate the strength of our reformulation ideas
by applying it to three problems: a quadratic uncapacitated facility location
problem, a network design problem with nonlinear congestion constraints and
a portfolio optimization model with buy-in thresholds. Some conclusions are
offered in Section 6.

2. A Quadratic Set with Variable Bounds

The purpose of this section is to present a convex hull description of the set:

Q =
{

(w, x, z) ∈ Rn+1 × Bn : w ≥
n∑

i=1

qix
2
i , uizi ≥ xi ≥ lizi, i ∈ I

}
, (4)

where I = {1, . . . , n} and q, u, l ∈ Rn
+.

To our knowledge, the first convex hull description of Q was stated without
proof in the unpublished Ph.D. thesis of Stubbs [32]. The convex hull description
of Q is closely related to the convex envelope of the function

∑n
i=1 qix

2
i over a

mixed integer set. Consequently, the results presented in this section could also
be derived using global optimization terminology and literature. (See [21] for
a good introduction to global optimization). However, we prefer to derive the
results from first principles to demonstrate that “standard” techniques from the
mixed integer linear programming (MILP) literature can also be applicable to
MINLP. Building on intuition gained from our study of Q, we are able to derive
the convex hull of more general mixed integer nonlinear sets in Section 3.
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2.1. A Low Dimensional Analogue

To understand the set Q, we first study a simpler mixed-integer set with only 3
variables, which can be obtained by setting n = 1 and q1 = 1 in (4). Let

S =
{

(x, y, z) ∈ R2 × B : y ≥ x2, uz ≥ x ≥ lz, x ≥ 0
}
,

where u, l ∈ R. In Lemma 1 we show that the convex hull of S is given by

Sc =
{

(x, y, z) ∈ R3 : yz ≥ x2, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x, y ≥ 0
}
.

Geometrically, the set Sc consists of all points that lie above a line segment
connecting the origin to the point (t, t2, 1) for each t ≥ 0. See Figure 1.

x

y

z = 1

z

y ≥ x2

Fig. 1. The set Sc

Note that even though x2 − yz is not a convex function the set T c =
{(x, y, z) ∈ R3 : yz ≥ x2, x, y, z ≥ 0} is convex (see, Günlük and Linderoth [19])
and therefore Sc, obtained by intersecting T c with half-spaces, is also convex.

Lemma 1. conv(S) = Sc.

Proof. First note that S = S0 ∪ S1 where S0 =
{

(0, y, 0) ∈ R3 : y ≥ 0
}

, and

S1 =
{

(x, y, 1) ∈ R3 : y ≥ x2, u ≥ x ≥ l, x ≥ 0
}
.

As S0, S1 ⊂ Sc and Sc is a convex set, we have conv(S) ⊆ Sc.
Next, consider a point p̄ = (x̄, ȳ, z̄) ∈ Sc. If z̄ = 0, then p̄ = (0, ȳ, 0) where

ȳ ≥ 0 and p̄ ∈ S0. If, on the other hand, z̄ 6= 0, then p̄ = p′ + d where p′ =
(x̄, x̄2/z̄, z̄) ∈ Sc and d = (0, ȳ− x̄2/z̄, 0) ≥ 0. Furthermore, p′ = (1− z̄)p0 + z̄p1

where p0 = (0, 0, 0) ∈ S0 and p1 = (x̄/z̄, x̄2/z̄2, 1) ∈ S1. As 1 ≥ z̄ ≥ 0, we have
p′ ∈ conv(S). In addition, as (0, 1, 0) is an (extreme) direction of S0 and S1, it
is a direction of conv(S), implying p̄ ∈ conv(S). Therefore Sc ⊆ conv(S).



6 Oktay Günlük, Jeff Linderoth

2.2. An Extended Formulation for Q

Consider the following extended formulation of Q

Q̄
def=
{

(w, x, y, z) ∈ R3n+1 : w ≥
∑

i

qiyi, (xi, yi, zi) ∈ Si, i = 1, 2, . . . , n
}

where Si has the same form as the set S discussed in the previous section except
the bounds u and l are replaced with ui and li. Note that if (w, x, y, z) ∈ Q̄
then (w, x, z) ∈ Q, and therefore proj(w,x,z)(Q̄) ⊆ Q. On the other hand, for any
(w, x, z) ∈ Q, letting let y′i = x2

i gives a point (w, x, y′, z) ∈ Q̄. Therefore, Q̄ is
indeed an extended formulation of Q, or, in other words, Q = proj(w,x,z)(Q̄).

Before we present a convex hull description of Q̄ we first define some basic
properties of mixed-integer sets. Using these definitions, we then show some
elementary observations which are known for polyhedral sets.

Definition 1. Let P ⊂ Rn be a closed set and let p ∈ P .

(i) p is called an extreme point of P if it can not be represented as p = 1/2p1 +
1/2p2 for p1, p2 ∈ P , p1 6= p2. Set P is called pointed if it has extreme points.

(ii) P is called integral with respect to a subset of the indices I ⊆ {1, . . . , n} if
for any extreme point p ∈ P , pi ∈ Z for all i ∈ I.

Lemma 2. For i = 1, 2 let Pi ⊂ Rni be a closed and pointed set which is integral
with respect to indices Ii. Let P ′ = {(x, y) ∈ Rn1+n2 : x ∈ P1, y ∈ P2}.

(i) P ′ is integral with respect to I1 ∪ I2.
(ii) conv(P ′) = {(x, y) ∈ Rn1+n2 : x ∈ conv(P1), y ∈ conv(P2)}.

Proof. (i) A point p = (x′, y′) is an extreme point of P ′ if and only if x′ is an
extreme point of P1 and y′ is an extreme point of P2. As all extreme points of
P1 and P2 are integral, p is integral as well.

(ii) Similarly, p = (x′, y′) ∈ conv(P ) if and only if (x′, y′) =
∑

j λj(xj , yj)
where

∑
j λj = 1, λ > 0 and all (xj , yj) ∈ P . This is possible if and only if∑

j λjxj ∈ P1 and
∑

j λjyj ∈ P2, or, in other words, if and only if x′ ∈ conv(P1)
and y′ ∈ conv(P2).

Lemma 3. Let P ⊂ Rn be a given closed, pointed set and let P ′ = {(w, x) ∈
Rn+1 : w ≥ ax, x ∈ P} where a ∈ Rn.

(i) If P is integral with respect to I, then P ′ is integral with respect to I.
(ii) conv(P ′) = P ′′ where P ′′ = {(w, x) ∈ Rn+1 : w ≥ ax, x ∈ conv(P )}.

Proof. (i) Let p′ = (w′, x′) be an extreme point of P ′. Clearly, w′ = ax′, oth-
erwise p′ = 1/2(ax′, x′) + 1/2(ax′ + 2(w′ − ax′), x′) and therefore it can not be
extreme.

If x′ is an extreme point of P , then x′ and therefore p′ is integral. On the
other hand, if x′ is not an extreme point of P , then there exists two distinct
points x1, x2 ∈ P such that x′ = 1/2x1 + 1/2x2. In this case p′ = 1/2(ax1, x1) +
1/2(ax2, x2) where (ax1, x1), (ax2, x2) ∈ P ′ and therefore p′ can not be extreme.
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(ii) Let p = (w̄, x̄) ∈ conv(P ′) and therefore (w̄, x̄) =
∑

j λj(wj , xj) where∑
j λj = 1, λ > 0 and (wj , xj) ∈ P ′ for all j. As (wj , xj) ∈ P ′, xj ∈ P for all j.

Therefore
∑

j λj(axj , xj) = (ax̄, x̄) ∈ P ′′ and as w̄ ≥ ax̄, we have (w̄, x̄) ∈ P ′′.
Conversely, assume p = (w̄, x̄) ∈ P ′′. As x̄ ∈ conv(P ), x̄ =

∑
j λjxj where

xj ∈ P and
∑

j λj = 1, λ > 0. In this case, clearly
∑

j λj(axj , xj) = (ax̄, x̄) ∈
conv(P ′) and therefore (w̄, x̄) ∈ conv(P ′) as w̄ ≥ ax̄.

We are now ready to present the convex hull of Q̄. Let

Q̄c =
{

(w, x, y, z) ∈ R3n+1 : w ≥
∑

i

qiyi, (xi, yi, zi) ∈ Sc
i , i = 1, 2, . . . , n

}
.

Lemma 4. The set Q̄c is integral with respect to the indices of z variables. Fur-
thermore, conv(Q̄) = Q̄c.

Proof. Let D = {(x, y, z) ∈ R3n : (xi, yi, zi) ∈ Si, i = 1, 2, . . . , n} so that
Q̄ = {(w, x, y, z) ∈ R3n+1 : w ≥

∑n
i=1 qiyi, (x, y, z) ∈ D}. By Lemma 3, the

convex hull of Q̄ can be obtained by replacing D with its convex hull in this
description. By Lemma 2, this can simply be done by taking convex hulls of
Si’s, that is, by replacing Si with conv(Si) in the description of D. Finally, by
Lemma 3, Q̄c is integral.

2.3. Convex hull description in the original space

In the previous section we presented an extended formulation for the set Q using
additional variables. For computational efficiency, it is often desirable to obtain
a formulation in the original space so that auxiliary variables are not required.
We are therefore interested in projecting the set Q̄c into the space of (w, x, z).
One natural attempt to obtain this projection is to substitute the term x2

i /zi

for each variable yi, resulting in the inequality w ≥
∑

i qix
2
i /zi. This formula,

however, is not suitable for computation as it is not defined for zi = 0. We next
present an explicit description of the projection that uses an an exponential
number of inequalities. Due to the size of this projection, we conclude that it is
more advantageous to work in the extended space for computing purposes. Let

Qc =
{

(w, x, z) ∈ R2n+1 : w
∏
i∈S

zi ≥
∑
i∈S

qix
2
i

∏
l∈S\{i}

zl, S ⊆ {1, 2, . . . , n} (Π)

uizi ≥ xi ≥ lizi, xi ≥ 0, i = 1, 2, . . . , n
}

Notice that a given point p̄ = (w̄, x̄, z̄) satisfies the nonlinear inequalities in
the description of Qc for a particular S ⊆ {1, 2, . . . , n} if and only if one of
the following conditions hold: (i) z̄i = 0 for some i ∈ S, or, (ii) if all zi > 0,
then w̄ ≥

∑
i∈S qix̄

2
i /z̄i. Based on this observation we next show that these

(exponentially many) inequalities are sufficient to describe the convex hull of Q
in the space of the original variables.
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Lemma 5. Qc = proj(w,x,z)(Q̄c).

Proof. Let p̄ = (w̄, x̄, ȳ, z̄) ∈ Q̄c and define S(p̄) = {i : zi > 0}. Clearly
uiz̄i ≥ x̄i ≥ liz̄i and x̄i ≥ 0 for all i = 1, 2, . . . , n. Furthermore, inequality (Π) is
satisfied for all S such that S 6⊆ S(p̄). In addition, notice that, as q ≥ 0,

w̄ ≥
∑

i∈S(p̄)

qiȳi ≥
∑

i∈S(p̄)

qix̄
2
i /z̄i ≥

∑
i∈S′

qix̄
2
i /z̄i

for all S′ ⊆ S(p̄). Therefore p̄ satisfies inequality (Π) for all S and proj(w,x,z)(Q̄c) ⊆
Qc. Next, let p̄ = (w̄, x̄, z̄) ∈ Qc be given and let ȳi be 0 if zi = 0 and x̄2

i /z̄i,
otherwise. It is easy to see that (x̄i, ȳi, z̄i) ∈ Si for all i ∈ {1, 2, . . . , n}. Further-
more,

w̄ ≥
∑

i∈S(p̄)

qix̄
2
i /z̄i =

∑
i∈S(p̄)

qiȳi =
n∑

i=1

qiȳi

implying that (w̄, x̄, ȳ, z̄) ∈ Q̄c and therefore Qc ⊆ proj(w,x,z)(Q̄c).

Also note that all of the exponentially many inequalities that are used in the
description of Qc are indeed necessary. To see this, consider a simple instance
with ui = li = qi = 1 for all i ∈ I = {1, 2, . . . , n}. For a given S̄ ⊆ I, let
pS̄ = (w̄, x̄, z̄) where w̄ = |S̄| − 1, z̄i = 1 if i ∈ S̄, and z̄i = 0 otherwise, and
x̄ = z̄. Note that pS̄ 6∈ Qc. As z̄i = qix̄

2
i , inequality (Π) is satisfied by p̄ for

S ⊆ I if and only if
(|S̄| − 1)

∏
i∈S

z̄i ≥ |S|
∏
i∈S

z̄i.

Note that unless S ⊆ S̄, the term
∏

i∈S z̄i becomes zero and therefore inequal-
ity (Π) is satisfied. In addition, inequality (Π) is satisfied whenever |S̄| > |S|.
Combining these two observations, we can conclude that the only inequality
violated by pS̄ is the one with S = S̄.

2.4. SOCP Representation

A second-order cone constraint is a constraint of the form

‖Ax+ b‖2 ≤ cTx+ d. (5)

The set of points x that satisfy (5) forms a convex set, and efficient and robust
algorithms exist for solving optimization problems containing second-order cone
constraints [33, 27]. An interesting and important observation from a computa-
tional standpoint is that the nonlinear inequalities in the definitions of the sets
Sc and Q̄c can be written as second-order cone constraints. All the nonlinear
constraints in the definition Sc and Q̄c are of the simple form

x2 ≤ yz with y ≥ 0, z ≥ 0, (6)
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and this is algebraically equivalent to the second-order cone constraint

‖(2x, y − z)T ‖ ≤ y + z. (7)

Constraints of the form (6) are often called rotated second order cone constraints.
The computational benefit of dealing with inequalities (6) as second-order cone
constraints rather than general nonlinear constraints will be demonstrated in
Section 5.1.

3. The Convex Hull of the Union of a Point and a Convex Set

We next extend the observations presented in Section 2 to describe the convex
hull of a point x̄ ∈ Rn and a bounded convex set defined by analytic functions.
In other words, using an indicator variable z ∈ {0, 1}, define W 0 =

{
(x, z) ∈

Rn+1 : x = x̄, z = 0
}

, and

W 1 =
{

(x, z) ∈ Rn+1 : fi(x) ≤ 0 for i ∈ I, u ≥ x− x̄ ≥ l, z = 1
}

where u, l ∈ Rn
+, and I = {1, . . . , t}. We are interested in the convex hull of

W = W 1 ∪W 0. Clearly, both W 0 and W 1 are bounded and W 0 is a convex set.
Furthermore, if W 1 is also convex then

conv(W ) = {p ∈ Rn+1 : p = αp1 + (1− α)p0, p1 ∈W 1, p0 ∈W 0, 1 ≥ α ≥ 0}.

We next present a description of conv(W ) in the space of original variables. To
simplify notation we assume that x̄ = 0 in the remainder of this section. Note
that there is no loss of generality as this is an affine transformation. We next
write the description of conv(W ) in open form

conv(W ) =
{

(x, z) ∈ Rn+1 : 1 ≥ α ≥ 0, x0 = 0, z0 = 0, z1 = 1

x = αx1 + (1− α)x0, z = αz1 + (1− α)z0,

fi(x1) ≤ 0 for i ∈ I, u ≥ x1 − x̄ ≥ l
}
. (XF)

The additional variables used in this description can be projected out to
obtain a description in the space of the original variables.

Lemma 6. If W 1 is convex, then conv(W ) = W− ∪W 0, where

W− =
{

(x, z) ∈ Rn+1 : fi(x/z) ≤ 0 for i ∈ I, uz ≥ x ≥ lz, 1≥ z > 0
}
.

Proof. As x0, z0 and z1 are fixed in (XF), it is possible to substitute out these
variables. In addition, as z = α after these substitutions, we can eliminate α.
Furthermore, as x = αx1 = zx1, we can eliminate x1 by replacing it with x/z
provided that z > 0. If, on the other hand, z = 0, clearly (x, 0) ∈ conv(W ) if
and only if (x, 0) ∈W 0.
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We next show that W 0 is contained in the closure of W−.

Lemma 7. For 1 ≥ z > 0, let Qc(z) =
{
x ∈ Rn : fi(x/z) ≤ 0 for i ∈ I, uz ≥

x ≥ lz
}

. If all fi(x) are bounded in [l, u], then,

limz→0+ Qc(z) =
{
x ∈ Rn : x = 0

}
Proof. Let {zk} ⊂ (0, 1) be a sequence converging to 0. As, by definition,Qc(z) 6=
∅ for z ∈ (0, 1), there exists a corresponding sequence {xk} such that xk ∈
Qc(zk). Clearly, uz ≥ xk ≥ lz and therefore {xk} converges to 0.

Combining the previous lemmas, we obtain the following result.

Corollary 1. conv(W ) = closure(W−).

We would like to emphasize that even when f(x) is a convex function fi(x/z)
may not be convex. However, for z > 0 we have

fi(x/z) ≤ 0 ⇔ ztfi(x/z) ≤ 0 (8)

for any t ∈ R. In particular, taking t = 1 gives zfi(x/z) which is known to
be convex provided that f(x) is convex. We discuss this further in Section 4.1.
We also note that if f(x) is SOCP-representable, then zfi(x/z) is also SOCP-
representable and in particular, if W 1 is defined by SOCP-representable func-
tions, then so is conv(W ). We will show the benefits of employing SOC solvers
for (non-quadratic) SOC-representable sets in Section 5.2.

We next show that when all fi(x) that define W 1 are polynomial functions,
convex hull of W can be described explicitly.

Lemma 8. Let fi(x) =
∑pi

t=1 cit
∏n

j=1 x
qitj

j for all i ∈ I. Let qit =
∑n

j=1 qitj,
qi = maxt{qit} and q̄it = qi − qit. If all fi(x) are convex and bounded in [l, u],
then conv(W ) = W c, where

W c =
{

(x, z) ∈ Rn+1 :
pi∑

t=1

citz
q̄it

n∏
j=1

x
qitj

j ≤ 0 for i ∈ I, zu≥ x ≥ lz, 1 ≥ z ≥ 0
}
.

Proof. Note that fi(x/z) =
∑pi

t=1 citz
−qit

∏n
j=1 x

qitj

j . Therefore, multiplying
fi(x/z) ≤ 0 by zqi , one obtains the expression above. Clearly, W c ∩ {z > 0} =
W− and W c ∩ {z = 0} = W 0.

4. Connections to Earlier Work

We next relate our results to earlier works that have appeared in the literature.
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4.1. Convex Hulls of the Union of Convex Sets

Given a collection of bounded convex sets, it is easy to define an extended formu-
lation to describe their convex hull using additional variables, similar to (XF).
Producing a description in the space of original variables, however, appears to
be very hard. The particular case we considered in the previous section involves
only two sets, one of which consists of a single point. For the sake of completeness
we next summarize some related results from Ceria and Soares [12].

Ceria and Soares [12] use perspective functions of the functions that define the
original sets to produce an extended formulation for the convex hull description.
If the original sets are defined by convex functions, their perspective functions
are also convex. More precisely, for t = 1, . . . , p, let Gt : Rn → Rmt be a mapping
defined by convex functions and assume that the corresponding set

Kt = {x ∈ Rn : Gt(x) ≤ 0}

is bounded. Let G̃t : Rn+1 → Rmt be the perspective mapping defined as

G̃t(λ, x) =

λGt(x/λ) if λ > 0
0 if λ = 0
∞ otherwise

We next state a important observation from Ceria and Soares [12] that shows
the use of perspective functions to obtain convex hulls of convex sets.

Lemma 9 ([12]). Let Kt be defined as above for t ∈ T , and let K = conv(∪t∈TK
t).

Then, x ∈ K if and only if the following nonlinear system is feasible:

x =
∑
t∈T

xt;
∑
t∈T

λt = 1; G̃t(λt, x
t) ≤ 0, λt ≥ 0, ∀t ∈ T.

Furthermore, all G̃t are convex mappings provided that all Gt are convex.

Therefore, our observations in Section 3 specialize Lemma 9 to the case when
|T | = 2 and one of the sets contain a single point. In this special case we show
that a description of the convex hull in the original space can be obtained easily.

4.2. Perspective Cuts

Building on the work of Ceria and Soares [12], Frangioni and Gentile [14] intro-
duce the class of perspective cuts for mixed integer programs of the form

min
(x,z)∈Rn×B

{
f(x) + cz | Ax ≤ bz

}
,

where (i) X = {x | Ax ≤ b} is bounded (also implying {x | Ax ≤ 0} = {0}),
(ii) f(x) is a convex function that is finite on X, and (iii) f(0) = 0. Under these
assumptions, they show that for any x̄ ∈ X and s ∈ ∂f(x̄), the perspective cut

v ≥ f(x̄) + c+ sT (x− x̄) + (c+ f(x̄)− sT x̄))(z − 1) (9)
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is valid for the equivalent mixed integer program

min
(x,z,v)∈Rn×B×R

{
v | v ≥ f(x) + cz,Ax ≤ bz

}
.

Frangioni and Gentile [14] derive the linear inequalities (9) from a first-order
analysis of the convex envelope of the perspective function of f(x). A similar first-
order argument can be used to derive inequality (9) from the characterization
of the convex hull of the union of a convex set and a point given in Section 3.
First define P 0 def=

{
(x, z, v) ∈ Rn+2 : x = 0, z = 0, v = 0

}
, and

P 1 def=
{

(x, z, v) ∈ Rn+2 : Ax ≤ b, f(x) + c− v ≤ 0, ux ≥ x ≥ lx, uv ≥ v ≥ lv, z = 1
}

where bounds on variables x and v are introduced without loss of generality.
Corollary 1 states that conv(P 0 ∪ P 1) is the closure of

P−
def=
{

(x, z, v) ∈ Rn+2 | Ax ≤ b, zf(x/z) + cz − v ≤ 0, uxz ≥ x ≥ lxz,

uvz ≥ v ≥ lvz, 1 ≥ z ≥ 0
}
.

For any z̄ > 0, a first-order (outer)-approximation of the nonlinear constraint
zf(x/z) + cz − v ≤ 0 about the point (x̄, z̄, v̄) gives

0 ≥ z̄f(x̄/z̄) + cz̄ − v̄ +

 s
(−1/z̄)x̄T sx/z + f(x̄/z̄) + c

−1

T x− x̄z − z̄
v − v̄

 ,
where s ∈ ∂f(x̄) and sx/z ∈ ∂f(x̄/z̄). Taking z̄ = 1, v̄ = f(x̄)+c, and rearranging
terms gives inequality (9) above.

The implication of this analysis is that the perspective cuts of Frangioni and
Gentile [14] are outer approximation cuts for conv(P 0 ∪P 1). Thus, the strength
of the perspective relaxation is equivalent to that of adding all (infinitely-many)
perspective cuts to the formulation. The disadvantage of the perspective refor-
mulation over perspective cuts is that the inequalities used in the reformulation
are nonlinear. We discuss a direct computational comparison between the non-
linear perspective reformulation and perspective cuts in Section 5.3.

5. Applications

In this section, three applications are described: a quadratic-cost uncapacitated
facility location problem recently studied by Günlük et al. [20], a network design
problem under queuing delay, first discussed by Boorstyn and Frank [10], and a
portfolio optimization problem with minimum buy-in thresholds [29, 7, 22]. In
each case, the positive impact of the perspective reformulation and the ability
to model the nonlinear inequalities in the reformulations as second-order cone
constraints is demonstrated.
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5.1. Separable Quadratic UFL

The Separable Quadratic Uncapacitated Facility Location Problem (SQUFL)
was introduced by Günlük et al. [20]. In the SQUFL, there is a set of customers
N , a set of facilities M and there is a fixed cost ci for opening a facility i ∈M .
All customers have unit demand that can be satisfied using open facilities only.
The shipping cost is proportional to the square of the quantity delivered. Letting
zi indicate if facility i ∈ N is open, and xij denote the fraction of customer j’s
demand met from facility i, SQUFL can be formulated as follows:

min
∑
i∈M

cizi +
∑
i∈M

∑
j∈N

qijx
2
ij

subject to xij ≤ zi ∀i ∈M,∀j ∈ N,∑
i∈M

xij = 1 ∀j ∈ N,

zi ∈ {0, 1}, xij ≥ 0 ∀i ∈M,∀j ∈ N.

To apply the perspective formulation, auxiliary variables yij are used to replace
the terms x2

ij in the objective function. In addition the following constraints

x2
ij − yij ≤ 0 ∀i ∈M, j ∈ N, (10)

yij ≤ zi ∀i ∈M, j ∈ N, (11)

are added. In this reformulation, if zi = 0, then xij = yij = 0 ∀j ∈ N , while if
zi = 1, the constraints (10) define the set of feasible points. Therefore, we can
strengthen the formulation using the perspective counterparts of constraints (10)

x2
ij − ziyij ≤ 0 ∀i ∈M,∀j ∈ N. (12)

5.1.1. Generating the Test Set We generated random instances similar to the
ones in [20]. For each facility i ∈M , a location pi is generated uniformly in [0, 1]2

and the variable cost parameter was calculated as qij = 50‖pi − pj‖2. The fixed
cost ci of opening a facility is generated uniformly in [1, 100]. Ten instances were
created for each m ∈ {10, 20, 30, 40} and n ∈ {30, 50, 100, 200}.

5.1.2. Computational Results with an Interior Point Solver. In Table 1 we
summarize our results with the open-source MINLP solver BONMIN [9] using
Ipopt [35] as the NLP solver on a 1.8GHz AMD Opteron CPU. In Table 1 z̄R

and z̄P represent the average value of the continuous relaxation of the original
formulation, and the perspective reformulation respectively and z̄∗ is the average
value of the optimal solution. The table also displays the number of instances
out of 10 (# Sol.) that were solved within a time limit of 8 hours, the average
number of nodes (N̄) required to solve the instances, and the average CPU time
(T̄ ) in seconds for both the original and perspective formulations.

First note that nearly all of the integrality gap is closed at the root node
by the perspective reformulation and consequently, the number of nodes needed
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Table 1. Relaxation Values and Solution Times for SQUFL

Original Formulation Perspective Formulation
m n z̄R z̄P z̄∗ # Sol. N̄ T̄ # Sol. N̄ T̄
10 30 105.8 196.5 197.9 10 333 8.9 10 15 3.7
10 50 160.4 312.6 314.6 10 406 18.0 10 11 4.9
10 100 266.5 460.4 462.0 10 441 36.7 10 9 7.7
10 200 470.7 733.6 737.0 10 350 59.7 10 7 15.2
20 30 81.7 185.3 185.6 10 3452 213.7 10 37 39.9
20 50 111.6 274.8 276.2 10 5526 601.4 10 31 85.9
20 100 166.3 412.7 414.5 7 25901 12263.9 10 35 677.1
20 200 283.5 650.8 653.1 0 - - 10 27 1925
30 30 64.1 157.8 159.4 9 17837 1822.7 10 62 192.8
30 50 82.1 241.6 243.3 1 61062 23760.2 10 56 650.3
30 100 126.0 343.4 345.6 0 - - 10 51 4565.4
30 200 200.7 545.8 547.4 0 - - 9 44 16858.5
40 30 58.6 146.4 147.7 7 55660 9319.6 10 71 224.3
40 50 74.1 198.7 200.0 0 - - 10 85 3030.6
40 100 109.6 309.8 311.2 0 - - 10 64 8420.8
40 200 161.4 478.3 - 0 - - 0 - -

to solve the problem is orders of magnitude smaller. Also notice that CPU time
per node increases dramatically when the perspective formulation is applied. For
example, for n = 30 and m = 200, Ipopt takes, on average, 383 CPU seconds
to evaluate a node. As a general the interior-point solver, Ipopt is does not
exploit the special second-order cone structure of the perspective reformulation.
Furthermore, as the functions (x2−yz) that appear in the reformulation are not
convex, Ipopt may only guarantee convergence to a stationary point (not the
globally optimal solution to the NLP relaxation). Thus, it is possible that he
final solution produced by Ipopt/BONMIN would not be a true optimal solution
to the instance. Further, the solution Ipopt converges to is highly dependent on
the initial iterate provided. For the experiments reported in Table 1 a starting
point of xij = 1/m ∀i, j, zi = 1/m ∀i, and yij = 1/(m2)∀i, j was used at the root
node. Interestingly, using this starting point, BONMIN never incorrectly pruned a
node as a result of a suboptimal solution reported by Ipopt.

5.1.3. Computational Results with a SOCP Solver. We also tried the SOCP
solver Mosek (version 5.0) [27] to solve the perspective reformulation where the
nonlinear inequalities are represented in second-order-cone form. Table 2 shows
the number of nodes (N) and CPU seconds (T ) required by Mosek to solve
random instances of various sizes. The table also shows the time per node (T/N)
when possible. Note that the speed-up is solely due to the reduced time to solve
relaxations at nodes. In addition, larger instances (up to size n = 50, n = 200)
can be solved.

As pointed out by a referee, Ipopt may be more effective at solving nonlinear
programs where all constraint functions are convex. Therefore, the test instances
were run again replacing the inequalities x2

ij − yijzi ≤ 0 ∀i ∈M, ∀j ∈ N, with

‖(2xij , yij − zi)T ‖ ≤ yij + zi ∀i ∈M, ∀j ∈ N.
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Table 2. Solution Times for SOC-Perspective Reformulation of SQUFL

m n T N T/N(SOCP) T/N(NLP)
20 100 3.8 12 0.3 19.3
20 200 9.6 11 0.9 71.3
30 100 9.6 30 0.3 89.5
30 200 141.9 63 2.3 383.1
40 100 76.4 54 1.4 131.6
40 200 101.3 45 2.3 -
50 100 61.6 49 1.3 -
50 200 140.4 47 3.0 -

In general, this reformulation technique did improve the performance of Ipopt.
The solution of the NLP relaxations was on average nearly 7 times faster with
the convex reformulation. However, the reader will note that these times are still
significantly slower than those obtained by a specialized solver for SOCP.

Günlük et al. [20] also derive cutting planes to strengthen the continuous
relaxation of the SQUFL. The first part of Table 3 is taken from their paper
where zR and zGLW denote the value of the original and strengthened root
relaxations respectively. The second part of the table gives the value of the
root relaxation of the perspective reformulation (zP ), and the optimal solution
value ( z∗). Clearly, the perspective reformulation performs significantly better
than their cutting planes. The largest instance in Table 3 was solved by Lee

Table 3. Comparison of Relaxation Bounds for SQUFL

m n zR zGLW zP z∗

10 30 140.6 326.4 346.5 348.7
15 50 141.3 312.2 380.0 384.1
20 65 122.5 248.7 288.9 289.3
25 80 121.3 260.1 314.8 315.8
30 100 128.0 327.0 391.7 393.2

[24] using BONMIN. The solution required 16,697 CPU seconds and 45,901 nodes
for the original formulation, and 21,206 CPU seconds and 29,277 nodes for the
strengthened formulation. The same instance was solved in 23 CPU seconds on
the same machine type (enumerating 44 nodes) using Mosek on the perspective
reformulation. The speedup factor is more than 700.

5.1.4. Commercial MINLP solvers We also tried the DICOPT [23] and BARON
[34] solvers on the original formulation. Within a time limit of eight hours per
instance, DICOPT was only able to successfully solve small instances (up to size
n = 10, m = 100), whereas BARON was not able to solve any of the instances
in our test suite. Clearly, automatically recognizing and exploiting the perspec-
tive reformulation could significantly improve the computational performance of
MINLP software.
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5.2. Network Design with Congestion Constraints

The next application is a network design problem with requirements on queuing
delay. Similar models appear in [10], [6], and [11]. In the problem, there is a set of
commodities K to be shipped over a capacitated directed network G = (N,A).
The capacity of arc (i, j) ∈ A is uij , and each node i ∈ N supplies or demands
a specified amount bki of commodity k. There is a fixed cost cij of opening
each arc (i, j) ∈ A, and we introduce {0,1}-variables zij to indicate whether
arc (i, j) ∈ A is opened. The quantity of commodity k routed on arc (i, j) is
measured by variable xk

ij and fij =
∑

k∈K xk
ij denotes the total flow on the arc.

A typical measure of the total weighted congestion (or queuing delay) is

ρ(f) def=
∑

(i,j)∈A

rij
fij

1− fij/uij
,

where rij ≥ 0 is a user-defined weighting parameter for each arc. We use a
decision variables yij to measure the contribution of the congestion on arc (i, j)
to the total congestion ρ(f). The network should be designed so as to keep the
total queuing delay less than a given value β, and this is to be accomplished at
minimum cost. The resulting optimization model (NDCC) can be written as

min
∑

(i,j)∈A

cijzij

subject to
∑

(j,i)∈A

xk
ij −

∑
(i,j)∈A

xk
ij = bki ∀i ∈ N, ∀k ∈ K,

∑
k∈K

xk
ij − fij = 0 ∀(i, j) ∈ A,

fij ≤ uijzij ∀(i, j) ∈ A, (13)

yij ≥
rijfij

1− fij/uij
∀(i, j) ∈ A, (14)

∑
(i,j)∈A

yij ≤ β,

zij ∈ {0, 1} ∀(i, j) ∈ A,

x ∈ R|A|×|K|+ , y ∈ R|A|+ , f ∈ R|A|+ .

An observation not previously made in the literature regarding this problem
is that the congestion inequalities (14) can be written as SOC constraints. Mul-
tiplying both sides of (14) by 1− fij/uij > 0, adding rijf2

ij to both sides of the
inequality, and factoring the left-hand-side gives an equivalent constraint

(yij − rijfij)(uij − fij) ≥ rijf2
ij . (15)
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Because the inequalities yij ≥ rijfij and uij ≥ fij most hold in any feasible
solution, (15) is precisely a constraint in rotated second-order cone form (6).

Cut-set inequalities (see,[25, 8]) are known to strengthen the continuous re-
laxation of network design problems. In our computational experiments, we used
the following most basic and effective cut-set inequalities: Let δi denote the total
flow originating from node i and τi ∈ Z+ be such that

∑
ij∈A′ uij < δi for all

A′ ⊂ A such that |A′| ≤ τi − 1. The associated cut-set inequity for node i is∑
(i,j)∈A

zij ≥ τi.

We added these inequalities for both incoming and outgoing arcs for all i ∈ N .
More elaborate inequalities could also be added (see [8]), but our goal is to ex-
amine the impact of the perspective reformulation, not strong linear inequalities.

In the formulation of NDCC, note that if zij = 0, then the constraints (13)
force fij = 0, and the constraints (14) are redundant for the arc (i, j). However, if
zij = 1, then the definitional constraint (14) for the corresponding yij must hold.
Therefore, each constraint (14) can be replaced by its perspective counterpart:

zij

[
rijfij/zij

1− fij/(uijzij)
− yij

zij

]
≤ 0. (16)

The constraints (16) can also be written as second order cone constraints in
a similar fashion to the non-perspective version (14). Specifically, simplifying the
left-hand size of the inequality (16), adding rijf2

ij to both sides of the simplified
inequality and factoring gives the equivalent constraints

(yij − rijfij)(uijzij − fij) ≥ rijf2
ij ,

which is a rotated second-order cone constraint since yij ≥ rijfij and uijzij ≥ fij

for any feasible solution. The fact that the inequalities in the perspective refor-
mulation of (14) are SOC-representable is no surprise. In fact, Ben-Tal and
Nemirovski [5] (Page 96, Proposition 3.3.2) show that the perspective transfor-
mation of a function whose epigraph is a SOC-representable set is (under mild
conditions) always SOC-representable.

5.2.1. Computational Results For test instances we created random graphs
where each arc is present with probability 0.2. In these instances, each node
is the unique source of exactly one commodity. Let s(k) denote the source node
for commodity k ∈ K. The demands were created as follows

bki = dU(5, 25)c ∀k ∈ K ∀i ∈ (I \ {s(k)}),

bks(k) = −
∑

i∈I\{s(k)}

bki ∀k ∈ K

where U(a, b) is a uniformly distributed random number in the interval (a, b), and
dxc is the closest integer to x. Let B =

∑
k∈K

∑
i∈I\{s(k)} b

k
i be the total demand.

We set β = κB where κ is the smallest integer necessary to make the linear
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relaxation feasible. Finally, for all (i, j) ∈ A we set uij = dU(1.0, 5.0)B/|A|c
rij = 1.0 and cij = U(1, 4).

All of the instances were created in the GAMS modeling language and solved
using the branch-and-bound mixed integer SOCP code of Mosek. A time limit
of 4 hours was imposed on each instance. We created graphs for |N | = 20 and
|N | = 30. Results comparing the two formulations is presented in Table 4. Notice
that the perspective reformulation helps the solvability considerably. Of the 35
instances of size |N | = 20, 2 can be solved within the time limit with the original
formulation, and 29 can be solved with the perspective reformulation. Of the 6
that don’t solve, 4 fail due to numerical difficulties with solving the relaxation,
and 2 hit the time limit. Of the 35 instance of size |N | = 30, neither the original
formulation nor perspective formulation are able to solve any of these instances.
However, the average remaining optimality gap after 4 hours was 57.1% for the
original formulation and 7.03% for the perspective formulation.

Table 4. Impact of Perspective Reformulation on Network Design Instances.

Original Formulation Perspective Formulation
N # Sol. zroot zL zU Nodes # Sol. zroot zL zU Nodes
20 2 80.6 144.1 183.9 30086.2 26 165.3 178.4 179.3 11347.4
30 - 150.7 261.3 392.2 3861.1 - 353.6 355.7 379.2 5375.8

5.3. Mean-Variance Optimization

A canonical optimization problem in financial engineering is to find a minimum
variance portfolio that meets a minimum return requirement [26]. In the problem,
there is a set N of assets available for purchase. The expected return of asset i ∈
N in given by αi, and the covariance of the returns between every pair of assets
is given in the form a positive-definite matrix Q ∈ Rn×n. The canonical problem
is often augmented with a number of business rules that require the introduction
of binary variables in straightforward optimization models. For example, there
may be minimum (`i) and maximum (ui) buy-in thresholds for each asset i ∈ N ,
resulting the the following optimization problem (MVOBI):

min{xTQx | eTx = 1, αTx ≥ ρ, `izi ≤ xi ≤ uizi ∀i ∈ N}, (17)

where the decision variable xi is the percentage of the portfolio invested in asset
i and zi is a binary variable indicating the purchase of asset i. Imposing a cardi-
nality constraint on the number of different assets purchased can be achieved by
adding a constraint

∑
i∈N zi ≤ K. Unfortunately, direct application of the per-

spective reformulation to (17) is not possible, as the objective is not a separable
function of the decision variables x.

However, in many practical applications, the covariance matrix is obtained
from a factor model and has the form Q = BΩBT + ∆2, for a given exposure



Perspective Reformulations of MINLPs 19

matrix, B ∈ Rn×f , positive-definite factor-covariance matrix Ω ∈ Rf×f , and
positive definite, diagonal specific-variance matrix ∆ ∈ Rn×n [29]. If a factor
model is given, a separable portion of the objective function is easily extracted
by introducing variables yi, changing the objective to

minxT (BΩBT )x+
∑
i∈N

∆iiyi,

and enforcing the constraints yi ≥ x2
i ∀i ∈ N .

Even if the covariance matrix Q does not directly have embedded diagonal
structure from a factor model, then, as suggested by Frangioni and Gentile [14], it
is still possible to extract a separable component from Q. Specifically, the matrix
Q may be decomposed into Q = R + D, for some positive, diagonal matrix D
such that R = Q − D remains positive-definite. The objective can be changed
to minxTRx + xTDx, and xTDx is separable in x. Frangioni and Gentile [14]
suggest using D = λnI, where λn > 0 is the smallest eigenvalue of Q. In our
computational experiments, we follow their advice and use D = (λn−ε)I, where
ε = 0.001 so that R is strictly positive definite.In subsequent work, Frangioni and
Gentile [15] show how “more” of the separable structure of Q can be extracted
into D through the solution of a semidefinite program.

In order to solve the instance entirely in a second-order cone programming
framework, we use the well-known transformation [5] of a convex quadratic pro-
gram into a second order cone program. To transform the instance, a Cholesky
factorization of R = MMT , is taken, the auxiliary variables w = MTx are
introduced, so that ‖w‖ = xTRx.

min v +
∑
i∈N

Diiyi (18)

subject to w −MTx = 0
v − ‖w‖ ≥ 0 (19)

yi − x2
i ≥ 0 ∀i ∈ N (20)∑

i∈N

xi = 1 (21)∑
i∈N

αuxi ≥ ρ (22)

`izi ≤ xi ≤ uizi ∀i ∈ N (23)

The inequalities (19) can easily be placed in rotated second order cone form (6).
Since zi = 0 implies that constraint (20) is redundant, and, while zi = 1 implies
that we would like the inequality to hold, the perspective reformulation may be
applied, replacing the constraints (20) with inequalities

yizi − x2
i ≥ 0∀i ∈ N. (24)
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The inequalities (24) are precisely in the rotated second order cone form (6), so
they can be effectively handled by software such as Mosek.

In Table 5 we summarize computational results on twenty instances of the
MVOBI problem (ten instances each for |N | = 200 and |N | = 300) . These
instances were created by Frangioni and Gentile [14], and optimal solutions for
the instances are reported at http://www.di.unipi.it/optimize/Data/MV.
html. Mosek branch-and-bound solver was run on each instance with a time
limit of 10,000 CPU seconds. If zR is the value of the SOCP-relaxation at the
root node, z∗ is the optimal solution, zL and zU are the best lower and upper
bounds found by Mosek, the table reports the average root gap to optimal (RGO
= 100(z∗− zR)/zR), the average final gap to optimal (FGO = 100(z∗− zL)/zL),
the average final gap (FG = 100(zU−zL)/zL)), and the average number of nodes.

Table 5. Integrality Gaps of Formulations for MVOBI

Original Formulation Perspective Formulation
N RGO FGO FG Nodes RGO FGO FG Nodes

200 667.8 181.8 185.1 42879.4 7.0 3.0 4.2 8118.4
300 1179.3 488.8 490.0 45629.9 6.0 3.9 5.9 2460.7

In these experiments, the Mosek conic IP solver was able to solve only one
instance to optimality. Nevertheless, the perspective reformulation significantly
improves the lower bound. For these instances, the linearization approach of
Frangioni and Gentile [14], especially when used in conjunction with their tech-
nique for choosing the diagonal matrix D [15] appears to be more effective than
the direct perspective formulation.

However, a distinct advantage of the perspective reformulation is that special-
ized cutting-plane based procedures are not necessary to achieve the improved
performance. The reformulation can be simply implemented with a modeling
language. We view this result as pointing clearly to the need for improvements
in conic IP software.

6. Conclusions

In this work we derive an explicit characterization of the convex hull of the
union of a point and a bounded convex set defined by analytic functions. This
characterization can be used to produce strong “perspective” reformulations of
many practical mixed integer nonlinear programs. We also show that in many
cases, the nonlinear inequalities in the perspective reformulation can be cast
as second-order cone constraints, a transformation that greatly improves an in-
stance’s solvability.

Continuing work has two primary thrusts: (1) Automatic detection of struc-
tures to which the perspective transformation can be applied; and (2) Studying
additional simple structures occurring in practical MINLPs in the hope of de-
riving strong relaxations.
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