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Abstract

The Network Interdiction Problem involves interrupting an adversary’s ability to maximize flow
through a capacitated network by destroying portions of the network. A budget constraint limits the
amount of the network that can be destroyed. In this paper, we study a stochastic version of the net-
work interdiction problem in which the successful destruction of an arc of the network is a Bernoulli
random variable, and the objective is to minimize the maximum expected flow of the adversary. Using
duality and linearization techniques, an equivalent deterministic mixed integer program is formulated.
The structure of the reformulation allows for the application of decomposition techniques for its so-
lution. Using a parallel algorithm designed to run on a distributed computing platform known as a
computational grid, we give computational results showing the efficacy of a sampling-based approach
to solving the problem.

1 Introduction

The network interdiction problem can be thought of as a game played on a network consisting of two
players, a leader and a follower. The leader has a fixed budget that can be used to deteriorate or destroy
portions of the network, an action called an interdiction. Examples of interdictions include removing
arcs from the network and reducing the capacity of arcs in the network. After the leader has performed
an interdiction, the follower solves an optimization problem on the modified network. The follower
may try to find a shortest path, as in [8, 9], or the follower may maximize flow through the network,
which is the case studied this work. The leader’s objective is to thwart the follower; to maximize the
follower’s shortest path or minimize the follower’s maximum flow. Network interdiction is an instance
of a static Stackelberg game [29], and the problem has been studied for military application [34, 24],
intercepting illicit materials [32, 26], and in designing robust telecommunication networks [11].

Stochastic Network Interdiction occurs when one or more of the components of the network in-
terdiction problem are not known with certainty. Cormican, Morton, and Wood [4] provide a nice
introduction to many variations of stochastic network interdiction, including problems in which the
interdiction attempt may succeed or fail, the arc capacities or topology of the network are uncertain,
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and in which multiple interdiction attempts may take place. In order to obtain solutions to the problem,
Cormican, Morton, and Wood develop a sequential approximation technique. Also in their study, they
state that

“A large-scale deterministic equivalent binary integer program may be formed by (a) re-
formulating the problem as a simple minimization problem involving binary interdiction
variables and binary second-stage variables... and (b) enumerating all possible realizations
of the [uncertainty]... Unfortunately, solving such models would be computationally im-
practical for all but the smallest problems.”

We intend to test the validity of these statements. Stochastic programs with integer recourse
(second-stage) variables are nearly intractable, but we will show that there is no need to introduce
binary variables in the second stage in such a reformulation. Second, recent theoretical and empirical
evidence has suggested that a sample average or sample-path approach can be an extremely effective
technique for solving two-stage stochastic problems with a discrete structure [28, 14, 17]. We will
use a sample-average approach applied to our formulation, solve the resulting instances, and statisti-
cally test bounds on the optimal solution value using a distributed computational platform known as a
computational grid.

Stochastic network interdiction has also been studied by Pan, Charlton, Morton [26]. They for-
mulate the problem of identifying locations for installing smuggled nuclear material detectors as a
two-stage stochastic mixed-integer program with recourse, and showed that the problem is NP-Hard.
In Held, Hemmecke, Woodruff [12], the stochastic network interdiction problem is shown to be solved
effectively by applying a decomposition-based method. Our approach to solving the problem is akin to
that proposed by Cormican in her master’s thesis [3], where she proposes using Bender’s decomposition
to solve a deterministic version of the problem. The duality-based approach we take in this work is also
similar to that appearing in the work of Israeli and Wood [13], who solve the maximize-shortest-path
version of the network interdiction problem.

The remainder of the paper is divided into three sections. In Section 2, we present a mixed integer
linear program for the deterministic equivalent of the stochastic network interdiction problem. Section 3
contains a review of sample average approximation and describes a decomposition-based algorithm for
solving sampled versions of the model. Computational results are presented in Section 4.

2 Formulation

The Stochastic Network Interdiction Problem (SNIP) is defined on a capacitated directed network G =
(V,A), with specified source node r ∈ V and sink node t ∈ V . The capacity of arc (i, j) ∈ A is uij .
The realizations of uncertainty are captured in a countable set of scenarios S, in which each element
s ∈ S occurs with probability ps. There is a finite budget K available for interdiction, and the cost of
interdicting on any arc (i, j) ∈ A is hij . To write a mathematical program for SNIP, we define the binary
decision variables

xij =

{
1 if interdiction occurs on arc (i, j) ∈ A,

0 otherwise.
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With these definitions, SNIP can be written as the formulation F1:

(F1) zSNIP = min
∑
s∈S

psfs(x)

subject to
∑

(i,j)∈A

hijxij ≤ K,

xij ∈ {0, 1} ∀(i, j) ∈ A,

where fs(x) is the maximum flow from node r to node t in scenario s if interdictions occur on the
arcs indicated by the {0, 1}-vector x. The maximum flow value fs(x) is the solution of a different
optimization problem, which can be written down with the help of the following definitions:

• A′ = A ∪ {r, t},

• ξijs =

{
1 if interdiction on arc (i, j) ∈ A in scenario s ∈ S would be successful,
0 otherwise,

• yij: flow on arc (i, j).

We focus for the time-being on the case in which interdiction success is a Bernoulli random variable
(ξ), postponing extensions and additional formulations to Section 2.1. The maximum flow from node r

to node t in scenario s with interdictions on arcs indicated by x can be expressed as the solution to the
optimization problem PMFs(x):

PMFs(x) fs(x) = max ytr

subject to yij ≤ uij(1− ξijsxij) ∀(i, j) ∈ A, (1)

ytr +
∑

j∈V | (j,r)∈A

yjr −
∑

j∈V | (r,j)∈A

yrj = 0, (2)

−ytr +
∑

j∈V | (j,t)∈A

yjt −
∑

j∈V | (t,j)∈A

ytj = 0, (3)

∑
j∈V | (j,i)∈A

yji −
∑

j∈V | (i,j)∈A

yij = 0 ∀i ∈ V \ {r ∪ t}, (4)

yij ≥ 0 ∀(i, j) ∈ A′. (5)

Constraints (1) force the flow to be zero if arc (i, j) was chosen for interdiction and if the interdiction
was successful. Constraints (2)—(4) are simply the flow balance constraints of the max flow problem,
which for subsequent ease of notation, we will write as Ny = 0, for an appropriate network matrix N .
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The dual linear program of PMFs(x) is DMFs(x).

DMFs(x) min
∑

(i,j)∈A

uij(1− ξijsxij)ρij

subject to πr − πt ≥ 1, (6)

ρij − πi + πj ≥ 0 ∀(i, j) ∈ A, (7)

ρij ≥ 0 ∀(i, j) ∈ A. (8)

Define the polyhedron
Ps(x) def= {y ∈ R|A′| | y satisfies (1)—(5) },

and the polyhedron

Ds(x) def= {(π, ρ) ∈ R|V | × R|A| | (π, ρ) satisfies (6)—(8) }.

The polyhedron Ps(x) is never empty, since 0 ∈ Ps(x) for any interdiction x and scenario s. We assume
that the objective value of the primal problem PMFs(x) is bounded ∀x ∈ R|A|

+ , a sufficient condition for
this being uij < ∞ ∀(i, j) ∈ A. Since PMFs(x) is nonempty and bounded for all x and s, the strong
duality theorem of linear programming states that for a given interdiction x̂ and scenario s, if there
exists y∗ ∈ Ps(x̂) and (π∗, ρ∗) ∈ Ds(x̂) such that

y∗tr =
∑

(i,j)∈A

uij(1− ξijsx̂ij)ρ∗ij ,

then y∗tr is the value of the maximum flow from r to t, i.e. y∗tr = fs(x̂). With this insight, we can formu-
late SNIP by defining flow variables yijs as the flow on arc (i, j) in scenario s and writing the conditions
enforcing primal feasibility, dual feasibility, and equality of primal and dual objective functions for each
scenario. We call the resulting formulation F2.
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(F2) zSNIP = min
∑
s∈S

psytrs

subject to ytrs −
∑

(i,j)∈A

uij(1− ξijsxij)ρijs = 0 ∀s ∈ S, (9)

∑
(i,j)∈A

hijxij ≤ K, (10)

yijs − uij(1− ξijsxij) ≤ 0 ∀(i, j) ∈ A,∀s ∈ S, (11)

Nys = 0 ∀s ∈ S, (12)

πrs − πts ≥ 1 ∀s ∈ S, (13)

ρijs − πis + πjs ≥ 0 ∀(i, j) ∈ A,∀s ∈ S, (14)

xij ∈ {0, 1} ∀(i, j) ∈ A,

yijs ≥ 0 ∀(i, j) ∈ A′,∀s ∈ S,

ρijs ≥ 0 ∀(i, j) ∈ A,∀s ∈ S.

The equations (9) constrain the primal and dual objective values of the max flow problem to agree for
each scenario. Inequality (10) is the budget constraint. The constraints (11) and (12) are the primal
feasibility constraints on the flow, and constraints (13) and (14) are the dual feasibility constraints on
the flow.

Equations (9) contain nonlinear terms of the form xijρijs. Since xij may take only the value 0 or
1 in a feasible solution, the terms can be linearized by introducing a variable zijs and enforcing the
relationship zijs = xijρijs through the equivalence

xij ∈ {0, 1}, zijs = xijρijs ⇔ zijs ≤Mxij , zijs ≤ ρijs, zijs ≥ ρijs + M(xij − 1), (15)

where M is an upper bound on ρijs in an optimal solution to SNIP. A derivation of this linearization is
given in [33]. Typically, “big M’s” are to be avoided in formulations, however, since the variables ρijs

are simply the dual variables on arcs in a maximum flow problem, a well-known upper bound on these
variables is ρijs ≤ 1 ∀(i, j) ∈ A,∀s ∈ S.

Introducing this linearization to the formulation F2 gives a mixed integer linear programming for-
mulation of SNIP, which we label F3.
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(F3) zSNIP = min
∑
s∈S

psytrs

subject to ytrs −
∑

(i,j)∈A

uijρijs +
∑

(i,j)∈A

uijξijszijs = 0 ∀s ∈ S,

zijs − xij ≤ 0 ∀(i, j) ∈ A,∀s ∈ S,

zijs − ρijs ≤ 0 ∀(i, j) ∈ A,∀s ∈ S,

ρijs − zijs + xij ≤ 1 ∀(i, j) ∈ A,∀s ∈ S,∑
(i,j)∈A

hijxij ≤ K,

Nys = 0 ∀s ∈ S,

yijs − uij(1− ξijsxij) ≤ 0 ∀(i, j) ∈ A,∀s ∈ S,

πrs − πts ≥ 1 ∀s ∈ S,

ρijs − πis + πjs ≥ 0 ∀(i, j) ∈ A,∀s ∈ S,

xij ∈ {0, 1} ∀(i, j) ∈ A,

yijs ≥ 0 ∀(i, j) ∈ A′,∀s ∈ S,

ρijs ≥ 0 ∀(i, j) ∈ A,∀s ∈ S,

zijs ≥ 0 ∀(i, j) ∈ A,∀s ∈ S.

Formulation F3 is a mixed integer linear program whose solution gives an optimal solution to the
stochastic network interdiction problem. A desirable feature of this formulation is that if x is fixed, then
the formulation decouples into |S| independent linear programs. The decomposable structure of the
formulation is exploited by the solution algorithm given in Section 3.2.

2.1 Extensions

Formulation F3 lends itself to modeling a wide variety of network interdiction problems. For example,
we briefly show how to extend formulation F3 to model the classes of stochastic network interdiction
that are discussed by Cormican, Morton, and Wood [4]. The formulation F3 is designed for the case
when interdiction successes are binary random variables, what Cormican, Morton, and Wood called
SNIP(IB). Likewise, by using a random variable uijs to represent the capacity of arc (i, j) in scenario s,
F3 can be extended to handle the cases when both interdictions and arc capacities are random. These
are the problem classes SNIP(CB), SNIP(CD), and SNIP(ICB) in [4].

When the probabilities of interdiction success are low, it may be useful to consider allowing multiple
interdictions per arc. Cormican, Morton, and Wood call this problem SNIP(IM). If the number of
attempts on an arc is limited to two and the success or failure of the first attempt and the second attempt
are independent, we can modify F3 by adding binary decision variables for the second interdiction
attempt and parameters (random variables) for the second interdiction success. With these definitions,
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the extension is straightforward. However, the resulting formulation contains many more nonlinear
terms that must be linearized with the equivalence (15), leading to a formulation with significant more
binary variables for SNIP(IM).

3 Solution Approach

This section contains a description of our approach to solving the large-scale MIP formulation (F3)
of the stochastic network interdiction problem. The approach is based on a combination of sampling,
decomposition, and parallel computing.

3.1 Sample Average Approximation

If there are R arcs on which the leader can interdict, and the probability that an interdiction is successful
on one arc is independent of its success on other arcs, then there are 2R = |S| realizations of the
uncertainty. This exponential growth in the number of scenarios precludes using the formulation F3

for all but the smallest instances. However, there has been a wealth of recent theoretical and empirical
research showing that a sample average approach can very accurately solve stochastic programs, even
in the case that the number of scenarios is prohibitively large [28, 14, 17, 31, 7].

In the sample-average approach to solving SNIP, instead of minimizing the true expected maximum
flow

F (x) def=
∑
s∈S

psfs(x),

we instead minimize a sample average approximation FT (x) to this function,

FT (x) def=
∑
s∈T

|T |−1fs(x).

Here, the set T ⊂ S is drawn from the same probability distribution that defines the original set of
scenarios S so that FT (x) is an unbiased estimator for F (x) for all x, i.e. EFT (x) = F (x) ∀x. In the
sample average approach to solving SNIP, if

X = {x ∈ {0, 1}|A| |
∑

(i,j)∈A

hijxij ≤ K}

is the set of feasible interdictions, then instead of solving the problem

zSNIP
def= min

x∈X
F (x),

the approximating problem

vT
def= min

x∈X
FT (x) (16)

is solved. The value vT will approach zSNIP as the number of scenarios considered in the sample
average problem (|T |) approaches |S| [5]. However, the solution to vT is biased in the sense that
EvT ≤ zSNIP [25, 22].

The value vT is a random variable, as it depends on the random sample T . However, a confidence
interval on vT , a lower bound of zSNIP, can be built in the following manner. First, independent samples
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T1, T2, . . . , TM , each with the same cardinality (Tj = N) are drawn. Next, the associated sample average
approximating problems (16) are solved for each sample. The random variables vT1 , vT2 , . . . vTM

are all
independent and identically distributed, so by applying the Central Limit Theorem, a confidence interval
on vT for a sample of size |T | = N can be constructed. With the definitions

L =
1
M

M∑
j=1

vTj
, and

sL =

 1
M − 1

M∑
j=1

(vTj
− L)2

1/2

,

a 1− α confidence interval for the value of vT is[
L −

tα/2,M−1sL√
M

,L+
tα/2,M−1sL√

M

]
, (17)

where tα,D is the value of student-t distribution with D degrees of freedom evaluated at α. Mak,
Morton, and Wood were the first to suggest such a construction [22].

For each solution to the sample average approximation (16) with a sample of size |Tj | = N ,

x∗j ∈ arg min
x∈X

FTj (x),

the value F (x∗j ) is a random variable that quantifies the actual expected maximum flow if the interdic-
tions are specified from the solution to an SAA instance (16) of size N . This quantity AN is undoubtedly
larger than the minimum expected max flow, i.e. AN ≥ zSNIP. Further, F (x∗j ) is an unbiased estimator
of AN , and the random values F (x∗1), F (x∗2), . . . , F (xM ) are independent and identically distributed, so
we can use these values to obtain a confidence interval on the value AN , an upper bound on zSNIP, in
the following manner. First, take a sample Uj ⊂ S and compute

wUj (x
∗
j )

def=
∑
s∈Uj

|Uj |−1fs(x∗j ).

Again, the sample Uj ⊂ S must be drawn from the same probability distribution that defines S so that
wUj (x

∗
j ) is an unbiased estimator of F (x∗j ) and AN . With the definitions

U =
1
M

M∑
j=1

wUj
(x∗j ), and

sU =

 1
M − 1

M∑
j=1

(wUj
(x∗j )− U)2

1/2

,

a 1− α confidence interval for the value of AN is[
U −

tα/2,M−1sU√
M

,U +
tα/2,M−1sU√

M

]
. (18)

Freimer, Thomas, and Linderoth give a similar construction for a statistical upper bound on a sampled
approximation to a stochastic program in [7].
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In order for the confidence interval formulae (17) and (18) to be valid, the elements within the
samples Tj and Uj need not be independent, only distributed like S. Thus, variance reduction tech-
niques such as Latin Hypercube sampling or Antithetic variates can be used to construct the samples.
In Section 4.5 we give an example of the variance and bias reduction that may be achieved by using a
more sophisticated sampling procedure.

3.2 Decomposition Algorithm

3.2.1 Justification

Initial attempts at solving sampled versions of F3 relied on solving the instance directly with a commer-
cial MIP solver. Details of the test instances are given subsequently in Section 4. For the three smallest
of the test instances, ten different sampled approximations were built for different sample sizes N and
solved with CPLEX v9.1. Table 1 shows the average solution times, the average number of nodes of the
branch and bound tree, and the percentage of instances whose initial linear programming relaxation
yielded an integer solution.

Table 1: CPLEX Solution Times

Instance Sample Average CPU Average Number % Integer Solution
Size Time (sec.) of Nodes at Root Node

SNIP4x4 50 0.58 1.0 100
100 2.22 1.0 100
200 25.40 1.0 100
500 87.68 1.0 100

SNIP4x9 50 8.86 1.2 90
100 37.52 1.0 100
200 196.45 2.0 60
500 1289.22 2.2 40

SNIP7x5 50 10.58 1.2 90
100 46.90 1.3 90
200 171.97 1.3 90
500 1387.63 1.0 100

The results of this initial experiment are encouraging, since for most instances, the solution to the
initial linear programming relaxation of the formulation F3 of SNIP was integer-valued. However,
the initial results make it clear that for large-scale instances, the time required to solve the linear
programming relaxation using a sequential simplex method would be prohibitive. For example, CPLEX
required more than 20 minutes simply to solve LP relaxation of the instance SNIP7x5 with N = 500. For
these reasons, in the next section, we describe a method for solving sampled approximations to SNIP
based on decomposing the problem by scenario and solving the independent portions on a parallel
computing architecture.
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3.3 L-Shaped Method

The formulation F3 (or a sampled approximation to F3) can be viewed as a two-stage stochastic integer
program in which the integer interdiction variables appear only in the first stage. More specifically, if
the interdictions x̂ are fixed, then the formulation F3 decomposes into |S| independent linear programs,
one for each scenario:

(LPs(x̂)) fs(x̂) = min
∑

(i,j)∈A

uijξijszij −
∑

(i,j)∈A

uijρij

subject to zij ≤ x̂ij ∀(i, j) ∈ A,

zij − ρij ≤ 0 ∀(i, j) ∈ A,

ρij − zij ≤ 1− x̂ij ∀(i, j) ∈ A,

Ny = 0,

yij ≤ uij(1− ξijsx̂ij) ∀(i, j) ∈ A,

πr − πt ≥ 1,

ρij − πi + πj ≥ 0 ∀(i, j) ∈ A,

y, ρ, z ≥ 0.

Changing x changes the right-hand side of the linear program LPs(x). It follows from linear program-
ming duality theory and elementary convex analysis that F (x) =

∑
s∈S psfs(x) is a piecewise-linear

convex function of x. The L-Shaped method of Van Slyke and Wets [30] is a method for solving stochas-
tic programs that exploits the decomposable structure of the original formulation and the convexity of
F (x). However, the L-Shaped method is designed to solve problems in which the first-stage decision
variables x are real-valued, i.e. not constrained to be integers.

We first discuss the variant of the L-Shaped method that we employ, then we describe how this
method is modified to solve stochastic programs that have integer variables in the first stage. For
purposes of this discussion, it is important to note that the stochastic program F3 has relatively complete
recourse; that is, for any value of the first-stage variables x ∈ X, there exists a feasible solution to the
second stage problem LPs(x) for every scenario s. For ease of notation, we describe the algorithm in
terms of minimizing the true expected maximum flow F (x), whereas in reality, we are often minimizing
some sample average approximation to F (x).

The version of the L-Shaped method we employ is a multi-cut version that proceeds by finding sub-
gradients of partial sums of the terms that make up F (x). Suppose that the scenarios S are partitioned
into C clusters denoted by N1,N2, . . . ,NC . Let F[c] represent the partial sum of F (x) corresponding to
the cluster Nc; that is,

F[c](x) =
∑
i∈Nc

pifi(x). (19)

The algorithm maintains a model function mk
[c] which is a piecewise linear lower bound on F[c] for each

cluster Nc. We define this function at iteration k of the algorithm by

mk
[c](x) = inf{θc | θce ≥ Ok

[c]x + ok
[c]}, (20)
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where e = (1, 1, . . . , 1)T and Ok
[c] is a matrix whose rows are subgradients of F[c] at previous iterates

of the algorithm. The constraints in (20) are called optimality cuts. Optimality cuts are obtained as a
byproduct of solving the linear programs LPs(x). Solving the |S| linear programs LPs(x) is necessary
simply to evaluate the function F (x), so obtaining the optimality cuts adds very little computational
burden to the algorithm.

Iterates of the multi-cut L-shaped method are obtained by minimizing an aggregate model function

mk(x) def=
C∑

c=1

mk
[c](x)

over the linear relaxation of the feasible region:

LP (X) def= {[0, 1]|A| |
∑

(i,j)∈A

hijxij ≤ K}.

The iterate-finding master problem takes the form

min
x∈LP (X)

mk(x). (21)

By substituting from (20), the problem (21) is transformed to a Master Linear Program (MLPk):

(MLPk) min
C∑

c=1

θc

subject to
∑

(i,j)∈A

hijxij ≤ K,

θce ≥ Ok
[c]x + ok

[c] ∀c ∈ {1, 2, . . . , C}, (22)

θc ≥ L ∀c ∈ {1, 2, . . . , C}, (23)

xij ≥ 0 ∀(i, j) ∈ A.

An artificial lower bound L on the value of the θc is required by inequalities (23) to ensure that the
minimum in (20) is achieved.

Algorithm 1 is a description of the L-Shaped method. The algorithm solves the linear programming
relaxation of the formulation F3, with two small enhancements. First, the iterates of the algorithm
that are integer-valued are recorded. Second, the optimal dual multipliers from the final master linear
program are stored.

Choosing x0 ∈ X in step (1) is trivial due to the simple form of the constraints defining X. The
evaluation of F (xk) in step (3) is performed in parallel. That is, different scenarios are assigned to
different computational processors, and the processors simultaneously solve LPs(xk) for the scenarios
assigned to them. More discussion of the specific parallel platform is given in Section 4.2. The value
uIP , the corresponding integer solution xIP , the final optimal dual multipliers λ∗, and the master linear
program MLPk∗ (for the last iteration k∗) are all retained and used later in the solution process. The
basic L-Shaped method of Algorithm 1 is further enhanced with a trust-region mechanism for regular-
izing the steps taken by iterations of the algorithm and with the ability to consider multiple iterates
in an asynchronous fashion, which is indispensable for our parallel implementation. The algorithm
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Algorithm 1 The L-Shaped Method
1: Choose x0 ∈ X. Set k = 0, uIP =∞, uLP =∞
2: repeat
3: Evaluate F (xk). Collect and create elements Ok

[c], o
k
[c] for updating model functions mk

[c].
4: uLP = min{uLP , F (xk)}
5: if xk ∈ X and F (xk) < uIP then
6: uIP = F (xk)
7: xIP = xk

8: end if
9: Solve MLPk, obtaining solution xk+1 ∈ LP (X) with optimal value ` = mk(xk+1).

10: k ← k + 1
11: until uLP − ` ≤ ε1(1 + |uLP |)
12: Let λ∗ be the (final) optimal dual multipliers for optimality cuts (22).

is instrumented to run on a computational grid using the Master-Worker (MW) runtime library [10].
A complete description of the algorithm is out of the scope of this paper. For the full details of our
implementation, please refer to the paper of Linderoth and Wright [19].

Algorithm 1 solves the linear programming relaxation of the MILP formulation (F3) of SNIP. If it
turns out that the solution to the LP relaxation x∗LP ∈ X, then the problem is solved. Otherwise, a mech-
anism to enforce integrality is required. A well-known method for enforcing integrality is branch-and-
bound. Applied here, we could simply branch on a fractional component in x∗LP and repeat Algorithm 1
with the additional necessary bound constraints on the LP relaxation added to the master linear pro-
gram MLPk. Laporte and Louveaux [16] suggest a different approach in which the recourse function
is evaluated (and the model function m(x) is improved) only at points x̂ in which a branch-and-bound
procedure has x̂ ∈ {0, 1}|A|.

The approach in this work is a combination of these two approaches. Initial computational experi-
ments detailed in Section 3.2.1 indicated that the solution of the linear programming relaxation of F3

was often nearly integer-valued. This fact might also imply that the model function mk∗(x) that was
created during the solution of the linear programming relaxation by Algorithm 1 would be a good start-
ing approximation to the function F (x) evaluated at feasible (integer-valued) points. Therefore, the
solution approach suggested here solves the linear programming relaxation of F3 to optimality, retains
(tight) optimality cuts (22) from the final master linear program MLPk∗ , then resorts to the method
of Laporte and Louveaux, using a known upper bound to speed the branch-and-bound process at each
iteration.

The algorithm solves a series of integer-restricted versions of the master linear program MLPk. That
is, at iteration k of the algorithm, the method will solve the integer program MIPk:
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(MIPk) min
C∑

c=1

θc

subject to
∑

(i,j)∈A

hijxij ≤ K,

θce ≥ Ok
[c]x + ok

[c] ∀c ∈ {1, 2, . . . , C},

C∑
c=1

θj ≤ uIP , (24)

xij ∈ {0, 1} ∀(i, j) ∈ A.

The upper bound on the solution value that the master problem seeks is imposed by constraint (24).
Algorithm 2 is a description of the method employed to find integer-valued solutions to SNIP. An ad-
vantage of using optimality cuts from MLPk∗ for the solution of MIPk was that we did not need to
stabilize the iterates of Algorithm 2 with a trust region, as suggested by Santoso et al. [27].

Algorithm 2 Adaptation of L-Shaped Method for Integer Variables
Require: MLPk, uIP , xIP , λ∗ from solution to linear programming relaxation (Algorithm 1).

1: k = 0
2: MIP0 = MLPk

3: Remove all optimality cuts i from MIP0 such that λ∗i > 0
4: repeat
5: Solve MIPk, obtaining solution xk+1 ∈ X with value ` = mk(xk+1). If no solution exists, exit.

xIP is the optimal solution.
6: Evaluate F (xk+1). Collect and create elements Ok+1

[c] , ok+1
[c] for updating model functions mk+1

[c]

7: if F (xk+1) < uIP then
8: uIP = F (xk+1)
9: xIP = xk+1

10: end if
11: k ← k + 1
12: until uIP − ` ≤ ε2(1 + |uIP |)

4 Computational Experiments

This section contains a description of the empirical behavior of the algorithm developed in Section 3.2
on the formulation F3 for the stochastic network interdiction problem derived in Section 2.

4.1 Test Problems

The test set consists of randomly generated problem instances that have the same structure as the
instances of Cormican, Morton, and Wood [4]. The instances are on a network grid with a specified
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Figure 1: Instance SNIP7x5

number of rows and columns. Our naming convention is SNIPixj, where i is the number of rows in the
grid and j is the number of columns in the grid. The source node is connected to all nodes in the first
column, and the sink node is connected to all nodes in the last column. All horizontal arcs are oriented
forwards, whereas the direction of the vertical arcs can be either up or down, and this direction is
chosen randomly with probability 1/2. The arcs connected to the source and sink nodes and the arcs
in the first and last columns are un-interdictable and have unlimited capacities. A random subset of
roughly 35% of the arcs are chosen to be interdictable. The capacitated arcs have capacities ranging
uniformly between 10 and 100 at multiples of 10. The interdiction cost of each arc is hij = 1, and the
budget K will be varied in the instances. The probability of a successful interdiction was set to 75% on
each interdictable arc, and these random variables are all pairwise-independent. Further characteristics
of the test instances are summarized in Table 2. The instances SNIP7x5 and SNIP4x9 are taken directly
from [4], and the instance SNIP7x5 is depicted in Figure 1. In Figure 1, the arcs upon which interdiction
may occur are indicated by parentheses around the capacity value. The small instance SNIP4x4 was
used only for debugging purposes and for the initial computational tests summarized in Table 1. It will
not be included in the additional computational tests.

The models were built using the XPRESS-SP module in Dash Optimization’s Mosel environment.
A recently added feature of XPRESS-SP allows the user to write out instances in SMPS format. These
SMPS files were used as input to the decomposition-based solver described in Section 3.2. The instances
are available from the web site http://coral.ie.lehigh.edu/sp-instances. To read the stochastic
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Table 2: Characteristics of Test Instances

Number of Number of Number of Number of
Instance Budget Nodes Arcs Interdictable Arcs Scenarios
SNIP4x4 4 18 32 9 512
SNIP7x5 6 37 72 22 4.2× 106

SNIP4x9 6 38 67 24 1.7× 107

SNIP10x10 10 102 200 65 3.7× 1019

SNIP20x20 20 402 800 253 1.4× 1076

program specified in the SMPS file and to sample and manipulate the instance, the SUTIL stochastic
programming utility library was used. SUTIL is available under an open-source license from the web
site http://coral.ie.lehigh.edu/sutil. To solve the master linear programs MLPk and master
integer programs MIPk required by Algorithms 1 and 2, the commercial optimization package CPLEX
(v9.1) was employed. To solve the linear programs LPs(x̂) required to evaluate the objective function,
the open-source linear programming solver Clp from COIN-OR (www.coin-or.org) was used. The
experiments were done with a full multi-cut version of the algorithm, in which there is one model
function m[·](x) for every scenario. The initial linear programming relaxation was solved to an accuracy
of ε1 = 10−6 by Algorithm 1, and the integer programs were solved to an accuracy of ε2 = 10−2 by
Algorithm 2.

4.2 Computational Platform

As mentioned in Section 3.3, the evaluation of the objective function F (x) can be done efficiently using
parallel processors. The parallel computational platform employed here is known as a computational
grid [6]. Computational grids can be quite different than traditional parallel computing platforms. One
fundamental difference is that the processors making up a computational grid are often heterogeneous
and non-dedicated. That is, a processor participating in a grid computation may be reclaimed at any
time by the owner of the processor or by a central scheduling mechanism. Our computational grid
was built using the Condor software toolkit [21], which is available form the Condor web site http:

//www.cs.wisc.edu/condor. The default behavior of Condor is to vacate running jobs on a processor if
the machine is being used interactively or if a job with a higher priority requests the processor. Thus, the
computing environment is quite dynamic, and algorithms running in this environment must be able to
cope with faults. Algorithms 1 and 2 were implemented to run on this dynamic computational platform
using the run-time library MW [10]. MW is a C++ class library that can help users write master-worker
type parallel algorithms to run on computational grids. With MW, the user (re)-implements abstract
classes to specify the operations of the master and the worker and to define the computational tasks.
MW then interacts with the lower-level grid scheduling software, such as Condor, to find available
resources on which to run the computational tasks, and MW ensures that all tasks are run, even if
processors leave the computation. Source code for MW is available from the web site http://www.

cs.wisc.edu/condor/mw. For a longer discussion on computational grids and their use for stochastic
programming, the reader is directed to the paper of Linderoth and Wright [20].

The majority of our experiments were run on the idle cycles harvested from roughly 40 processors
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in the Center for Optimization Research @ Lehigh (COR@L). The processors in the COR@L Condor
pool are all Intel-based processors running the Linux Operating System and ranging in clock speed
from 400MHz to 2.4GHz. Since processors on this computational grid are heterogeneous and dynamic,
statistics relating to computational time are difficult to interpret. For instance, the time required to
solve the same instance can vary by an order of magnitude based on the availability of processors in the
Condor pool. For our results, we will present the average wall clock time required to solve the instance.

4.3 Effectiveness of Method

The first experiment was aimed at determining the effectiveness of our solution approach to SNIP.
Can an accurate solution to the true instance be obtained via sampled approximations of the new
formulation F3? How many samples are required to obtain an accurate solution? Are the computing
times with the parallel decomposition approach reasonable?

To answer these questions, we estimated the optimal value of each large instance in Table 2 using
sampled approximations of various sizes ranging from |T | = N = 50 to |T | = N = 5000. For each
sample size N , M = 10 replications were solved to obtain a 95% confidence interval on a lower bound
on the optimal solution value via Equation (17). To compute a confidence interval on an upper bound
on the optimal solution value, F (x∗j ) was estimated with a sample size of |Uj | = 100, 000 for each
solution x∗j to the sampled instance, and equation (18) was employed. Monte Carlo (uniform random)
sampling was used to generate the samples in all instances.

Table 3 shows how the lower and upper bounds on optimal solution value vary as a function of the
sample size for each instance. The average wall clock time time required to achieve the solution x∗j to
the sample average approximation is also listed for each instance and sample size, as are the average
number of iterations required to solve the initial linear programming relaxation by Algorithm 1 and the
average number of integer programs necessary to solve the instance via Algorithm 2. Estimating F (x∗j ),
by solving 100,000 linear programs, took roughly 10 minutes for the instance SNIP7x5, 15 minutes for
SNIP4x9, 22 minutes for SNIP10x10, and 62 minutes for SNIP20x20 on our computational platform.

The solution time for most instances is quite moderate and shows a relatively low dependence on
the number of scenarios N . The low dependence on N is primarily accounted for by the fact that
the number of LP iterations and IP solves remains nearly constant regardless of N . Instances with
larger values of N require more computational effort, but they can also be parallelized to a higher
degree, as there are more scenario linear programs to solve at each iteration. Cormican, Morton, and
Wood report solving an instance of the size of SNIP10x10 to 1% accuracy in 23,970 seconds on an
RS/6000 Model 590 [4]. It is not our intention to directly compare our computational results with
theirs. Indeed, any comparison is inherently skewed, since the sequential approximation algorithm in
[4] produces guaranteed bounds on the solution, while the bounds here are statistical and require the
repeated solution of sampled instances of the problem. Nevertheless, a fair conclusion to draw from this
experiment is that a sample average approximation with a moderate number of scenarios (< 5000) is
likely to produce a solution that is close to the true optimal zSNIP, and for reasonably-sized instances,
the time required to achieve this solution is relatively small. For larger instances (like SNIP 20x20),
the CPU time becomes much larger. We will discuss mechanisms for improving the time to achieve an
accurate solution in Sections 4.5 and 4.6.
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Instance N LB UB Avg. Sol Avg # LP Avg # IP
Time (sec.) Iterations Solves

SNIP7x5 50 76.42 ± 4.24 80.87 ± 0.91 227.39 12.10 1.00
SNIP7x5 100 77.31 ± 3.14 80.87 ± 0.79 136.83 12.80 1.40
SNIP7x5 200 78.51 ± 3.12 80.85 ± 0.75 118.96 12.30 0.00
SNIP7x5 500 78.62 ± 1.37 80.50 ± 0.52 118.92 12.50 0.00
SNIP7x5 1000 80.10 ± 0.70 79.99 ± 0.21 149.78 13.20 0.00
SNIP7x5 2000 79.50 ± 1.09 80.42 ± 0.53 218.65 12.10 0.70
SNIP7x5 5000 80.34 ± 0.45 80.14 ± 0.31 630.75 10.10 0.00
SNIP4x9 50 9.96 ± 1.02 11.16 ± 0.26 328.22 9.20 2.00
SNIP4x9 100 9.47 ± 0.81 10.95 ± 0.12 273.13 9.90 2.00
SNIP4x9 200 10.92 ± 0.55 11.02 ± 0.17 129.03 10.40 4.90
SNIP4x9 500 10.45 ± 0.38 10.94 ± 0.05 580.33 9.60 6.70
SNIP4x9 1000 10.70 ± 0.24 10.91 ± 0.03 567.63 10.00 11.50
SNIP4x9 2000 10.55 ± 0.18 10.90 ± 0.05 787.59 10.10 11.60
SNIP4x9 5000 10.89 ± 0.15 10.82 ± 0.16 501.64 10.10 5.30

SNIP10x10 50 88.28 ± 1.86 88.75 ± 0.34 133.44 26.00 3.20
SNIP10x10 100 88.09 ± 2.92 88.52 ± 0.38 140.34 20.90 2.60
SNIP10x10 200 87.08 ± 1.83 88.55 ± 0.33 141.34 17.70 1.60
SNIP10x10 500 88.39 ± 0.85 88.20 ± 0.21 210.54 17.40 2.20
SNIP10x10 1000 87.90 ± 0.40 88.15 ± 0.12 362.42 17.80 1.80
SNIP10x10 2000 88.03 ± 0.41 88.09 ± 0.21 960.40 16.40 0.60
SNIP20x20 50 173.82 ± 3.88 192.03 ± 7.41 1098.74 86.50 2.30
SNIP20x20 100 180.36 ± 4.09 188.51 ± 3.25 2640.75 71.60 3.00
SNIP20x20 200 179.39 ± 2.50 186.31 ± 5.98 3415.14 68.38 3.12
SNIP20x20 500 182.38 ± 1.72 184.67 ± 3.28 21253.54 39.00 3.60

Table 3: Statistical Bounds on Optimal Solution Value and Required Computational Effort
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4.4 Effect of Budget Size

Cormican, Morton, and Wood noted that the approximation method they employed started to take
significant CPU time as the budget K was increased for instances of the size of SNIP10x10 [4]. The
second experiment was aimed at determining the effect of the budget on the difficulty of the SNIP
instance. To test this, the instance SNIP10x10 with budgets of size K = 10, 15, and 20 was solved. We
solved each instance approximately using the sample-average decomposition-based approach on the
formulation F3 with M = 10 trials. Table 4 shows the convergence of lower bound and upper bounds
on the optimal solution value, the average CPU time required to solve the sampled formulation, and the
average number of LP iterations and IP solves necessary to solve the instance for different budgets and
sample sizes.

K N LB UB Avg. Sol Avg # LP Avg # IP
Time (sec.) Iterations Solves

10 50 88.28 ± 1.86 88.75 ± 0.34 133.44 26.00 3.20
10 100 88.09 ± 2.92 88.52 ± 0.38 140.34 20.90 2.60
10 200 87.08 ± 1.83 88.55 ± 0.33 141.34 17.70 1.60
10 500 88.39 ± 0.85 88.20 ± 0.21 210.54 17.40 2.20
10 1000 87.90 ± 0.40 88.15 ± 0.12 362.42 17.80 1.80
10 2000 88.03 ± 0.41 88.09 ± 0.21 960.40 16.40 0.60
15 50 76.46 ± 2.39 78.97 ± 1.10 120.63 33.00 3.60
15 100 75.98 ± 1.66 78.26 ± 0.20 192.32 26.20 4.00
15 200 76.88 ± 1.03 78.27 ± 0.22 219.90 22.70 3.90
15 500 77.09 ± 0.90 78.29 ± 0.16 658.39 21.70 4.30
15 1000 77.66 ± 0.30 78.21 ± 0.27 3023.90 22.90 5.00
15 2000 77.75 ± 0.42 78.26 ± 0.14 23587.25 20.40 6.90
20 50 71.34 ± 1.74 71.06 ± 0.49 84.50 33.90 2.40
20 100 70.51 ± 2.67 70.60 ± 0.30 102.87 30.30 3.20
20 200 70.04 ± 1.12 70.42 ± 0.29 129.07 25.20 3.10
20 500 69.98 ± 0.75 70.20 ± 0.19 222.20 23.50 3.40
20 1000 69.75 ± 0.45 70.16 ± 0.23 445.44 25.10 3.40
20 2000 70.26 ± 0.26 70.18 ± 0.11 2044.28 22.30 3.60

Table 4: Effect of Budget on Convergence of Solution Bounds for SNIP10X10 Instance

Instances with a budget size of K = 15 are significantly more difficult to solve than the K = 10
or K = 20 instances. The difficulty arises on two fronts. First, the bias in the sampled approximation
is worse. For a sample of size N = 2000, there is still a gap between the statistical lower and upper
bounds on the optimal objective function value zSNIP for K = 15, but for K = 10 and K = 20, this
gap is negligible. Second, the average CPU time required to solve the K = 15 instances is significantly
larger than for the K = 10 or K = 20 instances. The increase in CPU time is nearly entirely due to
the increased number of IPs that need to be solved for the K = 15 instances. Often, especially at the
later iterations of the algorithm, an integer program can take hours to solve. This is highly undesirable,
and we will discuss heuristic mechanisms addressing this liability in Section 4.6. An interesting (and
promising) point to be made about this experiment is that even though the K = 15 instances with
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samples of size N = 1000, 2000 took a long time to solve, instances with much smaller sample sizes
were producing high-quality solutions, as evidenced by the fact that the statistical upper bound remains
nearly constant as N increases.

4.5 Variance Reduction

The third experiment was designed to demonstrate the effect of selecting the elements within the sam-
ple T using Latin Hypercube Sampling (LHS), a well-known variance reduction technique [23]. To
generate a Latin Hypercube sampled approximation to SNIP, for each interdictable arc, a distribution
consisting of pN “success” events and (1 − p)N “failure” events is built. The scenarios are created
by sampling from these distributions without replacement. Thus, in a Latin Hypercube Sample with
N = 100, if the probability of a successful interdiction is p = 75%, exactly 75 of the scenarios will have
a successful interdiction for each arc. It is insightful to contrast this sample with one drawn from Monte
Carlo (uniform random) sampling, which can be viewed as sampling with replacement. In a Monte
Carlo sample, there are not necessarily 75 successful interdictions on each arc; rather, the number of
successful interdictions is a random variable with expected value pN = 75. Elements within a sample
are not independent in LHS; it is precisely this negative covariance between the elements that can lead
to variance reduction. Sampling “more intelligently” via variance reduction techniques has shown con-
siderable promise in obtaining more accurate solutions to stochastic programs [18, 7, 15]. The SUTIL

stochastic programming utility we employ can automatically generate Latin Hypercube samples of the
true instance specified in SMPS format.

Tables 5 and 6 detail the computational results obtained by repeating the experiments from Sections
4.3 and 4.4, only using Latin Hypercube sampling in all cases. The results show that the bias is reduced
by creating the sample average approximation with LHS. Namely, for a fixed instance and fixed value
of N , the statistical lower bound obtained in the Latin Hypercube case is nearly always larger than the
lower bound when computed using Monte Carlo sampled approximations. The reader will also note that
in nearly all cases, the variance (and hence confidence interval) of the estimates is smaller when using
LHS as opposed to Monte Carlo sampling. This experiment provides even more computational evidence
that advanced sampling techniques should be employed when creating sample average problems.

4.6 Heuristic Algorithms

For large and difficult instances, such as SNIP20x20 or the SNIP10x10 instance with a budget of K = 15,
the computational times of the exact algorithm for solving the sample average approximation to F3 are
prohibitively long. In this section, we explore two simple heuristic ideas for obtaining solutions to SNIP.
Both ideas are based on the observation that often nearly all of the components of the solution to the
linear programming relaxation x∗LP ∈ arg minx∈LP (X) F (x) are integer-valued.

Since the instances in these experiments are more difficult, the experiments were run in a larger
Condor pool. For these tests, a Condor pool consisting of three different Beowulf clusters at Lehigh
University was used. In total, 260 processors were available for computation, but due to the nature of
the Condor scheduling software, only a fraction were available to use at any one time.
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Instance N LB UB Avg. Sol Avg # LP Avg # IP
Time (sec.) Iterations Solves

SNIP7x5 50 79.82 ± 1.08 80.23 ± 0.27 204.20 13.50 1.10
SNIP7x5 100 79.96 ± 0.88 80.31 ± 0.43 135.92 13.20 0.40
SNIP7x5 200 80.32 ± 0.32 80.12 ± 0.02 324.21 13.40 0.30
SNIP7x5 500 80.03 ± 0.21 80.11 ± 0.01 335.58 12.20 0.00
SNIP7x5 1000 80.15 ± 0.17 80.12 ± 0.02 314.92 12.80 0.00
SNIP7x5 2000 80.25 ± 0.12 80.11 ± 0.02 352.18 12.40 0.00
SNIP4x9 50 10.00 ± 0.67 10.98 ± 0.10 190.33 9.30 0.00
SNIP4x9 100 10.06 ± 0.53 10.94 ± 0.02 259.21 8.70 1.90
SNIP4x9 200 10.19 ± 0.36 10.91 ± 0.02 198.41 9.30 2.50
SNIP4x9 500 10.49 ± 0.23 10.91 ± 0.03 144.75 10.10 6.40
SNIP4x9 1000 10.84 ± 0.16 10.91 ± 0.02 204.31 9.40 11.00
SNIP4x9 2000 10.78 ± 0.13 10.92 ± 0.02 326.47 10.40 9.70

SNIP10x10 50 88.62 ± 0.60 88.50 ± 0.57 201.92 18.80 1.40
SNIP10x10 100 88.21 ± 0.70 88.41 ± 0.32 147.95 17.20 1.40
SNIP10x10 200 88.16 ± 0.31 88.12 ± 0.02 436.03 16.40 1.40
SNIP10x10 500 88.24 ± 0.22 88.13 ± 0.01 466.75 15.70 0.00
SNIP10x10 1000 88.16 ± 0.08 88.13 ± 0.02 582.20 15.80 0.00
SNIP10x10 2000 88.12 ± 0.09 88.13 ± 0.02 959.02 15.30 0.00

Table 5: Convergence of Solution Bounds with Latin Hypercube Sampling

4.6.1 Rounding

Since the constraint set X is simple, an LP solution x∗LP can be easily rounded to obtain a feasible
solution xR ∈ X. Further, ‖xR − x∗LP ‖ is typically small, so one might hope that F (xR) − F (x∗LP ),
which is an (expected) upper bound on F (xR) − zSNIP, the suboptimality of the solution xR, is also
small.

To test this hypothesis, the linear programming relaxation of an instance of SNIP20x20 with N = 500
scenarios was solved, resulting in an optimal solution x∗LP with objective function value v∗ = 181.63. In
the solution x∗LP , 13 components had value of one, 14 were fractional, and the remaining components
had value zero. As the budget for SNIP20x20 was K = 20, we simply took as the rounded integer
solution xR the thirteen arcs whose value was one, and the seven fractional arcs whose value in x∗LP

was largest. Using a new sample, the function F (xR) was estimated to be 195.14 ± 0.03. From the
computational results presented in Table 3, it seems likely that the optimal solution value of SNIP20x20
is less than 184, so xR is not a good solution. From this, we conclude that by simply rounding (naively)
the solution of the LP relaxation to F3, one cannot expect to get a good solution to SNIP.

4.6.2 Variable Fixing

The second heuristic idea for reducing solution time is to restrict the master integer program MIPk by
fixing the variables that take integral values in the solution to the linear programming relaxation. That
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K N LB UB Avg. Sol Avg # LP Avg # IP
Time (sec.) Iterations Solves

10 50 88.62 ± 0.60 88.50 ± 0.57 201.92 18.80 1.40
10 100 88.21 ± 0.70 88.41 ± 0.32 147.95 17.20 1.40
10 200 88.16 ± 0.31 88.12 ± 0.02 436.03 16.40 1.40
10 500 88.24 ± 0.22 88.13 ± 0.01 466.75 15.70 0.00
10 1000 88.16 ± 0.08 88.13 ± 0.02 582.20 15.80 0.00
10 2000 88.12 ± 0.09 88.13 ± 0.02 959.02 15.30 0.00
15 50 77.04 ± 0.50 78.31 ± 0.25 164.55 24.10 9.50
15 100 78.09 ± 0.48 78.20 ± 0.08 237.22 21.80 20.60
15 200 77.41 ± 0.43 78.18 ± 0.06 3998.76 20.10 21.10
15 500 77.95 ± 0.31 78.05 ± 0.06 24122.11 17.80 29.10
15 1000 77.98 ± 0.17 78.05 ± 0.08 5070.12 17.70 12.60
15 2000 78.07 ± 0.10 78.07 ± 0.08 15358.83 17.10 13.00
20 50 71.06 ± 0.87 71.11 ± 0.38 165.65 24.50 1.40
20 100 70.38 ± 0.69 70.68 ± 0.48 234.01 22.30 4.00
20 200 69.93 ± 0.71 70.39 ± 0.19 228.50 20.10 3.50
20 500 70.30 ± 0.32 70.38 ± 0.21 492.42 20.10 4.10
20 1000 70.05 ± 0.34 70.25 ± 0.19 630.94 19.50 2.90
20 2000 70.42 ± 0.24 70.36 ± 0.20 1237.80 19.90 4.70

Table 6: Convergence of Solution Bounds with Latin Hypercube Sampling for SNIP10X10

is, before beginning Algorithm 2, the constraints

xij = 0 ∀(i, j) | x∗ij = 0, xij = 1 ∀(i, j) | x∗ij = 1, (25)

where x∗ is the solution of linear programming relaxation from Algorithm 1, are added to MIP0.
The idea was first tested on an instance of SNIP10x10 with budget size K = 15, one of the most

computationally challenging instances we encountered. Solving the linear programming relaxation of
this instance took 68 iterations, and of the 200 variables in the problem, all but eight variables were
fixed according to the criteria (25). Only one integer program, with 2 nodes in the branch-and-bound
tree was necessary for Algorithm 2 to produce a solution once the variables were fixed. In total, finding
this solution took 1851 seconds on an average of 98 processors in the Condor pool. The objective value
of the solution was estimated using a new sample and found to be 78.03 ± 0.03. Comparing this result
with the results in Tables 4 and 6 reveals that the solution obtained in this manner is of high quality.

As a final test, an instance of SNIP20x20 with N = 1000 scenarios was solved. This is the largest
instance that we attempted to solve, and the sampled version of the formulation F3 for this problem has
over 4.6 million rows and over 2.8 million columns. To solve this instance, we warm-started Algorithm
1 with an initial iterate x0 taken as the solution to the N = 500 instance from Section 4.6.1. Solving
the LP relaxation to this instance took 14 iterations, and 4 IP iterations were necessary for Algorithm 2
to terminate with a solution. The wall clock time required to find this solution was 3866 seconds on an
average of 134 processors. The objective value of the best solution found by the heuristic was estimated
with a new sample to be 182.60±0.04. Examining our (preliminary) attempts and the statistical bounds
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obtained in Table 4, we see that this solution is likely of high quality. Fixing variables suggested by the
LP relaxation to F3 appears to be an effective mechanism for reducing solution times, while sacrificing
little in the way of solution quality.

5 Conclusions and Future Directions

We have given a MILP formulation of a stochastic network interdiction problem aimed at minimizing
an adversary’s expected maximum flow. Since the integer variables in the formulation appear only in
the first stage, a combination of decomposition, sampling, parallel computing, and heuristics allowed
us to solve very accurately instances of larger sizes than have been previously reported in the literature.

Continuing work is aimed at increasing the size of instances that can be solved with this method. In
particular, we will investigate more sophisticated mechanisms for switching between solving the master
linear program MLPk and the master integer program MIPk. Also, since the software is already instru-
mented to run in parallel on a computational grid, it is natural to consider parallelizing the solution of
the integer master problem MIPk. Grid-enabled solvers for mixed integer programming have already
been developed in [1, 2]. We also plan to investigate the impact of adding cover inequalities from
relaxed optimality cuts, of regularizing the integer master-problem, and of generating non-dominated
optimality cuts. These ideas have been applied to a stochastic program arising from a supply chain
planning application by Santoso et al. [27]. A long-term goal is to enhance the decomposition algo-
rithm to become an effective approach for general two-stage stochastic integer programs in which the
integrality restrictions are limited to the first-stage variables.
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