
PERSPECTIVE REFORMULATION AND APPLICATIONS

OKTAY GÜNLÜK∗ AND JEFF LINDEROTH†

Abstract. In this paper we survey recent work on the perspective reformulation
approach that generates tight, tractable relaxations for convex mixed integer nonlin-
ear programs (MINLP)s. This preprocessing technique is applicable to cases where the
MINLP contains binary indicator variables that force continuous decision variables to
take the value 0, or to belong to a convex set. We derive from first principles the perspec-
tive reformulation, and we discuss a variety of practical MINLPs whose relaxation can
be strengthened via the perspective reformulation. The survey concludes with comments
and computations comparing various algorithmic techniques for solving perspective re-
formulations.

Key words. Mixed-integer nonlinear programming, perspective functions

AMS(MOS) subject classifications. 90C11, 90C30

1. Introduction. Over the past two decades, tremendous advances
have been made in the ability to solve mixed integer linear programs
(MILP)s. A fundamental reason for the vast improvement is the ability to
build tight, tractable relaxations of MILPs. The relaxations are built either
via problem reformulation (automatically during a preprocessing phase), or
dynamically through the addition of cutting planes. In this paper we sur-
vey a collection of techniques for obtaining tight relaxations to (convex)
Mixed Integer Nonlinear Programs (MINLP)s. We call these preprocessing
techniques the perspective reformulation, since they rely on replacing the
original convex function in the formulation with its so-called perspective.

1.1. Motivation. Consider a 0-1 MINLP, of the form

min
(x,z)∈F

c(x, z) (1.1)

where F = R ∩ (Rn−p
+ × Bp), B denotes {0, 1}, and

R
def= {(x, z) ∈ Rn−p

+ × [0, 1]p | fj(x, z) ≤ 0 ∀j = 1, . . . ,m}.

We call the set R a continuous relaxation of F , and we emphasize that R is
not unique in the sense that F can have many different continuous relax-
ations. Throughout, we will be interested in sets R that are convex. Even
under the convexity requirement, the set R is not unique, and any convex

∗Mathematical Sciences Department, IBM T.J. Watson Research Center, P.O. Box
218, Yorktown Heights, NY 10598, USA, gunluk@us.ibm.com

†Department of Industrial and Systems Engineering, University of Wisconsin-
Madison, 1513 University Avenue, Madison, WI 53706, USA, linderoth@wisc.edu. The
second author was supported by the US Department of Energy under grants DE-FE02-
08ER25861 and DE-FG02-09ER25869, and the National Science Foundation under grant
CCF-0830153.

1

2 OKTAY GÜNLÜK AND JEFF LINDEROTH

set R′ with the property that R′ ∩ Rn−p
+ × Bp = F is a valid continuous

relaxation of F . If we let conv(F) to denote the convex hull of F , clearly
all continuous relaxations of F that are convex have to contain conv(F)
and therefore conv(F) is the smallest convex continuous relaxation of F .

In the field of MILP, significant effort is spent on obtaining tight re-
laxations of the feasible set of solutions. This effort is justified by the fact
that the optimization problem simply becomes a linear programming (LP)
problem if conv(F) can be explicitly described with linear inequalities. No-
tice that as the objective function is linear, it is easy to find an optimal
solution that is an extreme point of conv(F), which is guaranteed to be in
F as all extreme points of conv(F) are in F .

In MINLP, on the other hand, the optimal solution to the relaxation
may occur at a point interior to conv(F) and as such, it is not guaranteed
to be integral. It is, however, easy to transform any problem to one with
a linear objective function by moving the nonlinear objective function into
the constraints. Specifically, the problem (1.1) can be equivalently stated
as

min{η | η ∈ R, (x, z) ∈ F , η ≥ c(x, z)}. (1.2)

We can, therefore, without loss of generality assume that the objective
function of (1.1) is linear. Notice that, under this assumption, it is possible
to solve the MINLP as a convex nonlinear programming (NLP) problem
if conv(F) can be explicitly described using convex functions. In general,
an explicit description of conv(F) is hard to produce and unlike the linear
case, is not necessarily unique.

In this paper, we review the perspective reformulation approach that,
given a MINLP with an associated continuous relaxation R (perhaps after
applying the transformation (1.2)), produces a smaller (tighter) continu-
ous relaxation R′ that contains conv(F). The advantage of having tight
relaxations is that as they approximate F better, they give better lower
bounds, and they are more effective in obtaining optimal integral solutions
via an enumeration algorithm.

1.2. The Importance of Formulation. To emphasize the impor-
tance of a tight relaxation, consider the well-known uncapacitated facility
location problem (UFLP). Modeling the UFLP as a MILP is a canonical
example taught to nearly all integer programming students to demonstrate
the impact of a “good” versus “poor” formulation. In the UFLP, each cus-
tomer in a set J must have his demand met from some facilities in a set I.
A binary variable zi indicates if the facility i is open, and the continuous
variable xij represents the percentage of customer j’s demands met from
facility i.

The logical relationships that a customer may only be served from an

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 3

open facility may be written algebraically in “aggregated” form∑
j∈J

xij ≤ |J |zi ∀i ∈ I

or in “disaggregated” form

xij ≤ zi ∀i ∈ I, j ∈ J. (1.3)

Writing the constraints in disaggregated form (1.3) makes a significant dif-
ference in the computational performance of MILP solvers. For example,
in 2005, Leyffer and Linderoth [21] experiment with a simple branch and
bound based MILP solver and report that on the average it took the solver
10,000 times longer when the aggregated formulation is used. For modern
commercial MILP solvers, however, both formulations solve almost simulta-
neously. This is because modern MILP software automatically reformulates
the aggregated (weak) formulation into the disaggregated (strong) one. We
strongly believe that similar performance improvements can be obtained by
MINLP solvers by performing automatic reformulation techniques specially
developed for MINLP problems, and we hope this survey work will spur
this line of research.

A common reformulation technique used by MILP solvers is to rec-
ognize simple structures that appear in the formulation and replace them
with tight relaxations for these structures. The tightening of these struc-
tures leads to the tightening of the overall relaxation. We will follow this
same approach here to derive tighter (perspective) relaxations through the
study and characterization of convex hulls of simple sets.

1.3. The Perspective Reformulation. We are particularly inter-
ested in simple sets related to “on-off” type decisions. To that end, let z
be a binary indicator variable that controls continuous variables x. The
perspective reformulation is based on strengthening the natural continuous
relaxation of the following “on-off” set:

S
def=

{
(x, z) ∈ Rn × B

∣∣∣∣∣ x = x̂ if z = 0
x ∈ Γ if z = 1

}
,

where x̂ is a given point (ex: x̂ = 0), and

Γ def= {x ∈ Rn | fj(x) ≤ 0 j = 1, . . . ,m, u ≥ x ≥ `}

is a bounded convex set. (Note that Γ can be convex even when some of
the functions fj defining it are non-convex.)

In this paper we study the convex hull description of sets closely related
to S. We present a number of examples where these simple sets appear as
substructures, and we demonstrate that utilizing the convex hull descrip-
tion of these sets helps solve the optimization problem efficiently. Closely

4 OKTAY GÜNLÜK AND JEFF LINDEROTH

related to this work is the effort of Frangioni and Gentile [11, 13], who de-
rive a class of cutting planes that significantly strengthen the formulation
for MINLPs containing “on-off” type decisions with convex, separable, ob-
jective functions, and demonstrate that these inequalities are quite useful
in practice. The connection is detailed more in Section 5.3.

The remainder of the paper is divided into 6 sections. Section 2 gives a
review of perspective functions and how they can be used to obtain strong
MINLP formulations. Section 3 first derives the convex hull description of
two simple sets and then uses them as building blocks to describe the convex
hull of more complicated sets. Section 4 describes a number of applications
where the perspective reformulation technique can be successfully applied.
Section 5 contains some discussion about computational approaches for
solving relaxations arising from the perspective reformulation. Section 6
demonstrates numerically the impact of perspective reformulation approach
on two applications. Concluding remarks are offered in Section 7.

2. Perspective Functions and Convex Hulls. The perspective of
a given function of f : Rn → R is the function f̃ : Rn+1 → R defined as
follows:

f̃(λ, x) =

 λf(x/λ) if λ > 0
0 if λ = 0
∞ otherwise.

(2.1)

An important property of perspective functions is that f̃ is convex provided
that f is convex. A starting point for the use of the perspective function
for strong formulations of MINLPs is the work of Ceria and Soares [8].

2.1. Using Perspective Functions to Obtain Convex Hulls. Ce-
ria and Soares characterize the closure of the convex hull of the union of
convex sets using the perspective transformation. The main result of Ceria
and Soares is stated (in a simplified form) in Theorem 2.1.

Theorem 2.1 (Ceria and Soares [8]). For t ∈ T , let Gt : Rn → Rmt

be a vector-valued function with the property that the corresponding sets

Kt = {x ∈ Rn : Gt(x) ≤ 0}

are convex and bounded. Let K = conv(∪t∈T Kt). Then x ∈ K if and only
if the following (nonlinear) system is feasible:

x =
∑
t∈T

xt;
∑
t∈T

λt = 1; G̃t(λt, x
t) ≤ 0, λt ≥ 0, ∀t ∈ T. (2.2)

Theorem 2.1 provides an extended formulation that describes the set K
in a higher dimensional space. The work extends a well-known result from
Balas in the case that all the Kt are polyhedral [2]. Also note that Gt being
a convex function is sufficient, but not necessary for Kt to be convex.

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 5

A similar argument using the perspective functions was used by Stubbs
and Mehrotra to formulate a convex programming problem to generate
disjunctive cutting planes [25]. Later, Grossmann and Lee apply these same
concepts to more general logic-constrained optimization problems known a
generalized disjunctive programs [15].

2.2. Computational Challenges. There are a number of challenges
in using the convex hull characterization of Theorem 2.1 in computation.
One challenge is determining an appropriate disjunction such that F ⊆
∪t∈T Kt. For example, using the disjunction associated with requiring a
collection of the variables to be in {0, 1} requires |T | to be exponential in
the number of variables chosen. In this case, a cutting plane algorithm,
like the one suggested by Stubbs and Mehrotra may be appropriate [25].

A second challenge occurs when Kt is not bounded. In this case,
the convex hull characterization is more complicated, and a closed form
solution may not be known. Ceria and Soares address these complications
and suggest a log-barrier approach to its solution [8].

A third challenge arises from the form of the perspective function. By
definition, there is a point of nondifferentiability at λt = 0. This may
cause difficulty for solvers used to solve the relaxation. Grossmann and
Lee suggest to use the perturbed perspective inequality

(λ + ε)f(x/(λ + ε)) ≤ 0

for a small constant ε > 0, which is valid if f(0) ≤ 0. An improved
perturbed expression is suggested by Furman, Sawaya, and Grossmann
[14]:

((1− ε)λ + ε)f(x/((1− ε)λ + ε)) ≤ εf(0)(1− λ). (2.3)

Notice that both expressions give an exact approximation of the perspective
inequality as ε → 0. In addition, inequality (2.3) has the very useful
property that it gives the perspective inequality at λ = 0 and λ = 1,
for any value of 0 < ε < 1. Furthermore, it preserves convexity as the
left hand side of the inequality is convex if f is convex, and the inequality
always forms a relaxation for any choice of 0 < ε < 1.

When the sets Kt are defined by conic quadratic inequalities (CQI),
it is easier to deal with the nondifferentiability issue as the perspective of
the associated functions are known to be representable by CQI [3]. We
discuss this further in Section 5.2 and give CQI representation of different
perspective functions that arise in the MINLP applications considered in
Section 4.

3. Simple Sets. We next apply Theorem 2.1 to the special case where
T = 2, and the sets K0 and K1 have a specific, simple, structure. More
precisely, we consider the cases when K0 is either a single point or a ray
and K1 is defined by convex functions. We then use these sets as building

6 OKTAY GÜNLÜK AND JEFF LINDEROTH

blocks to describe the convex hull of more complicated sets which appear as
sub-structures in some MINLP models. We also note that there is ongoing
work on other special cases by Bonami, Cornuéjols, and Hijazi [5].

3.1. The Convex Hull of a Point and a Convex Set. Consider
the set W = W 0 ∪ W 1 which is defined using the indicator variable z ∈
{0, 1} as follows:

W 0 =
{
(x, z) ∈ Rn+1 : x = 0, z = 0

}
and

W 1 =
{
(x, z) ∈ Rn+1 : fi(x) ≤ 0 for i ∈ I, u ≥ x ≥ l, z = 1

}
where u, l ∈ Rn

+, and I is the index set for the constraints. Clearly, both
W 0 and W 1 are bounded, and W 0 is a convex set. Furthermore, if W 1 is
also convex then we may write an extended formulation as

conv(W) =
{

(x, z) ∈ Rn+1 : 1 ≥ λ ≥ 0,

x = λx1 + (1− λ)x0,

z = λz1 + (1− λ)z0,

x0 = 0, z0 = 0, z1 = 1

fi(x1) ≤ 0 for i ∈ I, u ≥ x1 ≥ l
}

.

We next give a description of W without the additional variables.
Lemma 3.1. If W 1 is convex, then conv(W) = W− ∪W 0, where

W− =
{

(x, z) ∈ Rn+1 : fi(x/z) ≤ 0 i ∈ I, uz ≥ x ≥ lz, 1≥ z > 0
}

.

(notice that z is strictly positive.)
Proof. As x0, z0 and z1 are fixed in the extended formulation above,

it is possible to substitute out these variables. In addition, as z = λ after
these substitutions, we can eliminate λ. Furthermore, as x = λx1 = zx1,
we can eliminate x1 by replacing it with x/z provided that z > 0. If, on
the other hand, z = 0, clearly (x, 0) ∈ conv(W) if and only if (x, 0) ∈ W 0.

It is also possible to show that W 0 is contained in the closure of W−

(see [17]) which leads to the following observation.
Corollary 3.1. conv(W) = closure(W−).
We would like to emphasize that even when f(x) is a convex function

fi(x/z) may not be convex. However, for z > 0 we have

fi(x/z) ≤ 0 ⇔ zqfi(x/z) ≤ 0 (3.1)

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 7

for any q ∈ R. In particular, taking q = 1 gives the perspective function
which is known to be convex provided that f(x) is convex. Consequently,
the set W− described in Lemma 3.1 can also be written as follows:

W− =
{

(x, z) ∈ Rn+1 : zfi(x/z) ≤ 0 i ∈ I, uz ≥ x ≥ lz, 1≥ z > 0
}

.

When all fi(x) that define W 1 are polynomial functions, the convex
hull of W can be described in closed form in the original space of variables.
More precisely, let

fi(x) =
pi∑

t=1

cit

n∏
j=1

x
qitj

j

for all i ∈ I and define qit =
∑n

j=1 qitj , qi = maxt{qit} and q̄it = qi − qit.
If all fi(x) are convex and bounded in [l, u], then (see [17])

conv(W) =
{

(x, z) ∈ Rn+1 :
pi∑

t=1

citz
q̄it

n∏
j=1

x
qitj

j ≤ 0 for i ∈ I,

zu ≥ x ≥ lz, 1≥ z ≥ 0
}

.

3.2. The Convex Hull of a Ray and a Convex Set. It is possible
to extend Lemma 3.1 to obtain the convex hull description of a ray and a
convex set that contains the ray as an unbounded direction. More precisely
consider the set T = T0 ∪ T1 where

T 0 =
{
(x, y, z) ∈ Rn+1+1 : x = 0, y ≥ 0, z = 0

}
,

and

T 1 =
{
(x, y, z) ∈ Rn+1+1 : fi(x) ≤ 0 i ∈ I, g(x) ≤ y, u ≥ x ≥ l, z = 1

}
where u, l ∈ Rn

+, and I = {1, . . . , t}.
Lemma 3.2. If T 1 is convex, then conv(T) = T− ∪ T 0, where

T− =
{

(x, y, z) ∈ Rn+1+1 : fi(x/z) ≤ 0 i ∈ I, g(x/z) ≤ y/z,

uz ≥ x ≥ lz, 1 ≥ z > 0
}

.

Proof. Using the same arguments as in the proof of Lemma 3.1, it is
easy to show that conv(T) = P ∪T 0, where the following gives an extended
formulation for the set P :

P =
{

(x, y, z) ∈ Rn+1+1 : fi(x/z) ≤ 0 i ∈ I, uz ≥ x ≥ lz, 1 ≥ z > 0

g(x/z) ≤ y/z − 1− z

z
y0, y0 ≥ 0

}
.

8 OKTAY GÜNLÜK AND JEFF LINDEROTH

As (1− z)/z > 0 and y0 ≥ 0 for all feasible points, y0 can easily be
projected out to show that P = T−.

Similar to the proof of Corollary 3.1, it is possible to show that T 0 is
contained in the closure of T−.

Corollary 3.2. conv(T) = closure(T−).
In addition, we note that when all fi(x) for i ∈ I and g(x) are polynomial
functions, the convex hull of T can be described in closed form by simply
multiplying each inequality in the description of T− with z raised to an
appropriate power. We do not present this description to avoid repetition.

3.3. A Simple Quadratic Set. Consider the following mixed-integer
set with 3 variables:

S =
{

(x, y, z) ∈ R2 × B : y ≥ x2, uz ≥ x ≥ lz, x ≥ 0
}

.

Notice that S = S0 ∪ S1 where S0 =
{
(0, y, 0) ∈ R3 : y ≥ 0

}
, and

S1 =
{
(x, y, 1) ∈ R3 : y ≥ x2, u ≥ x ≥ l, x ≥ 0

}
.

Applying Lemma 3.2 gives the convex hull of S as the perspective of the
quadratic function defining the set. Note that when z > 0 the constraint
yz ≥ x2 is same as y/z ≥ (x/z)2 and when z = 0, it implies that x = 0.

Lemma 3.3. conv(S) = Sc where

Sc =
{
(x, y, z) ∈ R3 : yz ≥ x2, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x, y ≥ 0

}
.

Notice that x2 − yz is not a convex function and yet the set T c =
{(x, y, z) ∈ R3 : yz ≥ x2, x, y, z ≥ 0} is a convex set. This explains
why the set Sc, obtained by intersecting T c with half-spaces, is convex.

3.4. A Larger Quadratic Set. Using the convex hull description of
the set S, it is possible to produce a convex hull description of the following
set

Q =
{

(w, x, z) ∈ Rn+1 × Bn : w ≥
n∑

i=1

qix
2
i , uizi ≥ xi ≥ lizi, i ∈ I

}
,

(3.2)
where I = {1, . . . , n} and q, u, l ∈ Rn

+. The convex hull description of Q
is closely related to the convex envelope of the function

∑n
i=1 qix

2
i over

a mixed integer set. This set was first considered in the Ph.D. thesis of
Stubbs [26].

Now consider the following extended formulation of Q

Q̄
def=

{
(w, x, y, z) ∈ R3n+1 : w ≥

∑
i

qiyi, (xi, yi, zi) ∈ Si, i ∈ I
}

where Si has the same form as the set S discussed in the previous sec-
tion except the bounds u and l are replaced with ui and li. Note that

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 9

if (w, x, y, z) ∈ Q̄ then (w, x, z) ∈ Q, and therefore proj(w,x,z)(Q̄) ⊆ Q.
On the other hand, for any (w, x, z) ∈ Q, letting y′i = x2

i gives a point
(w, x, y′, z) ∈ Q̄. Therefore, Q̄ is indeed an extended formulation of Q, or,
in other words, Q = proj(w,x,z)(Q̄).

Before we present a convex hull description of Q̄ we first define some
basic properties of mixed-integer sets. First, remember that given a closed
set P ⊂ Rn, a point p ∈ P is called an extreme point of P if it can not be
represented as p = 1/2p1 + 1/2p2 for p1, p2 ∈ P , p1 6= p2. The set P is
called pointed if it has extreme points. A pointed set P is called integral
with respect to (w.r.t.) a subset of the indices J if for any extreme point
p ∈ P , pi ∈ Z for all i ∈ J .

Lemma 3.4 ([17]). For i = 1, 2 let Pi ⊂ Rni be a closed and pointed
set which is integral w.r.t. indices Ii. Let

P ′ = {(x, y) ∈ Rn1+n2 : x ∈ P1, y ∈ P2},

then,
(i) P ′ is integral with respect to I1 ∪ I2.
(ii) conv(P ′) = {(x, y) ∈ Rn1+n2 : x ∈ conv(P1), y ∈ conv(P2)}.
Lemma 3.5 ([17]). Let P ⊂ Rn be a given closed, pointed set and let

P ′ = {(w, x) ∈ Rn+1 : w ≥ ax, x ∈ P}

where a ∈ Rn.
(i) If P is integral w.r.t. J , then P ′ is also integral w.r.t. J .
(ii) conv(P ′) = P ′′ where

P ′′ = {(w, x) ∈ Rn+1 : w ≥ ax, x ∈ conv(P)}.

We are now ready to present the convex hull of Q̄.
Lemma 3.6. The set

Q̄c =
{

(w, x, y, z) ∈ R3n+1 : w ≥
∑

i

qiyi, (xi, yi, zi) ∈ Sc
i , i ∈ I

}
.

is integral w.r.t. the indices of z variables. Furthermore, conv(Q̄) = Q̄c.
Proof. Let

D = {(x, y, z) ∈ R3n : (xi, yi, zi) ∈ Si, i ∈ I}

so that

Q̄ = {(w, x, y, z) ∈ R3n+1 : w ≥
n∑

i=1

qiyi, (x, y, z) ∈ D}.

By Lemma 3.5, the convex hull of Q̄ can be obtained by replacing D with
its convex hull in this description. By Lemma 3.4, this can simply be done

10 OKTAY GÜNLÜK AND JEFF LINDEROTH

by taking convex hulls of Si’s, that is, by replacing Si with conv(Si) in the
description of D. Finally, by Lemma 3.5, Q̄c is integral.

A natural next step is to study the projection of the set Q̄c into the
space of (w, x, z). One possibility is to substitute the term x2

i /zi for each
variable yi, resulting in the inequality w ≥

∑
i qix

2
i /zi. This formula,

however, may not be suitable for computation as it is not defined for zi = 0,
and zi = 0 is one of the two feasible values for zi. We next present an
explicit description of the projection that uses an exponential number of
inequalities. Let

Qc =
{

(w, x, z) ∈ R2n+1 : w
∏
i∈S

zi ≥
∑
i∈S

qix
2
i

∏
l∈S\{i}

zl, ∀S ⊆ I (Π)

uizi ≥ xi ≥ lizi, xi ≥ 0, i ∈ I
}

Notice that a given point p̄ = (w̄, x̄, z̄) satisfies the nonlinear inequalities
in the description of Qc for a particular S ⊆ I if and only if one of the
following conditions hold: (i) z̄i = 0 for some i ∈ S, or, (ii) if all zi > 0,
then w̄ ≥

∑
i∈S qix̄

2
i /z̄i. Based on this observation it is possible to show

that these (exponentially many) inequalities are sufficient to describe the
convex hull of Q in the space of the original variables.

Lemma 3.7 ([17]). Qc = proj(w,x,z)(Q̄c). Note that all of the expo-
nentially many inequalities that are used in the description of Qc are indeed
necessary. To see this, consider a simple instance with ui = li = qi = 1
for all i ∈ I = {1, 2, . . . , n}. For a given S̄ ⊆ I, let pS̄ = (w̄, x̄, z̄) where
w̄ = |S̄| − 1, z̄i = 1 if i ∈ S̄, and z̄i = 0 otherwise, and x̄ = z̄. Note that
pS̄ 6∈ Qc. As z̄i = qix̄

2
i , inequality (Π) is satisfied by p̄ for S ⊆ I if and only

if

(|S̄| − 1)
∏
i∈S

z̄i ≥ |S|
∏
i∈S

z̄i.

Note that unless S ⊆ S̄, the term
∏

i∈S z̄i becomes zero and therefore
inequality (Π) is satisfied. In addition, inequality (Π) is satisfied whenever
|S̄| > |S|. Combining these two observations, we can conclude that the
only inequality violated by pS̄ is the one with S = S̄. Due to its size, the
projected set is not practical for computational purposes and we conclude
that it is more advantageous to work in the extended space, keeping the
variables yi

3.5. A Simple Non-quadratic Set. The simple 3 variable mixed-
integer set S introduced in Section 3.3 can be generalized to the following
set, studied by Aktürk, Atamtürk, and Gürel [1]:

C =
{

(x, y, z) ∈ R2 × B : y ≥ xa/b, uz ≥ x ≥ lz, x ≥ 0
}

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 11

where a, b ∈ Z+ and a ≥ b > 0. Clearly C = C0 ∪ C1, with

C0 = {(0, y, 0) ∈ R3 : y ≥ 0},

and

C1 = {(x, y, 1) ∈ R3 : y ≥ xa/b, u ≥ x ≥ l, x ≥ 0}.

By applying Lemma 3.2, the convex hull of C is given by using the perspec-
tive of the function f(y, x) = yb − xa and scaling the resulting inequality
by za.

Lemma 3.8 (Aktürk, Atamtürk, Gürel [1]). The convex hull of C is
given by

Cc =
{
(x, y, z) ∈ R3 : ybza−b ≥ xa, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x, y ≥ 0

}
.

In addition, it is possible to construct the convex hull of larger sets
using the set C as a building block. See [1] for more details.

4. Applications. In this section, we present six applications to which
the perspective reformulation has been applied.

4.1. Separable Quadratic UFL. The Separable Quadratic Unca-
pacitated Facility Location Problem (SQUFL) was introduced by Günlük,
Lee, and Weismantel [16]. In the SQUFL, there is a set of customers J ,
opening a facility i ∈ I. All customers have unit demand that can be
satisfied using open facilities only. The shipping cost is proportional to
the square of the quantity delivered. Letting zi indicate if facility i ∈ I is
open, and xij denote the fraction of customer j’s demand met from facility
i, SQUFL can be formulated as follows:

min
∑
i∈I

cizi +
∑
i∈I

∑
j∈J

qijx
2
ij

subject to xij ≤ zi ∀i ∈ I,∀j ∈ J,∑
i∈I

xij = 1 ∀j ∈ J,

zi ∈ {0, 1}, xij ≥ 0 ∀i ∈ I,∀j ∈ J.

To apply the perspective formulation, auxiliary variables yij are used to
replace the terms x2

ij in the objective function and the constraints

x2
ij − yij ≤ 0 ∀i ∈ I, j ∈ J (4.1)

are added. In this reformulation, if zi = 0, then xij = 0 and yij ≥ 0 ∀j ∈ J ,
while if zi = 1, the convex nonlinear constraints (4.1) should also hold.

12 OKTAY GÜNLÜK AND JEFF LINDEROTH

Therefore, we can strengthen the formulation of SQUFL by replacing (4.1)
by its perspective reformulation

x2
ij/zi − yij ≤ 0 ∀i ∈ I,∀j ∈ J. (4.2)

We demonstrate the impact of this reformulation on solvability of the
MINLP in Section 6.1.

4.2. Network Design with Congestion Constraints. The next
application is a network design problem with requirements on queuing de-
lay. Similar models appear in the papers [6], [4], and [7]. In the problem,
there is a set of commodities K to be shipped over a capacitated directed
network G = (N,A). The capacity of arc (i, j) ∈ A is uij , and each node
i ∈ N has a net supply bk

i of commodity k ∈ K. There is a fixed cost cij of
opening each arc (i, j) ∈ A, and we introduce {0,1}-variables zij to indicate
whether arc (i, j) ∈ A is opened. The quantity of commodity k routed on
arc (i, j) is measured by variable xk

ij and fij =
∑

k∈K xk
ij denotes the total

flow on the arc. A typical measure of the total weighted congestion (or
queuing delay) is

ρ(f) def=
∑

(i,j)∈A

rij
fij

1− fij/uij
,

where rij ≥ 0 is a user-defined weighting parameter for each arc. We use
decision variables yij to measure the contribution of the congestion on arc
(i, j) to the total congestion ρ(f). The network should be designed so as
to keep the total queuing delay less than a given value β, and this is to be
accomplished at minimum cost. The resulting optimization model (NDCC)
can be written as

min
∑

(i,j)∈A

cijzij

subject to
∑

(i,j)∈A

xk
ij −

∑
(j,i)∈A

xk
ji = bk

i ∀i ∈ N, ∀k ∈ K,

∑
k∈K

xk
ij − fij = 0 ∀(i, j) ∈ A,

fij ≤ uijzij ∀(i, j) ∈ A, (4.3)

yij ≥
rijfij

1− fij/uij
∀(i, j) ∈ A, (4.4)

∑
(i,j)∈A

yij ≤ β,

x ∈ R|A|×|K|
+ , y ∈ R|A|

+ , f ∈ R|A|
+ , z ∈ {0, 1}|A|.

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 13

In this formulation of NDCC, note that if zij = 0, then fij = 0 and
yij ≥ 0. On the other hand, if zij = 1, then fij and yij must satisfy
fij ≤ uij and constraint (4.4). Therefore, each constraint (4.4) can be
replaced by its perspective counterpart:

zij

[
rijfij/zij

1− fij/(uijzij)
− yij

zij

]
≤ 0. (4.5)

4.3. Scheduling with controllable processing times. Consider a
scheduling problem where jobs are assigned to non-identical parallel ma-
chines with finite capacity. Let J denote the set of jobs and I denote the
set of machines. In this problem, not all jobs have to be processed but if
job j ∈ J is assigned to a machine i ∈ I, a reward of hij is collected. The
regular processing time of job j on machine i is pij , however by paying a
certain cost, it can be reduced to (pij − xij) where xij ∈ [0, uij]. The cost
of reducing the processing time of job i on machine j by xij units is given
by the expression

fij(xij) = kijx
aij/bij

ij .

This problem is called the machine-job assignment problem with control-
lable times and has been recently studied by Aktürk, Atamtürk and Gürel
[1]. A MINLP formulation for this problem is:

max
∑
i∈I

∑
j∈J

(hijzij − fij(xij))

subject to
∑
j∈J

(pijzij − xij) ≤ ci ∀i ∈ I

xij ≤ uijzij ∀i ∈ I, ∀j ∈ J (4.6)∑
i∈I

zij ≤ 1 ∀j ∈ J

zij ∈ {0, 1}, xij ≥ 0 ∀i ∈ I, ∀j ∈ J (4.7)

where the variable zij denotes if job j is assigned to machine i and xij is
the reduction on the associated processing time. The total processing time
available on machine i ∈ I is denoted by ci. The objective is to maximize
the sum of the rewards minus the cost of reducing the processing times.

As in the case of the SQUFL in Section 4.1, after adding a new variable
yij and a new constraint

x
aij/bij

ij ≤ yij (4.8)

for all i ∈ I, j ∈ J , it is possible to replace the objective function with the
following linear expression:∑

i∈I

∑
j∈J

(hijzij − yij/kij).

14 OKTAY GÜNLÜK AND JEFF LINDEROTH

The inequality (4.8) together with inequalities (4.6) and (4.7) is the set C
studied in Section 3.5 and therefore, inequality (4.8) can be replaced with
its perspective counterpart

zij

(
xij

zij

)aij/bij

≤ yij (4.9)

to obtain a stronger formulation. The authors of [1] raise both sides of
inequality (4.9) to the bth power and multiply both sides by z

aij−bij

ij to
obtain equivalent inequalities

x
aij

ij ≤ y
bij

ij zaij−bij . (4.10)

4.4. The unit commitment problem. One of the essential opti-
mization problems in power generation is the so-called unit commitment
problem which involves deciding the power output levels of a collection of
power generators over a period of time. In this setting, a generator (also
called a unit) is either turned off and generates no power, or it is turned on
and generates power in a given range [l, u]. It is important to point out that
l > 0 and therefore production levels are ”semi-continuous”. In most mod-
els, time horizon is divided into a small number of discrete intervals (ex:
48 half hour intervals for a daily problem) and the generators are required
to collectively satisfy a given demand level in each interval. The operating
cost of a generator is typically modeled by a convex quadratic function.
There are also additional constraints including the most commonly used
min-up, min-down constraints that require that a generator must stay on
for a certain number of time periods after it is turned on, and similarly, it
must stay down for a number of time periods after it is turned off. Letting
I denote the set of generators and T denote the set of time periods under
consideration, a MINLP formulation for this problem is the following:

min
∑
i∈I

∑
t∈T

hitzit +
∑
i∈I

∑
t∈T

fit(xit)

subject to
∑
i∈I

xit = dt ∀t ∈ T

lizit ≤ xit ≤ uizit ∀i ∈ I, ∀t ∈ T (4.11)

z ∈ P (4.12)

zij ∈ {0, 1} ∀i ∈ I, ∀t ∈ T (4.13)

where variable zit denotes if generator i ∈ I is turned on in period t ∈ T
and variable xit gives the production level when the generator is on. There
is a fixed cost hit of operating a unit i in period t as well as a variable cost
given by the convex quadratic function fit(x) = aitx

2 + bitx for some given

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 15

ait, bit ∈ R+. The demand requirement in period t is given by dt. Finally,
the constraint (4.12) above expresses some other constraints involving how
generators can be turned on and off.

To obtain a stronger formulation, it is again possible to introduce new
variables yit and constraints

aitx
2
it + bitxit ≤ yit (4.14)

for all i ∈ I and t ∈ T so that the new variable yit can replace the term
fit(xit) in the objective function. Using inequalities (4.11) and (4.13), we
can now replace inequality (4.14) with its perspective counterpart

aitx
2
it + bitxitzit ≤ yitzit (4.15)

to obtain a stronger formulation.

4.5. Stochastic Service System Design. Elhedhli [10] describes a
stochastic service system design problem (SSSD) modeled as a network of
M/M/1 queues. The instance is characterized by a sets of customers M ,
facilities N , and service levels K. There are binary decision variables xij

to denote if customer i’s demand is met by facility j and yjk to denote if
facility j is operating at service level k. Customer i has a mean demand
rate of λi and facility j has a mean service rate of µjk when operated at
service level k. There is a fixed cost cij of assigning customer i to facility
j, and a fixed cost fjk of operating facility j at level k.

A straightforward formulation of problem is not convex, however, by
introducing auxiliary variables vj and zjk, Elhedhli provides the following
convex MINLP formulation:

min
∑
i∈M

∑
j∈N

cijxij + t
∑
j∈N

vj +
∑
j∈N

∑
k∈K

fjkyjk

subject to
∑
i∈M

λixij −
∑
k∈K

µjkzjk = 0 ∀j ∈ N∑
j∈N

xij = 1 ∀i ∈ M

∑
k∈K

yjk ≤ 1 ∀j ∈ N

zjk − yjk ≤ 0 ∀j ∈ N,∀k ∈ K (4.16)
zjk − vj/(1 + vj) ≤ 0 ∀j ∈ N,∀k ∈ K (4.17)

zjk, vj ≥ 0, xij , yjk ∈ {0, 1} ∀i ∈ M, j ∈ N,∀k ∈ K (4.18)

Instead of directly including the nonlinear constraints (4.17) in the for-
mulation, Elhedhli proposes linearizing the constraints at points (vj , zjk) =

16 OKTAY GÜNLÜK AND JEFF LINDEROTH

(vb
j , 1), b ∈ B, yielding

zjk −
1

(1 + vb
j)2

vj ≤
(vb

j)
2

(1 + vb
j)2

. (4.19)

Elhedhli uses a dynamic cutting plane approach to add inequalities (4.19).
Notice that if yjk = 0, then zjk = 0 and vj ≥ 0, and therefore inequal-

ity (4.17) can be replaced by their perspective counterpart

zjk ≤
vj

1 + vj/yjk
(4.20)

yielding a tighter (non-linear) formulation. Furthermore, linearizing these
inequalities at points (vj , yjk, zjk) = (vb

j , 1, 1), b ∈ B, gives

zjk −
1

(1 + vb
j)2

vj ≤
(vb

j)
2

(1 + vb
j)2

yjk (4.21)

which dominate the inequalities used in Elhedhli [10]. Note that the in-
equalities (4.21) could also be derived by applying a logical integer strength-
ening argument to the inequalities (4.19). The linearized perspective in-
equalities are called perspective cuts [11], which are discussed in greater
detail in Section 5.3. Computational results demonstrating the effect of
the perspective reformulation on this application are given in Section 6.2.

4.6. Portfolio Selection. A canonical optimization problem in fi-
nancial engineering is to find a minimum variance portfolio that meets a
given minimum expected return requirement of ρ > 0, see [22]. In the
problem, there is a set N of assets available for purchase. The expected
return of asset i ∈ N is given by αi, and the covariance of the returns
between pairs of assets is given in the form of a positive-definite matrix
Q ∈ Rn×n. There can be at most K different assets in the portfolio and
there is a minimum and maximum buy-in thresholds for the assets chosen.
A MINLP formulation of the problem is

min{xT Qx | eT x = 1, αT x ≥ ρ, eT z ≤ K; `izi ≤ xi ≤ uizi, zi ∈ B∀i ∈ N},

where the decision variable xi is the percentage of the portfolio invested in
asset i and zi is a binary variable indicating the purchase of asset i. Unfor-
tunately, direct application of the perspective reformulation is not possible,
as the objective is not a separable function of the decision variables.

However, in many practical applications, the covariance matrix is ob-
tained from a factor model and has the form Q = BΩBT + ∆2, for a
given exposure matrix, B ∈ Rn×f , positive-definite factor-covariance ma-
trix Ω ∈ Rf×f , and positive definite, diagonal specific-variance matrix
∆ ∈ Rn×n [24]. If a factor model is given, a separable portion of the

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 17

objective function is easily extracted by introducing variables yi, changing
the objective to

minxT (BΩBT)x +
∑
i∈N

∆iiyi,

and enforcing the constraints yi ≥ x2
i ∀i ∈ N . These constraints can then

be replaced by their perspective counterparts yi ≥ x2
i /zi to obtain a tighter

formulation.
Even if the covariance matrix Q does not directly have an embedded

diagonal structure from a factor model, it may still be possible to find a
diagonal matrix D such that R = Q−D is positive-definite. For example,
Frangioni and Gentile [11] suggest using D = λnI, where λn > 0 is the
smallest eigenvalue of Q. Frangioni and Gentile [12] subsequently gave a
semidefinite programming approach to obtain a diagonal matrix D that
may have desirable computational properties.

5. Computational Approaches. Algorithms to solve MINLP are
based on solving a sequence of continuous relaxations of the formulation. In
this section, we discuss approaches and software for solving the perspective
reformulation. The approaches for solving the perspective reformulation
fall into three general categories, with tradeoffs in speed and generality of
the approaches. The first approach, for use in the most general cases, is
to simply give the reformulated problem to a general purpose NLP solver.
The second approach is to use a solver that is specialized for second-order
cone programming problems. A final approach is to linearize the nonlinear
functions of the perspective reformulation and use an LP solver. This
approach is most effective if the linearizations are added in a dynamic
manner.

5.1. NLP Solvers. Care must be taken when using a traditional
solver for nonlinear programs to solve the perspective reformulation. Ap-
plying the perspective transformation to a constraint f(x) ≤ 0 leads to
zf(x/z) ≤ 0, which is not defined when z = 0. Often, the constraint
zf(x/z) ≤ 0 can be manipulated to remove z from the denominator, but
this may result in new difficulties for the NLP solver. To illustrate this
point, consider the inequalities (4.1) in the description of the SQUFL intro-
duced in Section 4.1. Applying the perspective transformation to x2−y ≤ 0
gives

x2/z − y ≤ 0, (5.1)

which is not defined at z = 0. Multiplying both sides of the inequality by
z gives

x2 − yz ≤ 0. (5.2)

18 OKTAY GÜNLÜK AND JEFF LINDEROTH

However, since the function x2 − yz is not convex, traditional NLP solvers
cannot guarantee convergence to a globally optimal solution to the relax-
ation. A reformulation trick can be used to turn (5.1) into an equivalent
inequality with a convex constraint function. Specifically, since y, z ≥ 0,
(5.1) is equivalent to √

(2x)2 + (y − z)2 − y − z ≤ 0, (5.3)

and the constraint function in (5.3) is convex. This, however, may intro-
duce yet a different obstacle to NLP software, as the constraint function in
(5.3) is not differentiable at (x, y, z) = (0, 0, 0). In Section 6 we will show
some computational experiments aimed at demonstrating the effectiveness
of NLP software at handling perspective constraints in their various equiv-
alent forms.

5.2. SOCP Solvers. A second-order cone program (SOCP) is a
mathematical program with (conic) quadratic inequalities of the form

‖Ax + b‖2 ≤ cT x + d. (5.4)

A rotated second-order cone constraint is of the form

x2 ≤ yz with y ≥ 0, z ≥ 0. (5.5)

As noted in Section 5.1, rotated second-order cone constraints (5.5) are
equivalent to second-order cone constraints (5.4) since

‖(2x, y − z)T ‖ ≤ y + z ⇔ x2 ≤ yz, y ≥ 0, z ≥ 0. (5.6)

The set of points that satisfy (5.4) or (5.5) forms a convex set, and
efficient and robust algorithms exist for solving optimization problems con-
taining second-order cone constraints [27, 23]. An interesting and impor-
tant observation from a computational standpoint is that the nonlinear
inequalities present in all of the applications described in Section 4 can be
described with second order cone constraints. Further, if a set of points
is representable using second order cone constraints, then the perspective
mapping of the set is also SOC-representable [3]. Therefore, quite often
software designed to solve SOCPs can be used to solve the perspective
relaxations arising from real applications.

To demonstrate the variety of reformulation techniques required to
express nonlinear constraints in their SOC representation, we give the SOC
representations for all of the nonlinear perspective constraints appearing
in the applications in Section 4. The book of Ben-Tal and Nemirovski
[3] contains a wealth of knowledge about the types of inequalities whose
feasible regions are representable with CQI.

For the SQUFL described in Section 4.1, the nonlinear inequalities in
the perspective reformulation (4.2) can be multiplied by zi and then are ev-
idently in rotated second order cone form (5.5). The nonlinear inequalities

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 19

(4.5) in the perspective reformulation of the NDCC described in Section 4.2
can be put in the (rotated) second order cone form

(yij − rijfij)(uijzij − fij) ≥ rijf
2
ij , (5.7)

which is a rotated SOC constraint as yij ≥ rijfij and uijzij ≥ fij for
any feasible solution. Note that we multiply the inequality by zij to ob-
tain the form (5.7) above. For the scheduling application of Section 4.3,
the nonlinear inequalities (4.10) can be represented using SOC constraints.
In this case, the transformation is more complicated, requiring O(log2 aij)
additional variables and O(log2 aij) constraints. The details of the repre-
sentation are provided in [1]. The nonlinear inequalities (4.15) arising from
the perspective reformulation of the Unit Commitment Problem are also
representable with CQI as

aitx
2
it ≤ zit(bitxit − yit).

The inequalities (4.20) from the SSSD problem from Section 4.5 are repre-
sentable as rotated SOC constraints using the relation

zjkyjk + zjkvj − yjkvj ≤ 0 ⇔ v2
j ≤ (−zjk + vj)(yjk + vj).

For the mean-variance problem of Section 4.6, the constraints yi ≥ x2
i ∀i ∈

N and the perspective version yi ≥ x2
i /zi ∀i ∈ N can be placed in SOC

format in the same fashion as the SQUFL problem in Section 4.1.
Using SOC software is generally preferable to using general NLP soft-

ware for MINLP instances whose only nonlinearities can be put in SOC
form. We will provide computational evidence for the improved perfor-
mance of SOCP solvers over general NLP software in Section 6.

5.3. LP Solvers. We next discuss how to use outer approximation
cuts [9] to solve the perspective formulation via linear programming solvers.
As current LP solvers are significantly faster then both NLP and SOCP
solvers, this approach may offer significant advantages. We will discuss
this idea using a simple MINLP where the nonlinearity is restricted to the
objective function. Consider

min
(x,z)∈Rn×B

{
f(x) + cz | Ax ≤ bz

}
,

where (i) X = {x | Ax ≤ b} is bounded (also implying {x | Ax ≤ 0} = {0}),
(ii) f(x) is a convex function that is finite on X, and (iii) f(0) = 0. Under
these assumptions, for any x̄ ∈ X and subgradient s ∈ ∂f(x̄), the following
inequality

v ≥ f(x̄) + c + sT (x− x̄) + (c + f(x̄)− sT x̄))(z − 1) (5.8)

is valid for the equivalent mixed integer program

min
(x,z,v)∈Rn×B×R

{
v | v ≥ f(x) + cz,Ax ≤ bz

}
.

20 OKTAY GÜNLÜK AND JEFF LINDEROTH

Inequality (5.8) is called the perspective cut and has been introduced by
Frangioni and Gentile [11]. In their paper, Frangioni and Gentile use these
cuts dynamically to build a tight formulation. It is possible to show [18]
that perspective cuts are indeed outer approximation cuts for the perspec-
tive reformulation for this MINLP and therefore adding all (infinitely many)
perspective cuts has the same strength as the perspective reformulation.

Furthermore, an interesting observation is that the perspective cuts
can also be obtained by first building a linear outer approximation of the
original nonlinear inequality v ≥ f(x)+cz, and then strengthening it using
a logical deductive argument. For example, in the SQUFL problem de-
scribed in Section 4.1, the outer approximation of the inequality yij ≥ x2

ij

at a given point (x̄, ȳ, z̄) is

yij ≥ 2(x̄ij)xij − (x̄ij)2 (5.9)

Using the observation that if zi = 0, then xij = yij = 0, this inequality can
be strengthened to

yij ≥ 2(x̄ij)xij − (x̄ij)2zi (5.10)

The inequality (5.10) is precisely the perspective cut (5.8) for this instance.
Following their work on perspective cuts, Frangioni and Gentile com-

putationally compare using a LP solver (where perspective cuts are added
dynamically) and using a second-order cone solver [13]. Based on their
experiments on instances of the unit commitment problem and the portfo-
lio optimization problem discussed earlier, they conclude that the dynamic
(linear) approximation approach is significantly better than an SOC ap-
proach. The LP approach offers significant advantages, such as fast resolves
in branch-and-bound, and the extensive array of cutting planes, branching
rules, and heuristics that are available in powerful commercial MILP soft-
ware. However, a dynamic cutting plane approach requires the use of the
callable library of the solver software to add the cuts. For practitioners,
an advantage of nonlinear automatic reformulation techniques is that they
may be directly implemented in a modeling language.

Here, we offer a simple heuristic to obtain some of the strength of the
perspective reformulation, while retaining the advantages of MILP software
to solve the subproblem and an algebraic modeling language to formulate
the instance. The heuristic works by choosing a set of points in advance
and writing the perspective cuts using these points. This essentially gives
a linear relaxation of the perspective formulation that uses piecewise linear
under-approximations of the nonlinear functions. Solving this underap-
proximating MILP provides a lower bound on the optimal solution value of
the MINLP. To obtain an upper bound, the integer variables may be fixed
at the values found by the solution to the MILP, and a continuous NLP
solved. We will demonstrate the effectiveness of this approach in the next
section.

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 21

6. Computational Results. The improvement in computational
performance that can be obtained by using the perspective reformulation
is exhibited on two families of instances, SQUFL (described in Section 4.1)
and SSSD (described in Section 4.5). We also demonstrate the behavior
of the various methodologies available (NLP, SOCP, LP) for solving the
relaxations. When demonstrating the behavior of LP to solve the relax-
ations, we use the heuristic approach described at the end of Section 5.3.
The reader interested in comparisons to a dynamic outer-approximation
approach is referred to the work of Frangioni and Gentile [13].

6.1. Separable Quadratic Uncapacitated Facility Location.
Random instances of SQUFL were generated similar to the instances of
Günlük, Lee, and Weismantel [16]. For each facility i ∈ M , a location
pi is generated uniformly in [0, 1]2 and the variable cost parameter was
calculated as qij = 50‖pi − pj‖2. The fixed cost ci of opening a facility
is generated uniformly in [1, 100]. Ten random instances were created for
values of m ∈ {20, 30} and n ∈ {100, 150}. Thus, the instances solved had
between 2100 and 4650 constraints, and between 2020 and 4530 variables,
of which 20 or 30 (m) were binary variables. All instances were solved on
an Intel Core 2 2.4GHz CPU, with a CPU time limit of 8 hours. Each
instance was solved with four different methods.

1. The original formulation, was solved with CPLEX (v11.0) software
for Mixed-Integer Quadratic Programming (MIQP);

2. The perspective reformulation, with the perspective inequalities
put in rotated SOC form, was solved with the Mosek (v5.0) soft-
ware for Mixed-Integer Second-Order Cone Programming (MIS-
OCP);

3. The linear under-approximation using unstrengthened inequalities
(5.9) was solved with the CPLEX (v11.0) software for Mixed-
Integer Linear Programming (MILP); and

4. The linear under-approximation using the perspective cuts (5.10)
was solved with the CPLEX (v11.0) software for MILP.

Optimization problems like SQUFL, that have a convex quadratic objective
function and linear constraints, can be solved with a simplex-type pivot-
ing method [20]. The pivoting method has significant advantages when
used for branch-and-bound, as the solution procedure for child subprob-
lems may be very effectively warmstarted using solution information from
the parent node. CPLEX (v11.0) can use this pivoting-based method in its
MIQP solver, which is why CPLEX was chosen as the solver for original
formulation in method (1). The (rotated) SOC constraints (5.5) in the
perspective reformulation can be directly specified to the solver Mosek via
the GAMS modeling language. For this reason, we chose to use Mosek for
solving the perspective reformulation in method (2). In methods (3) and
(4), |B| = 10 breakpoints equally distributed between 0 and 1 were used
to underestimate each nonlinear function. After solving the approximating

22 OKTAY GÜNLÜK AND JEFF LINDEROTH

MILP, the value of the integer variables was fixed and the resulting con-
tinuous relaxation (a convex quadratic program) was solved with CPLEX.
Note that methods (3) and (4) are both implementations of the heuristic
method described at the end of Section 5.3. Methods (1) and (2) are exact
methods for solving the same problems. In order to make method (3) or
(4) exact, the linearizations would have to be added dynamically as cutting
planes.

Nonlinear and SOC Solvers: Table 1 shows the average performance of
the two nonlinear formulations, methods (1) and (2), run on an Intel Core
2 2.4GHz CPU, with a CPU time limit of 8 hours. In the heading of the
table, z̄∗ is the average optimal solution value, “# sol” denotes the number
of instances out of 10 that were solved to optimality within the time limit,
T̄ is the average CPU time required by the solver, and N̄ is the average
number of nodes in the branch and bound search tree.

Table 1
Computational Behavior of Nonlinear Formulations on SQUFL

Original Perspective
m n z̄∗ #sol T̄ N̄ #sol T̄ N̄
20 100 408.31 10 307 6,165 10 18 37
20 150 508.38 10 807 7,409 10 33 29
30 100 375.86 10 4,704 67,808 10 33 53
30 150 462.69 7 16,607 96,591 10 56 40

From this experiment, the strong positive influence of the perspective
reformulation is apparent—instances that cannot be solved in 8 hours with
the original formulation are solved in around a minute using the strong
perspective reformulation. In [18], the commercial solvers DICOPT [19]
and BARON [28] were unable to solve small instances without the refor-
mulation technique. This demonstrates that commercial MINLP solvers
have yet to implement the perspective reformulation technique.

LP Solvers: Table 2 shows the results of solving the SQUFL instances
using the two different linear approximations to the problem. In the ta-
ble, the average of all lower bounds (obtained by solving the MILP outer-
approximation to optimality) is given in the column z̄lb of the table. The av-
erage upper bound on z∗ is given in the column z̄ub. The average CPU time
(T̄) and average number of nodes (N̄) is also given in the table. The results
demonstrate that strengthening the linear approximation of the nonlinear
functions (the perspective cuts) significantly strengthens the formulation,
as indicated by the significantly reduced number of nodes. Solving the root
node linear relaxation with the piecewise linear approximation requires a
significant time for both the strengthen and unstrengthened formulations,
so the time improvements are not as great as in the nonlinear case.

The lower bound provided by the solution to the approximating MILP
is on average about 10% below the optimal solution value, and the upper

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 23

Table 2
Computational Behavior of Linear Formulations on SQUFL

Original Perspective
m n z̄∗ z̄ub z̄lb T̄ N̄ T̄ N̄
20 100 408.31 410.88 373.79 247 491 28 4
20 150 508.38 510.58 449.42 658 510 183 3
30 100 375.86 378.45 335.58 346 510 171 3
30 150 462.69 466.76 389.30 948 475 582 4

Table 3
Impact of Number of Piecewise Linear Approximation on Gap and Solution Time

m n |B| Ḡ(%) T̄ N̄
20 100 10 9.12% 28 4
20 100 25 1.23% 122 2
20 100 50 0.31% 367 3
20 150 10 11.98% 183 3
20 150 25 1.45% 841 6
20 150 50 0.41% 2338 6
30 100 10 11.32% 171 3
30 100 25 1.35% 1000 9
30 100 50 0.39% 1877 5
30 150 10 16.6% 582 4
30 150 25 2.09% 1433 6
30 150 50 0.48% 3419 6

bound found by fixing the integer variables is typically quite close to the
true optimal solution. In order to reduce the gap between lower and upper
bounds in this heuristic approach, a finer approximation of the nonlinear
function can be created by increasing |B|. Table 3 shows the results of
an experiment where the instances were approximated with more linear
inequalities, and the strengthened (perspective) reformulation was solved.
In the table, Ḡ(%) = 100(z̄ub − z̄lb)/z̄ub denotes the average gap between
lower and upper bounds in the heuristic approach. For these instances,
|B| = 50 breakpoints is typically sufficient to prove that the solution ob-
tained is within 1% of optimality. Note, however, the increase in CPU time
required to solve the linear relaxations.

6.2. Stochastic Service Design. Instances of the SSSD were ran-
domly created following the suggestions of Elhedhli [10]. The demand
rate of each customer λi was uniformly distributed between 0.5 and 1.5.
The lowest service rate µj1 was uniformly distributed between 5|M |/8|N |
and 7|M |/8|N |. For |K| = 3, the remaining service levels were set to
µj2 = 2µj1, and µj3 = 3µj1. The fixed cost for the lowest service level was
uniformly distributed between 250 and 500, and to induce economies of

24 OKTAY GÜNLÜK AND JEFF LINDEROTH

Table 4
Bonmin Performance on SSSD Instances

Without Perspective With Perspective
|M | |N | z∗ T (sec.) #N z∗ T (sec.) #N
15 4 5.76 1161 21357 Failed after 236 nodes
15 8 (9.37,9.41) 14400 224500 Failed after 91 nodes
20 4 3.71 282 6342 Failed after 786 nodes
20 8 (4.391,4.393) 14400 188987 Failed after 144 nodes
25 4 2.98 238 3914 Failed after 235 nodes
25 8 Failed after 2468 nodes Failed after 85 nodes

scale, if uj = fj1/µj1, then fixed costs for the higher service levels were set
to fj2 = u

2/3
j µj2 and fj3 = u

1/2
j µj3. We use t = 100 for the queueing weight

delay parameter, as these instances appear to be the most difficult com-
putationally in the work of Elhedhli. [10]. Instances with |M | = 15, 20, 25
and |N | = 4, 8 were created. The MINLP formulations contained between
48 and 90 rows and between 89 and 257 columns, where the majority of the
variables (between 72 and 224) were binary. The number of breakpoints
used in the linearization for each instance was |B| = 10.

Each instance was solved six times with the following combination of
formulation and software:

1. The original MINLP was solved with Bonmin (v0.9);
2. The perspective strengthened MINLP was solved with Bonmin;
3. The original instance was formulated using CQI and solved with

Mosek (v5.0);
4. The perspective strengthened instance was formulated using CQI

and solved with Mosek;
5. The linear under-approximation, not strengthened with perspec-

tive cuts, was solved with the CPLEX (v11.1) MILP solver. After
fixing the integer variables to the solution of this problem, the
continuous NLP problem was solved with IPOPT (v3.4);

6. The linear under-approximation, strengthened with perspective
cuts, was solved with the CPLEX MILP solver. After fixing the
integer variables to the solution of this problem, the continuous
NLP problem was solved with IPOPT (v3.4).

NLP Solvers: Table 4 shows the results solving each instance, with
and without the perspective strengthening, using the MINLP solver Bon-
min. Bonmin uses the interior-point-based solver IPOPT to solve nonlinear
relaxations. The table lists the optimal solution value (z∗) (or bounds on
the best optimal solution), the CPU time required (T) in seconds, and the
number of nodes evaluated (#N). A time limit of 4 hours was imposed.

In all cases, the NLP solver IPOPT failed at a node of the branch
and bound tree with the message “Error: Ipopt exited with error

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 25

Table 5
Number of Successful SSSD Relaxation Solutions (out of 10)

Formulation
Solver F1 F2 F3 F4
Ipopt 0 10 10 10

Conopt 0 0 10 10
SNOPT 0 3 0 7

Restoration failed.” For this instance, the NLP relaxation of SSSD
(especially the perspective-enhanced NLP relaxation) appears difficult to
solve. The fundamental issue is reliability not time, as when successful, all
NLP relaxations solved in less than one second. We performed a small ex-
periment designed to test the impact of the formulation and NLP software.
In this experiment, four different nonlinear formulations of the perspective
constraints were used, and the root node NLP relaxation was solved by
three different NLP packages: Ipopt (v3.4), Conopt (v3.14S), and SNOPT
(v7.2-4). The root relaxation was also solved by Mosek (using the conic
formulation) to obtain the true optimal solution value. The four different
formulations of the perspective strengthening of the nonlinear constraints
(4.17) were the following:

zjkyjk − zjkvj − vjyjk ≤ 0, (F1)

zjk −
vj

1 + vj/yjk
≤ 0, (F2)

v2
j − (vj − zjk)(vj + yjk) ≤ 0, (F3)√

4v2
j + (yjk + zjk)2 − 2vj + yjk − zjk ≤ 0. (F4)

In all cases, an initial iterate of

yjk = 1/|K|, xij = 1/|J |, vj =
∑

i λixij∑
k µjkyjk −

∑
i λixij

, zjk =
vjyjk

(1 + vj)

was used. Ten random instances of size |M | = 100, |N | = 40 were solved,
and Table 5 shows the number of instances for which the root node was
correctly solved to (global) optimality for each formulation and software
package. The results of this experiment indicate that modeling conic (per-
spective) inequalities in their convex form (F4) has an appreciably positive
impact on the solution quality. The perspective results for Bonmin in Ta-
ble 4 were obtained with the formulation (F4), so even using the “best”
formulation for the NLP solver was not sufficient to ensure the correct
solution to the instance.

SOCP Solvers: Table 6 shows the results of solving the SSSD instances
with the Mosek software (methods (3) and (4)). The table lists the time
(T) in seconds, and the number of nodes (#N). A time limit of 4 hours

26 OKTAY GÜNLÜK AND JEFF LINDEROTH

was imposed, and if the time limit was reached, indicated by T ∗ in the
table, bounds on the optimal solution value are listed. In some cases, using
the perspective reformulation has a very positive impact, while in other
cases, the difference is minor. It is interesting to note the difference in
behavior between Bonmin and Mosek without perspective strengthening.
For example, Bonmin solved the |M | = 15, |N | = 4 instance in 21357 nodes,
while Mosek does not solve this instance in more than 1.9 million nodes.
For these SSSD instances, Bonmin is able to add strong valid inequalities
to improve performance, while Mosek does not add these inequalities.

Table 6
Mosek Performance on SSSD Instances

Without Perspective With Perspective
|M | |N | z∗ T #N z∗ T #N
15 4 (4.88,5.76) T ∗ 1.95M 5.76 250 26454
15 8 (8.53,9.41) T ∗ 2.54M (9.38,9.41) T ∗ 2.06M
20 4 (2.77,3.71) T ∗ 3.44M 3.71 52 12806
20 8 (4.31,4.39) T ∗ 2.13M (4.391,4.393) T ∗ 1.50M
25 4 2.98 46 10128 2.98 19 3045
25 8 (6.143,6.146) T ∗ 1.21M (6.143,6.146) T ∗ 1.18M

LP Solvers: Table 7 shows the results on the SSSD obtained when
solving the linearized instances with CPLEX (methods (5) and (6)). In the
table zlb is the lower bound obtained by solving the MILP to optimality, and
the time (T) and number of nodes (#N) are also given for the search. The
value zub is obtained by fixing the (optimal) integer solution and solving
the NLP with Ipopt. The time require to solve the NLP is negligible.
The results for the linear case are interesting. Specifically, strengthening
the root relaxation by adding perspective cuts does not appear to help
the computations in this case. For these instances, CPLEX is able to
significantly improve the gap at the root node by adding its own cutting
planes. Table 8 demonstrates the improvement in root lower bound value
between the initial solve and final processing for both the strengthened
and unstrengthened linear approximation, as well as the root lower bounds
obtained from the nonlinear formulations. Note also the case |M | = 25,
|N | = 4, where the solution obtained after fixing integer variables is far
from optimal, demonstrating that one should not always expect to obtain
a good solution from the linearization-based heuristic method.

7. Conclusions. The perspective reformulation is a tool to create
strong relaxations of convex mixed integer nonlinear programs that have
0-1 variables to indicate special on-off logical relationships. The perspec-
tive reformulation can be derived as a special case of theorems of convex
analysis or via techniques more familiar to MILP researchers: extended
formulations, projection, and convex hulls of “simple” sets.

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 27

Table 7
Linear/CPLEX Performance on SSSD Instances

Without Perspective With Perspective
|M | |N | zlb zub T #N zlb zub T #N
15 4 5.75 5.76 1.1 7586 5.75 5.76 1.1 7755
15 8 9.11 9.71 242 1.32M 9.11 9.71 818 4.46M
20 4 3.40 7.07 0.7 908 3.4 7.07 0.3 1517
20 8 4.37 4.41 810 5.59M 4.37 4.41 933 5.93M
25 4 2.64 17.2 0.7 486 2.64 17.2 0.8 541
25 8 6.13 6.16 374 1.75M 6.13 6.16 599 2.93M

Table 8
Initial and Final Root Lower Bounds for SSSD Instances

Without Perspective With Perspective
Nonlinear Linear Nonlinear Linear

|M | |N | Initial Final Initial Final
15 4 1.76 1.74 3.66 4.42 4.02 4.21
15 8 3.16 2.06 5.68 6.75 6.11 6.41
20 4 1.34 1.33 1.87 2.56 1.89 2.13
20 8 1.64 1.55 2.41 2.93 2.86 2.99
25 4 1.05 1.05 1.45 2.13 1.45 1.54
25 8 2.18 2.15 3.53 4.27 3.97 4.20

Many applications of MINLP could take advantage of this reformula-
tion technique. In the applications described in this survey, the reformu-
lated inequalities can be cast as second-order cone constraints, a transfor-
mation that can improve an instance’s solvability.

We hope this survey has achieved its goals of introducing a wider
audience to the perspective reformulation technique, motivating software
developers to consider automatic recognition of the structures required for
the perspective reformulation, and spurring the research community to
investigate additional simple sets occurring in practical MINLPs in the
hope of deriving strong relaxations.

Acknowledgment. The authors would like to thank Jon Lee and
Sven Leyffer for organizing the very fruitful meeting on MINLP at the
Institute for Mathematics and its Applications (IMA) in November, 2008.
The comments of Kevin Furman and Nick Sawaya were also helpful in
preparing Section 2.2. The comments of two anonymous referees helped
clarify the presentation and contribution.

REFERENCES

28 OKTAY GÜNLÜK AND JEFF LINDEROTH

[1] S. Aktürk, A. Atamtürk, and S. Gürel, A strong conic quadratic reformulation
for machine-job assignment with controllable processing times, Operations Re-
search Letters, 37 (2009), pp. 187–191.

[2] E. Balas, Disjunctive programming and a hierarchy of relaxations for discrete
optimization problems, SIAM Journal on Algebraic and Discrete Methods, 6
(1985), pp. 466–486.

[3] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization,
SIAM, 2001. MPS/SIAM Series on Optimization.

[4] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs,
NJ, 1987.

[5] P. Bonami, G. Cornuéjols, and H. Hijazi, Mixed integer non-linear programs
with on/off constraints: Convex analysis and applications, 2009. Poster Pre-
sentation at MIP 2009 Conference.

[6] R. Boorstyn and H. Frank, Large-scale network topological optimization, IEEE
Transactions on Communications, 25 (1977), pp. 29–47.

[7] B. Borchers and J. E. Mitchell, An improved branch and bound algorithm
for mixed integer nonlinear programs, Computers & Operations Research, 21
(1994), pp. 359–368.

[8] S. Ceria and J. Soares, Convex programming for disjunctive optimization, Math-
ematical Programming, 86 (1999), pp. 595–614.

[9] M. A. Duran and I. Grossmann, An outer-approximation algorithm for a class
of mixed-integer nonlinear programs, Mathematical Programming, 36 (1986),
pp. 307–339.

[10] S. Elhedhli, Service system design with immobile servers, stochastic demand,
and congestion, Manufacturing & Service Operations Management, 8 (2006),
pp. 92–97.

[11] A. Frangioni and C. Gentile, Perspective cuts for a class of convex 0-1 mixed
integer programs, Mathematical Programming, 106 (2006), pp. 225–236.

[12] , SDP diagonalizations and perspective cuts for a class of nonseparable
MIQP, Operations Research Letters, 35 (2007), pp. 181–185.

[13] , A computational comparison of reformulations of the perspective relax-
ation: SOCP vs. cutting planes, Operations Research Letters, 24 (2009),
pp. 105–113.

[14] K. Furman, I. Grossmann, and N. Sawaya, An exact MINLP formulation for
nonlinear disjunctive programs based on the convex hull, 2009. Presentation
at 20th International Symposium on Mathematical Programming.

[15] I. Grossmann and S. Lee, Generalized convex disjunctive programming: Non-
linear convex hull relaxation, Computational Optimization and Applications,
(2003), pp. 83–100.

[16] O. Günlük, J. Lee, and R. Weismantel, MINLP strengthening for separable
convex quadratic transportation-cost UFL, Tech. Rep. RC24213 (W0703-042),
IBM Research Division, March 2007.

[17] O. Günlük and J. Linderoth, Perspective relaxation of mixed integer nonlinear
programs with indicator variables, Tech. Rep. RC24694 (W0811-076), IBM
Research Division, November 2008.

[18] , Perspective relaxation of mixed integer nonlinear programs with indicator
variables, Mathematical Programming Series B, (2010). To appear.

[19] G. R. Kocis and I. E. Grossmann, Computational experience with DICOPT solv-
ing MINLP problems in process systems engineering, Computers and Chemi-
cal Engineering, 13 (1989), pp. 307–315.

[20] C. E. Lemke, Bimatrix equilibrium points and mathematical programming, Man-
agement Science, 11 (1965), pp. 681–689.

[21] S. Leyffer and J. Linderoth, A practical guide to mixed integer nonlinear pro-
gramming, 2005. Short Course offered at SIAM Optimization Conference.

[22] H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), pp. 77–91.
[23] The mosek optimization tools manual. version 5.0 (revision 84), 2008. www.mosek.

PERSPECTIVE REFORMULATIONS AND APPLICATIONS 29

com.
[24] A. F. Perold, Large-scale portfolio optimization, Management Science, 30 (1984),

pp. 1143–1160.
[25] R. Stubbs and S. Mehrotra, A branch-and-cut method for 0-1 mixed convex

programming, Mathematical Programming, 86 (1999), pp. 515–532.
[26] R. A. Stubbs, Branch-and-Cut Methods for Mixed 0-1 Convex Programming, PhD

thesis, Northwestern University, December 1996.
[27] J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones, Optimization Methods and Software, 11-12 (1999), pp. 625–653.
[28] M. Tawarmalani and N. V. Sahinidis, Global optimization of mixed integer non-

linear programs: A theoretical and computational study, Mathematical Pro-
gramming, 99 (2004), pp. 563–591.

