Computational Optimization and Applications manuscript No.
(will be inserted by the editor)

Strong-Branching Inequalities for
Convex Mixed Integer Nonlinear Programs

Mustafa Kiling : Jeff Linderoth - James Luedtke -
Andrew Miller

April 17, 2014

Abstract Strong branching is an effective branching technique that can significantly reduce the size of
the branch-and-bound tree for solving Mixed Integer Nonlinear Programming (MINLP) problems. The
focus of this paper is to demonstrate how to effectively use “discarded” information from strong branching
to strengthen relaxations of MINLP problems. Valid inequalities such as branching-based linearizations,
various forms of disjunctive inequalities, and mixing-type inequalities are all discussed. The inequalities
span a spectrum from those that require almost no extra effort to compute to those that require the solution
of an additional linear program. In the end, we perform an extensive computational study to measure the
impact of each of our proposed techniques. Computational results reveal that existing algorithms can be
significantly improved by leveraging the information generated as a byproduct of strong branching in the
form of valid inequalities.

Keywords Mixed-Integer Nonlinear Programming, Strong-Branching, Disjunctive Inequalities, Mixing
Inequalities

1 Introduction

In this work, we study valid inequalities derived from strong branching for solving the convex mixed integer
nonlinear programming (MINLP) problem

ZMINLP = minimize f(x) (1)
subject to g;(z) <0, VjeJ,
reX, axyezll

M. Kiling
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, E-mail: mrk46@pitt.edu

J. Linderoth
Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, E-mail: lin-
deroth@wisc.edu

J. Luedtke
Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, E-mail: jr-
luedt1@wisc.edu

A. Miller
United Parcel Service, Atlanta, GA 30328, E-mail: foresomenteneikona@gmail.com

The functions f : X = R and g; : X — R Vj € J are smooth, convex functions, and the set X def {z €

R? | Az < b} is a polyhedron. The set I C {1,...,n} contains the indices of discrete variables, and we
define B C I as the index set of binary variables.

In order to have a linear objective function an auxiliary variable 7 is introduced, and the nonlinear
objective function is moved to the constraints, creating the equivalent problem

ZMINLP = mlnlmlze{'f’ : (njﬁf) = S’ T = ZII‘} (2)
where
S={(nz) eRxX| f(z)<n, g;(x) <0 VjeJ}

We define the set P = {(,z) € S | z; € Z"I} to be the set of feasible solutions to (2).

Branch and bound forms a significant component of most algorithms for solving MINLP problems. In
NLP-based branch and bound, the lower bound on the value zynrp comes from the solution value of the
nonlinear program (NLP) that is the continuous relazation of (2):

zyepr = min{n : (n,z) € S}. (3)

In linearization-based approaches, such as outer-approximation [18] or the LP/NLP branch-and-bound
algorithm [31], the lower bound comes from solving a linear program (LP), often called the master problem
that is based on a polyhedral outer-approximation of P:

Zup(K) =min - 7 (4)
st.n>f(@)+ V@) (x—-z) Vzek,
9;(%) + Vg;j(@) T (x —7) <0 VjeJVzek,
r € X,

where K is a set of points about which linearizations of the convex functions f(-) and g;(-) are taken. For
more details on algorithms for solving convex MINLP problems, the reader is referred to the surveys [11,
12,22].

Regardless of the bound employed by the branch-and-bound algorithm, algorithms are required to
branch. By far the most common branching approach is branching on individual integer variables. In this
approach, branching involves selecting a single branching variable z;,7 € I such that in the solution &
to the relaxation (3) or (4), &; ¢ Z. Based on the branching variable, the problem is recursively divided,
imposing the constraint z; < |#;] for one child subproblem and z; > [#;] for the other. The relaxation
solution & may have many candidates for the branching variable, and the choice of branching variable can
have a very significant impact on the size of the search tree [28,3]. Ideally, the selection of the branching
variable would lead to the smallest resulting enumeration tree. However, without explicitly enumerating
the trees coming from all possible branching choices, choosing the best variable is difficult to do exactly. A
common heuristic is to select the branching variable that is likely to lead to the largest improvement in the
children nodes’ lower bounds. The reasoning behind this heuristic is that nodes of the branch-and-bound
tree are fathomed when the lower bound for the node is larger than the current upper bound, so one should
select branching variables to increase the children nodes’ lower bounds by as much as possible.

In the context of solving the Traveling Salesman Problem, Applegate et al. [4] propose to explicitly
calculate the lower bound changes for many candidate branching variables and choose the branching variable
that results in the largest change for the resulting child nodes. This method has come to be known as strong
branching. Strong branching or variants of strong branching, such as reliability branching [3], have been
implemented in state-of-the-art solvers for solving mixed integer linear programs, the special case of MINLP
where all functions are linear.

For MINLP, one could equally well impose the extra bound constraint on the candidate branching
variable in the nonlinear continuous relaxation (3). We call this type of strong branching, NLP-based
strong branching. In particular, for a fractional solution &, NLP-based strong branching is performed by
solving the two continuous nonlinear programming problems

7Y = minimize{n : (n,r) € S} (NLPY)
and
f} = minimize{n : (n,z) € S}} (NLPY)

for each fractional variable index i € F % {iel]| 2 ¢ 7}, where S = {(n,) € S| z; < |#;]} and
St ={(n,z) € S| x; > [%;]}. The optimal values of the subproblems (n?,n} Vi € F) are used to choose a
branching variable [2,28].

In the LP/NLP branch-and-bound algorithm, the NLP continuous relaxation (3) is not solved at every
node in the branch-and-bound tree, although it is typically solved at the root node. Instead, the polyhedral
outer-approximation (4) is used throughout the branch-and-bound tree. The outer-approximation is refined
when an integer feasible solution to the current linear relaxation is obtained. Since the branch-and-bound
tree is based on a linear master problem, it is not obvious whether strong branching should be based on
solving the nonlinear subproblems (NLP?) and (NLP}) or based on solving the LP analogues to these
where the nonlinear constraints are replaced by the current linear outer approximation. However, our
computational experience in Section 4.3 is that even when using a linearization-based method, a strong-
branching approach based on solving NLP subproblems can yield significant reduction in the number of
nodes in a branch-and-bound tree. Bonami et al. [13] have also given empirical evidence of the effectiveness
of NLP-based strong branching for solving convex MINLP problems.

On the other hand, using NLP subproblems for strong branching is computationally more intensive
than using LP subproblems, so it makes sense to attempt to use information obtained from NLP-based
strong branching in ways besides simply choosing a branching variable. In this work, we describe a variety
of ways to transfer strong-branching information into the child node relaxations. The focus of our work
will be on improving the implementation of the LP/NLP branch-and-bound algorithm in the software
package FilMINT [1]. The information may be transferred to the child relaxations by adding additional
linearizations to the master problem (4) or through the addition of simple disjunctive inequalities. The idea
of applying disjunctive programming ideas to solve MINLP problems has been previously employed by many
authors [36,35]. We demonstrate the relation of the simple disjunctive inequalities we derive to standard
disjunctive inequalities. We derive and discuss many different techniques by which these simple disjunctive
strong-branching inequalities may be strengthened. The strengthening methods range from methods that
require almost no extra computation to methods that require the solution of a linear program. In the end,
we perform an extensive computational study to measure the impact of each of our methods. Incorporating
these changes in the solver FiIMINT results in a significant reduction in CPU time on the instances in our
test suite.

The remainder of the paper is divided into 4 sections. Section 2 describes some simple methods for
using inequalities generated as an immediate byproduct of the strong-branching process. Section 3 con-
cerns methods for strengthening inequalities obtained from strong branching. Section 4 reports on our
computational experience with all of our described methods, and Section 5 offers some conclusions of our
work.

2 Simple Strong-Branching Inequalities

In this section, we describe elementary ways that information obtained from the strong-branching procedure
can be recorded and used in the form of valid inequalities for solving MINLP problems. The simplest scheme

is to use linearizations from the NLP subproblems. Alternatively, valid inequalities may be produced from
the disjunction, and these inequalities may be combined by mixing.

2.1 Linearizations

When using a linearization-based approach for solving MINLP problems, a simple idea for obtaining more
information from the NLP strong-branching subproblems (NLP?) and (NLP}) is to add the solutions to
these subproblems to the linearization point set I of the master problem (4).

There are a number of reasons why using linearizations about solutions to (NLP?) and (NLP!) may
yield significant computational benefit. First, the inequalities are trivial to obtain once the NLP subprob-
lems have been solved; one simply has to evaluate the gradient of the nonlinear functions at the optimal
solutions of (NLP?) and (NLP}). Second, the inequalities are likely to improve the lower bound in the
master problem (4) after branching. In fact, if these linearizations are added to (4), then after branching
on the variable z;, the lower bound zypx) will be at least as large as the bound obtained by an NLP-
based branch-and-bound algorithm. Third, optimal solutions to (NLP?) and (N LP}) satisfy the nonlinear
constraints of the MINLP problem. Computational experience with different linearization approaches for
solving MINLP problems in [1] suggests that the most important linearizations to add to the master prob-
lem (4) are those obtained at points that are feasible to the NLP relaxation. Finally, depending on the
branching strategy employed, using these linearizations may lead to improved branching decisions. For
example, our branching strategy, described in detail in Section 4.1, is based on pseudocosts that are ini-
tialized using NLP strong-branching information, but are updated based on the current polyhedral outer
approximation after a variable is branched on. Thus, the improved polyhedral outer approximation derived
from these linearizations may lead to improved pseudocosts, and hence better branching decisions.

2.2 Simple disjunctive inequalities

Another approach to collecting information from the strong-branching subproblems (NLP?) and (NLP})
is to combine information from the two subproblems using disjunctive arguments. We call the first very
simple inequality a strong-branching cut (SBC). We omit the simple proof of its validity.

Proposition 1 The strong-branching cut (SBC)
n =5 + (0 =) (5)

is wvalid for the MINLP (2), where i € B, and 70, f} are the optimal solution values to (NLP?) and
(NLP}), respectively.

Similar inequalities can be written for other common branching disjunctions, such as the GUB constraint

Zl‘i = 1, (6)

ics
where S C B is subset of binary variables.

Proposition 2 Let (6) be a constraint for the MINLP problem (2). The GUBSBC inequality

77227%1331‘ (7)

i€S

is valid for (2), where 7} is the optimal solution value to (NLP}) fori € S.

If the instance contains a constraint of the form Zie gz; <1, then a slack binary variable can be added
to convert it to the form of (6), so that (7) may be used in this case as well.

The simple SBC (5) can be generalized to disjunctions based on general integer variables. The following
result follows by using a convexity argument and a disjunctive argument based on the disjunction z; < | ;|
or z; > [#;], for some integer variable x; whose relaxation value #; is fractional. A complete proof of
Proposition 3 can be found in the Ph.D. thesis of Kiling [26].

Proposition 3 For i € I, the strong-branching cut

n >0’ + (0 =) (@ — |2))

is valid for (2), where 7° and 7' are the optimal solution values to (NLP?) and (NLP}), respectively.

2.3 Mixing Strong-Branching Cuts

Mixing sets arose in the study of a lot-sizing problem by Pochet and Wolsey [30] and were systematically
studied by Giinliik and Pochet [24]. A similar set was introduced as a byproduct of studying the mixed
vertex packing problem by Atamtiirk, Nemhauser, and Savelsbergh [5].

A collection of strong-branching inequalities (5) can be transformed into a mixing set in a straightfor-
ward manner. Specifically, let B C B be the index set of binary variables on which strong branching has
been performed, and let §; = 7} —#/? be the difference in objective values between the two NLP subproblems
(NLP?) and (NLP}). Proposition 1 states that the SBC inequalities

n>a 40z VieB (8)
are valid for the MINL1~3 problem (2). Without loss of generality, assume that ¢; > 0, for otherwise, one
can define Z; = 1 — x;, §; = —d;, and write (8) as

n >0+ 6%,
which has 52 > 0. Since §; > 0, the value

def ~
n = max) <n
- VieB

is a valid lower bound for the objective function variable 7. Furthermore, by definition, the inequalities
nZﬂ—FUizi VZEB (9)

are valid for (MINLP), where o; =% —nand B={i|0; > 0,i € B}. The inequalities (9) define a mixing
set _
M = {(n,2) e R x {0,1}Bl | n >y + 02, Vie B}. (10)

Proposition 4 is a straightforward application of the mizing inequalities of [24] or the star inequalities of [5]
and demonstrates that the inequalities, which we call MIXSBC, are valid for M, thus valid for the feasible
region P of the MINLP problem.

Proposition 4 ([5,24]) Let T = {i1,... i} be a subset of B such that oy, , < o;, forj =2,...,t.
Then the MIXSBC inequality

n Z Q—F Z 91'].131']. (11)
ijET
is valid for M, where 0;, = o;, and 0;; = 0y, — 0y, _, forj=2,...,t.

If a MIXSBC inequality (11) is violated by a fractional solution Z, it may be identified in polynomial
time using a separation algorithm given in [5] or [24].

3 Strengthened Strong-Branching Inequalities

The valid inequalities introduced in Section 2 can be obtained almost “for free” using strong-branching
information. In this section, we explore methods for strengthening and combining simple disjunctive in-
equalities. By doing marginally more work, we hope to obtain more effective valid inequalities. The section
begins by examining the relationship between the simple strong-branching cut (5) and general disjunctive
inequalities. A byproduct of the analysis is a simple mechanism for strengthening the inequalities (5) by
using the optimal Lagrange multipliers from the NLP strong-branching subproblems. The analysis also sug-
gests the construction of a cut-generating linear program (CGLP) to further improve the (weak) disjunctive
inequality generated by strong branching.

3.1 SBC and Disjunctive Inequalities

The SBC (5) is a disjunctive inequality. For ease of presentation, we describe the relationship only for
disjunctions of binary variables. The extension to disjunctions on integer variables is straightforward and
can be found in [26]. Let (7°,2%) and (7!, 2!) be optimal solutions to the NLP subproblems (NLP?) and
(NLP}), respectively. Since f(-) and g;(-) are convex, linearizing the nonlinear inequalities about the points
(7°,2%) and (7', 2!) gives two polyhedra

Ar—n < ° cde—n < bt
D%z < d° Dz < 4
x)={ (n,2) Az < b , X=< (n,2) Az < b (12)
z; < 0 -z; < -1
x € R} x € R}

that outer-approximate the feasible region of the two strong-branching subproblems. In the description of
the polyhedra (12), we use the following notation for the gradient V f(z) € R"*!, and Jacobian Vg(z) €
R™*I7I of the objective and constraint functions at various points:

O = V)T, o = VT,
bOZVf(i'O)T.iO*’I?O, bl :Vf(i'l)T.ilfﬁl,
D° = vy(2%)7, D' =vg(z")T,

d’ = vg(i°)"i° — g(2%) d' = vg(@")'a' —g(2")

We may assume that the sets X and X! are non-empty, for if one of the sets is empty, the bound on
the variable x; may be fixed to its alternative value. Since X and X! are polyhedra, we may apply known
disjunctive theory to obtain the following theorem.

Theorem 1 [7] The disjunctive inequality
ar—on < (13)

is valid for conv(X? U X!) and hence for the MINLP problem (2) if there exists A%, * € Rixm,,uo,,ul €
RY™ 69,0 € Ry and o € Ry such that

a <o +2°D° + P A + 6%, (14a)

a<oct +A'D + it A - fle;, (14b)

B> ab® + \0d° + 1O, (14c)

B> ob + \Nd' + p'o— 6, (14d)

AN 0t 60,6 0 > 0. (14e)

One specific choice of multipliers A%, AL, 4%, ut, 09 01, o in (14) leads to the strong-branching inequality

(5).

Proposition 5 Let (7°,2%) and (7', 21) be optimal solutions to the NLP subproblems (NLP?) and (NLP}),
respectively, satisfying a constraint qualification. Then,

n >0+ 0 —0%)z
is a disjunctive inequality (13).

Proof.

Since both (7°, %) and (7°, 2°) satisfy a constraint qualification, there exists Lagrange multiplier vectors
Aol ¢h > 0 and a Lagrange multiplier 6" > 0, for each h € {0,1} satisfying the Karush-Kuhn-Tucker
(KKT) conditions

ViEMT + Avg@™)T + gt A — ¢t + he; = 0, (15a)
Meg(zh) =0, (15b)

(A" —b) =0, (15c¢)

" (@" —h) =0, (15d)

o =0 (15¢)

We assign multipliers 60 = 1, A0 = X0, 40 = 49, 60 = 9% — 7% + ' into (14a) and (14c) and o' = 1,
A=At =t 0t =0 +7° — 7! into (14b) and (14d) in Theorem 1. Substituting these multipliers into
(14) and simplifying the resulting inequalities using the KKT conditions (15) demonstrates that the SBC
(5) is a disjunctive inequality. The algebraic details of the proof can be found in [26].

O

3.2 Multiplier Strengthening

The analogy between the strong-branching inequality (5) and disjunctive inequality (13) leads immediately
to simple ideas for strengthening the strong-branching inequality using Lagrange multiplier information.
Specifically, a different choice of multipliers for the disjunctive cut (13) leads immediately to a stronger
inequality.

Theorem 2 Let (7%, 2°) be the optimal (primal) solution to (NLP?) with associated Lagrange multipliers
(A2, 10,40, 60°). Likewise, let (7", 2"') be the optimal (primal) solution to (NLP}) with associated Lagrange
multipliers (A, i, ¢',0Y). Define fi* = min {30, i}, and ¢* = min {¢°, ¢'}. If (NLPP) and (NLP}) both
satisfy a constraint qualification, then the strengthened strong-branching cut (SSBC)

0"+ (b= Az) + ¢ + (7 = 7")ai < (16)
is a disjunctive inequality (13).

Proof. We substitute the multipliers M = A, " = gh — i* h € {0,1}, 0 = 1, 8° = ° — 7° + §*,
o1 = 0' + 7° — 7! into (14) in Theorem 1. Simplifying the resulting expressions using the KKT conditions
(15) demonstrates the result. Details of the algebraic steps required are given in the Ph.D. thesis of Kiling
[26].

|

3.3 Strong-Branching CGLP

In Theorem 1, we gave necessary conditions for the validity of a disjunctive inequality for the set conv (XU
X!). A most violated disjunctive inequality can be found by solving Cut Generating Linear Program
(CGLP) that maximizes the violation of the resulting cut with respect to a given point (7, &):

maximize S — ai + o7

subject to o < oc® +X°D° + %A + 0%;,
a<oct +AX'DY 4t A — fle,,
B> b + \0d° + 1%,
B> obt + \Nd' + pulb— 61,
A0 0% N\t 6t o > 0.

(17)

A feasible solution to (17) with a positive objective function corresponds to a disjunctive inequality
violated at (), Z). However, the set of feasible solutions to CGLP is a cone and needs to be truncated to
produce a bounded optimal solution value in case a violated cut exists. The choice of the normalization
constraint used to truncate the cone can be a crucial factor in the effectiveness of disjunctive cutting planes.
One normalization constraint studied in [8,9] is the a-normalization:

> ail +o=1. (aNORM)
i=1

The most widely used normalization constraint was proposed by [6] and is called the Standard Normalization
Condition (SNC)[20]:

[

> (ZA?+ /u?+9h—|—cr):1. (SNC)
hefo1} =1 =1

The SNC normalization is criticized by Fischetti, Lodi, and Tramontani [20] for its dependence on the
relative scaling of the constraints. To overcome this drawback, they proposed the Fuclidean Normalization

I

S (DL + 3 Ayl 460" + M lo) =1, (EN)

he{o,1} j=1 j=1

instead of (SNC). In (EN), D, and Dj, are the j™ row of the matrices D° and D' respectively, and A;,
is the j*™ row of A. We refer reader to [20] for further discussion on normalization constraints and their
impact on the effectiveness of disjunctive inequalities. In Section 4.8 we will report on the effect of different
normalization constraints on our disjunctive inequalities.

3.4 Monoidal Strengthening
Disjunctive cuts can be further strengthened by exploiting integrality requirements of variables. This

method was introduced by Balas and Jeroslow, where they call it monoidal strengthening [10]. In any
disjunctive cut (13) the coefficient of xy, k € I'\ {i} can be strengthened to take the value

ay = max{a) — 0°[y], aj + 0"]}

where

)=o) + \°DY, + u® Ao,
aj, = ocj, + \'DY + pt A,

0 1
Ao O — Qg
P 0 e

and AD, 1 6% AL, ut, 01, o satisfy the requirements (14) for multipliers in a disjunctive inequality. The
notation Deg, Aei represents the kR column of the associated matrix.

3.5 Lifting

The disjunctive inequality (13) can be lifted to become globally valid if generated at a node of the branch-
and-bound tree. Assume that the inequality is generated at a node of the branch-and-bound tree where
the variables in the set Fy are fixed to zero and the variables in the set F; are fixed to one. Without loss of
generality, we can assume that F} is empty by complementing all variables before formulating the CGLP
(17).

Let R be the set of unfixed variables and (o, 3, A%, u%, A1, 4!, o) be a solution to (17) in the subspace
where the variables in the set Fy are fixed to zero so that o € RIZl. The lifting coefficient for the fixed
variables is given by Balas et al. [8,9] as

v = min{ac? +)\Ong + 10 A, chl +)\ID}J- + pt Ao}

Thus, the inequality
Do+ Y vwg—on< B
jER jEF

is valid for the MINLP problem (2).

4 Computational Experience

In this section, we report on a collection of experiments designed to test the ideas presented in Sections 2
and 3 with the end goal of deducing how to most effectively exploit information obtained when solving
NLP subproblems in a strong-branching scheme. Our implementation is done using the FilMINT solver for
convex MINLP problems.

4.1 FilMINT

FiIMINT is an implementation of the LP/NLP-Based Branch-and-Bound algorithm of Quesada and Gross-
mann [31], which uses the outer-approximation master problem (4). In our experiments, all strong-branching
inequalities are added directly to (4). FIIMINT uses MINTO [29] to enforce integrality of the master prob-
lem via branching and filterSQP [21] for solving nonlinear subproblems that are both necessary for con-
vergence of the method and used in this work to obtain NLP-based strong-branching information. In our
experiments, FIIMINT used the CPLEX (v12.2) software to solve linear programs.

FilMINT by default employs nearly all of MINTO’s enhanced MILP features, such as cutting planes,
primal heuristics, row management, and enhanced branching and node selection rules. FiIMINT uses the
best estimate method for node selection [28].

FilMINT uses a reliability branching approach [3], where strong branching based on the current master
linear program is performed a limited number of times for each variable. The feasible region of the lin-
ear master problem (4) may be significantly strengthened by MINTO’s preprocessing and cutting plane

10

mechanisms, and these formulation improvements are extremely difficult to communicate to the nonlinear
solver Filter-SQP. Our approach for communicating NLP-based strong-branching information to the mas-
ter problem was implemented in the following manner. For each variable, we perform NLP-based strong
branching by solving (NLP?) and (N LP}) the first time the variable is fractional in a relaxation solution.
Regardless of the inequalities we add to the master problem, we solve (NLP?) and (NLP}!) only once
per variable to limit the computational burden from solving NLP subproblems, which is appropriate in
the context of the linearization-based LP/NLP branch-and-bound algorithm that is used in FiIMINT. We
then simply add the strong-branching inequalities under consideration to the master problem and then let
FiIMINT make its branching decisions using its default mechanism. This affects the bounds in a manner
similar to NLP-based strong branching. For example, for a fractional variable x;, after adding a simple SBC
(5) or linearizations about solutions to (NLP?) and (NLP}), when FilMINT performs LP-based strong
branching on z;, the bound obtained from fixing z; < |2;] will be at least 7?, and likewise the bound
obtained from fixing x; > [2;] will be at least /}. Note however, that adding inequalities will also likely
affect the value of the relaxation, so the pseudocosts, which measure the rate of change of the objective
function per unit change in variable bound, may also be affected.

4.2 Computational Setup

Our test suite consists of convex MINLPs collected from the MacMINLP collection [27], the GAMS MINLP
World [15], the collection on the website of the IBM-CMU research group [34], and instances that we cre-
ated ourselves. The test suite consists of 40 convex instances covering a wide range of practical applications
such as multi-product batch plant design problems [32,38], layout design problems [33,16], synthesis design
problems [18,37], retrofit planning [33], stochastic service system design problems [19], cutting stock prob-
lems [25], uncapacitated facility location problems [23] and network design problems [14]. Characteristics
of the instances are given in Table 6, which lists whether or not the instance has a nonlinear objective
function, the total number of variables, the number of integer variables, the number of constraints, how
many of the constraints are nonlinear, and the number of GUB constraints. We chose the instances so that
no one family of instances is overrepresented in the group and so that each of the instances is not “too
easy” or “too hard.” To accomplish this, we chose instances so that the default version of FiIMINT is able
to solve each of these instances using CPU time in the range of 30 seconds to 3 hours.

)

The computational experiments were run on a cluster of machines equipped with Intel Xeon micropro-
cessors clocked at 2.00 GHz and 256 GB of RAM, using only one thread for each run. In order to concisely
display the relative performance of different solution techniques, we make use of performance profiles (see
[17]). A performance profile is a graph of the relative performance of different solvers on a fixed set of
instances. In a performance profile graph, the z-axis is used for the performance factor. The y-axis gives
the fraction of instances for which the performance of that solver is within a factor of x of the best solver
for that instance. In our experiments, we use both the number of nodes in the branch and bound tree and
the CPU solution time as performance metrics.

We often use the “extra” gap closed at the root node as a measure to assess the strength of a class
of valid inequalities. The extra gap closed measures the relative improvement in lower bound at the root
node over the lower bound found without adding the valid inequalities. Specifically, the extra percentage
gap closed is

100 (20UTS — Zup(K)) ’
EMINLP — Zmp(K)

where zcyrs is the value of LP relaxation after adding inequalities, zyp(x) is the value of LP relaxation of
reduced master problem after preprocessing and default set of cuts of MINTO, and zp;nrp is the optimal
solution value.

11

We summarize computational results in small tables that list the (arithmetic) average extra gap closed,
the number of nodes, and the CPU solution time.

Strong-branching inequalities are added in rounds. After adding cuts at a node of the branch-and-
bound tree, the linear program is resolved, and a new solution to the relaxation of the master problem (4)
is obtained. The strong-branching subproblems (N LP?) and (N LP}) are solved for all fractional variables
in the new solution that have not yet been initialized, and associated strong-branching inequalities are
added. If inequalities are generated at a non-root node, they are lifted to make them globally valid, as
explained in Section 3.5. Recall that NLP-based strong branching is performed at most once for each
variable.

We are primarily interested in the impact of using strong-branching information to improve the lower
bound of a linearization-based algorithm. Therefore, to eliminate variability in solution time induced by
the effect of finding improved upper bounds during the search, in our experiments we input the optimal
solution value to FiIMINT as a cutoff value and disable primal heuristics.

4.3 Performance of SBC Inequalities and Linearizations

Our first experiment was aimed at comparing elementary methods for exploiting information from NLP-
based strong-branching subproblems. The methods chosen for comparison in this experiment were

— FILMINT: The default version of FiIMINT.

— LIN: FiIMINT, but with the master problem augmented with linearizations from NLP-based branching
subproblems, as described in Section 2.1.

— SBC: FilMINT, but with the master problem augmented with the simple strong-branching cuts (5).

— PSEUDO: FilMINT, but with an NLP-based strong-branching strategy in which strong-branching in-
equalities are not added. Rather, only the pseudocost value are initialized using the NLP-based strong
branching information.

We included the method PSEUDO to test whether or not using valid inequalities derived from NLP-
based strong branching can yield improvement beyond simply using the information for branching. After
initializing the pseudocosts based on the solution values of (NLP?) and (NLP}!), the pseudocosts are
then updated based on FilMINT’s default update strategy. FiIMINT is based on the integer programming
solver MINTO, and the pseudocost update strategy for MINTO is described in [28]. Since FiIMINT is a
linearization-based solver, updates to the pseudocosts are dependent on the outer approximation that has
been obtained in the master problem.

Tables 7 and 8 in the appendix give the performance of each of these methods on each of the instances
in our test suite. The tables are summarized in Figure 1, which consists of two performance profiles.
The first profile uses the the number of nodes in the branch and bound tree as the solution metric. This
profile indicates that all methods that incorporate NLP-based strong-branching information are useful for
reducing the size of the branch and bound tree, but also that using strong branching information to derive
valid inequalities in addition to making branching decisions can further reduce the size. The most effective
method in terms of number of nodes is LIN. The second profile uses CPU time as the quality metric. In
this measure, SBC is the best method.

The two profiles together paint the picture that simple strong branching cuts (5) can be an effective
mechanism for improving performance of a linearization-based convex MINLP solver. The SBC inequalities
are not as strong as adding all linearizations, but this is not a surprising result, as the SBC inequalities
aggregate the linearization information into a single inequality. From the results of this experiment, we also
conclude that a well-engineered mechanism for incorporating “useful” linearizations from points suggested
by NLP-based strong branching, while not overwhelming the linear master problem (4) is likely to be the
most effective “elementary” mechanism for making use of information from NLP-based strong-branching
subproblems. We return to this idea in Section 4.6.

12

Fig. 1 Performance Profile of Elementary NLP-based Strong-Branching Inequalities

performance measure: number of nodes

proportion of problems solved

FILMINT ——
0.1 SBC

0 I I I I
1 2 4 8 16 32

not more than x-times worst than best solver

performance measure: solution time

T T IJI

proportion of problems solved

0.1 |

0 I I I
1 2 4 8 16 32

not more than x-times worst than best solver

4.4 Performance of GUB-SBC Inequalities

A second experiment was designed to test the effectiveness of performing NLP-based strong branching on
the GUB disjunction (6) and using the resulting GUBSBC inequality (7). Of primary interest is how the
method performs compared to using only the disjunction on the individual binary variables via the simple
SBC inequality (5).

13

In this experiment, if at least one of the variables in a GUB constraint is fractional at a solution to the
master problem (4), then strong branching on the GUB constraint is performed, and a GUBSBC inequality
(7) is generated. In order to generate a GUBSBC inequality, nonlinear subproblems (NLP}) are solved
for each of the variables in the GUB constraint, regardless of whether the variable value is fractional.
In our implementation, at most one GUBSBC inequality is generated for each GUB, and the GUBSBC
inequalities are generated at the root node only. If we encounter a fractional binary variable that is not
in any GUB constraint, or we are not at the root node, then a simple SBC inequality (5) is generated for
that variable.

Table 1 Solution Statistics Comparing SBC versus GUBSBC inequalities

Extra gap Average # of nodes Average time
closed (%) | Arithmetic | Geometric | Arithmetic | Geometric
SBC 8.4 367291.8 57656.1 1557.9 431.2
GUBSBC 17.8 409115.7 59489.7 1558.7 470.1

In Table 1, we give computational results comparing the relative strength of SBC inequalities (5) and
the GUBSBC inequalities (7). The detailed performance of methods on each instance is given in Table 9.
The comparison is done for 31 instances from our test set of 40 problems for which there exists at least
one GUB constraint in the problem. On average, adding GUBSBC inequalities closed 17.8% of the gap at
root node, and adding only SBC inequalities closed 8.4%. It is then somewhat surprising that the number
of nodes required for the two methods is approximately equal. For some reason, FIIMINT seems to select
less effective branching variables when GUBSBC inequalities are introduced to the master problem (4).

While adding GUBSBC inequalities can make a significant positive impact on solving some instances,
our primary conclusion from this experiment is that the GUBSBC inequalities do not improve the per-
formance of FiIMINT more than the SBC inequalities, thus we focused our remaining computational
experiments on evaluating only enhanced versions of SBC inequalities.

4.5 Performance of Mixing Strong-Branching Inequalities

We next compared the effectiveness of the mixed strong-branching inequalities (MIXSBC) (11) against the
unmixed version (5). There may be exponentially many mixed strong branching inequalities, so we use
the following strategy for adding them to the master problem. First, as in all of our methods, the NLP
subproblems (NLP?) and (NLP}) are solved for each fractional variable x; in the solution to the relaxed
master problem (4). The fractional variables for which (NLP?) and (NLP}) have been solved define the
mixing set B. Next, for each variable in the mixing set, we add the sparsest MIXSBC inequality for that
variable:

nZﬂ"‘O'il'i-f—(O'h—O'i)fL'h Vi€B7 (18)

where h = argmax;cg 0;. Note that the sparsest MIXSBC inequality (18) already dominates the SBC
inequality (5). Finally, after obtaining a fractional solution from the relaxation of the master problem,
(after adding the inequalities (18)), the two most violated mixing inequalities are added and the relaxation
is resolved. The MIXSBC inequalities are added in rounds until none are violated or until the inequalities
do not change the relaxation solution by a sufficient amount. Specifically, if >, 5 |z; — | < 0.1 for
consecutive relaxation solutions z’, 2", no further MIXSBC inequalities are added.

In Table 2, we summarize computational results comparing the effect of adding MIXSBC inequalities
(11) with adding only SBC inequalities (5). The detailed performance of each method on each instance
is given in Table 10. The MIXSBC inequalities are significantly stronger than the SBC inequalities. On
average, MIXSBC closed 17.7% of the optimality gap at root node, and SBC closed only 6.9% of the

14

Table 2 Solution Statistics Comparing Mixing SBC versus SBC

Extra gap Average # of nodes Average time
closed (%) | Arithmetic | Geometric | Arithmetic | Geometric
SBC 6.9 394689.0 54788.4 1585.6 504.9
MIXSBC 17.7 412063.4 55650.9 1689.2 521.4

gap on our test set. Despite this, MIXSBC inequalities perform worse than SBC in terms of average
number of nodes and solution time. An explanation for this counterintuitive behavior is that the addition
of the mixed strong-branching inequalities (11) results in MINTO (and hence FilMINT) performing “poor”
updates on the pseudocost values for integer variables. That is, in subsequent branches, the pseudocosts do
not accurately reflect the true change in objective value if a variable is branched on. Therefore, MIXSBC
makes poor branching decisions, which in turn leads to a larger search tree. For example, MIXSBC closed
62.3% of the gap at the root node for the instance SLay09M and SBC closed only 23.6%. However, 85
seconds and 8545 nodes are required to prove optimality when using MIXSBC, compared to only 33 seconds
and 4063 nodes for SBC alone.

4.6 Linearization Strategies

In our computational experiments we were not able to significantly improve the performance of strong-
branching inequalities by exploiting GUB disjunctions or by mixing them. We therefore conclude that,
among the strategies for obtaining strong-branching inequalities with minimal additional computational
effort, adding linearizations from NLP strong-branching subproblems has the most potential as a compu-
tational technique. The performance profiles in Figure 1 indicate that linearizations are very effective in
reducing the number of nodes, but often lead to unacceptable solution times due to the large number of
linearizations added to the master problem. Two simple ideas to improve the performance of linearizations
are to add only violated linearizations and to quickly remove linearizations that are not binding in the
solution of the LP relaxation of the master problem.

In Table 3, we summarize computational results comparing our original linearization scheme LIN with
an improved version denoted by BESTLIN. In BESTLIN, only linearization inequalities that are violated by
the current relaxation solution are added, and if the dual variable for a linearization inequality has value
zero for five consecutive relaxation solutions, the inequality is removed from the master problem. Full
results of the performance of the two methods on each instance can be found in Table 11. The results show
that without degrading the performance of LIN in terms of the number of nodes, BESTLIN can improve the
average solution time from 2319.9 seconds to 1744.2 seconds.

Table 3 Solution Statistics Comparing LIN versus BESTLIN

Average # of nodes Average time
Arithmetic | Geometric | Arithmetic | Geometric
LIN 353538.5 41021.2 2319.9 640.4
BESTLIN 376940.9 41245.3 1744.2 495.5

4.7 Performance of Multiplier-Strengthened SBC Inequalities

Initial computational experience with the multiplier-strengthened cuts SSBC (16), introduced in Section 3.2
suggested that the inequalities in general were far too dense to be effectively used in a linearization-based

15

scheme. Very quickly, the LP relaxation of the master problem (4) became prohibitively expensive to solve.
Our remedy for these dense cuts was to strengthen only the coefficients of integer variables. Additionally,
after the inequality was generated, the monoidal strengthening step described in Section 3.4 was performed
on the inequalities.

An experiment was done to compare the performance of using the SBC inequalities against the SSBC
inequalities on instances in our test set, and a summary of the results are given in Table 4. The com-
putational results indicate a slight improvement in both the number of nodes and the solution time by
strengthening the SBC inequalities using multipliers of the NLP strong-branching subproblems. Full results
of the performance of the two methods on each instance can be found in Table 12.

Table 4 Solution Statistics Comparing Strengthened SBC versus SBC

Extra gap Average # of nodes Average time

closed (%) | Arithmetic | Geometric | Arithmetic | Geometric
SBC 6.9 394689.0 54788.4 1585.6 504.9
SSBC 6.9 332509.4 51591.5 1535.4 490.9

4.8 Normalizations for CGLP

In Section 3.3, we described three different normalization constraints that are commonly used for the CGLP
(17). We performed a small experiment to compare the relative effectiveness of each in our context. The
performance profiles of Figure 2 summarize the results of comparing disjunctive inequalities generated by
solving the CGLP (17) with the normalization constraints (¢NORM) denoted by SBCGLP-INF, (SNC)
denoted by SBCGLP-SNC, and (EN) denoted by SBCGLP-EN. The performance profiles show that both
the standard normalization condition (SNC) and the Euclidean normalization (EN) perform significantly
better than the a-normalization. The results are consistent with the literature. The performance of (SNC)
and (EN) are comparable with each other, suggesting that the constraints of the instances in our test suite
are well-scaled. The detailed performance of methods on each instance is given in Table 13.

4.9 CGLP Without Strong Branching

The CGLP described in Section 3.1 embeds linearization information from the solution of the two strong-
branching subproblems (NLP?) and (N LP}). Specifically, the parameters c°, ¢, 6, b, D°, D! d° d' defin-
ing the polyhedra X? and X! in (12) are defined in terms of the optimal solutions (", 2°) and (4!, #!) to
the NLP strong-branching subproblems (NLP?) and (NLP}). A different strategy, that does not use infor-
mation from strong branching, is to define the polyhedra X and X} using only linearization information
ALP7 i’LP)

from the solution of the current relaxation (7 . That is, we could define the polyhedra using

CO Cl _ vf(i,LP)T,
DY = D' = vg(&"")T, and

b

We performed an experiment aimed at quantifying the effect of using linearization information obtained
from strong branching to create disjunctive cuts by comparing the performance of FiIMINT augmented
with these two types of disjunctive cuts.

16

Fig. 2 Performance Profile of CGLP with Different Normalization Constraints

performance measure: number of nodes

proportion of problems solved

“r SBCGLP-EN ———
SBCGLP-INF ====---
SBCGLP-SNC =++-+--+
0 1 I |) | ,
1 2 4 8 16 30 ” 128

not more than x-times worst than best solver

performance measure: solution time

proportion of problems solved

or SBCGLP-EN —— -
SBCGLP-INF =======
SBCGLP-SNC «++ee+e-
0 1 1 |) : |
1 2 4 8 16 2 "

not more than x-times worst than best solver

Table 14 reports the instance-specific results of this experiment. A summary of the results of this
experiment are given in the form of two performance profiles in Figure 3. The profiles compare the per-
formance of FiIMINT using disjunctive cuts with linearizations from strong branching (SBCGLP-SNC) and
FilMINT using disjunctive cuts with linearization from the current relaxation only (NOSB-CGLP-SNC). The
top profile of the figure measures the performance in terms of number of nodes, and we can see clearly that
by this measure, there is significant benefit to including linearizations obtained from NLP-based strong

17

branching in the CGLP. However, obtaining these linearizations by solving NLPs comes at some significant
computational cost. This conclusion can be drawn by examining the second profile of Figure 3, where
the performance measure is CPU time. In this measure, NOSB-CGLP-SNC outperforms SBCGLP-SNC. How-
ever, if the CPU time taking to perform strong branching is removed from the solution time calculation
for the method SBCGLP-SNC, we obtained the results given by SBCGLP-SNC-WO-SBTIME, which dominates
NOSB-CGLP-SNC. We conclude that if a branch-and-bound based algorithm performs NLP-based strong
branching to determine the branching variables, then there is is significant positive effect in using the lin-
earization information in the CGLP. However, one should not solve the strong-branching NLPs simply to
obtain stronger disjunctive inequalities. The computational effort required in solving the NLPs outweighs
the benefit obtained from stronger inequalities in terms of CPU time.

4.10 Comparison of All Methods

We make a final comparison of the methods introduced in the paper. In this experiment, we compare the
methods that performed best in earlier experiments with the default version of FiIMINT. The methods we
compare are the following:

— FilMINT: The default version of FiIMINT.

— BESTLIN: FilMINT, with the master problem augmented with linearizations from NLP-based branch-
ing subproblems, as described in Section 2.1. The linearization management strategy introduced in
Section 4.6 is employed.

— SSBC: FilMINT, with the master problem augmented with the multiplier-strengthened strong-branching
cuts (16).

— SBCGLP-SNC: FilMINT, adding disjunctive inequalities based on solving the CGLP (17) using the stan-
dard normalization condition (SNC).

The monoidal strengthening step described in Section 3.4 was applied to the inequalities generated by
methods SSBC and SBCGLP-SNC. In Table 5, we list the average number of nodes and solution time taken
for the instances in our test set. The table shows that the method SBCGLP-SNC is the best for search tree
size and solution time in the geometric mean, but the worst in both measures by the arithmetic mean.
We conclude that the method SBCGLP-SNC can be a very effective method but some care must be taken
in its use. For a small number of instances in our test set, in particular o7, Safety3, and sssd-20-8-3, the
performance of SBCGLP-SNC is quite bad, requiring a very large number of nodes and large CPU time that
significantly shifts the arithmetic mean measure.

A more holistic view is given by the performance profiles in Figure 4. These profiles show that in general
creating disjunctive inequalities by solving the CGLP (17) with the standard normalization condition
significantly outperforms the other methods. Creating disjunctive inequalities by an extra solve of (17)
pays dividends both in terms of number of nodes and solution time. We experienced similar positive effects
with other normalization constraints introduced in Section 3.3 as well. The profiles also indicate that
both linearizations and SSBC inequalities improve the performance of default FiIMINT substantially. The
detailed performance of methods on each instance is given in Table 15 and Table 16.

Table 5 Solution Statistics Comparing Best Methods and FILMINT

Average # of nodes Average time
Arithmetic | Geometric | Arithmetic | Geometric
FILMINT 762760.6 87019.1 2378.7 712.6
BESTLIN 376940.9 41245.3 1744.2 495.5
SSBC 332509.4 51591.5 1535.4 490.9
SBCGLP-SNC 833065.8 15922.6 2595.5 294.3

18

Fig. 3 Performance Profile of CGLP with and without Strong Branching

performance measure: number of nodes

T 1
g -
[9)
>
3 :
@ o
g 06 .--5': 1
2 i
Q
= -
g 05r i
k] -
c -
g 04} : |
s 03 -:.-' i
F'
0.2 | |
0.1 | |
SBCGLP-SNC ——
0 I | NOSB-CGLP-SINC -------
! 2 4 8 16
not more than x-times worst than best solver
performance measure: solution time
I T —
g -
[}
=
[«}
w
g -
€
<@
e}
o
a -
k]
j
il i
£
o
Q.
=]
a -
o1y SBCGLP-SNG —— -
NOSB-CGLP-SNC =======-
0 |) SBCGLP—SNC-\{VO-SBT”\AE e

1 2 4 8 16 32
not more than x-times worst than best solver

5 Conclusions

In this work, we demonstrate how to use “discarded” information generated from NLP-based strong branch-
ing to strengthen relaxations of MINLP problems. We first introduced strong-branching cuts, and we
demonstrated the relation of strong-branching cuts we derive with other well-known disjunctive inequal-
ities in the literature. We improved these basic cuts by using Lagrange multipliers and the integrality

19

Fig. 4 Performance Profile of Best Methods and FILMINT

performance measure: number of nodes

1 T T T T T T T T T

T o

R

proportion of problems solved

03 b ;]
02 |)
FILMINT ——

01 BESTLIN =eeeees §

SSBC -

SBCGLP-SNC
0 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512

not more than x-times worst than best solver

performance measure: solution time

proportion of problems solved

FILMINT ——
BESTLIN =--==-- -

SSBC -
SBCGLP-SNC
0 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 256
not more than x-times worst than best solver

of variables. We combined strong-branching cuts via mixing. We demonstrated that simple disjunctive
inequalities can be improved by additional linearizations generated from strong-branching subproblems.
Finally, the methods explained in this paper significantly improve the performance of FiIMINT, justifying
the use of strong branching based on nonlinear subproblems for solving convex MINLP problems.

20

Acknowledgements The authors would like to thank two anonymous referees for their useful comments and patience. This
research was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department
of Energy under Grant DE-FG02-08ER25861 and by the U.S. National Science Foundation under Grant CCF-0830153.

References

1. K. Abhishek, S. Leyffer, and J. T. Linderoth. FiIMINT: An outer-approximation-based solver for nonlinear mixed integer
programs. INFORMS Journal on Computing, 22:555-567, 2010.

2. T. Achterberg. Constraint Integer Programming. PhD thesis, Technischen Universtiat Berlin, 2007.

3. T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters, 33:42—54, 2004.

4. D. Applegate, R. Bixby, W. Cook, and V. Chvatal. The Traveling Salesman Problem, A Computational Study. Princeton
University Press, 2006.

5. A. Atamtiirk, G. Nemhauser, and M. W. P. Savelsbergh. Conflict graphs in solving integer programming problems.
European J. Operational Research, 121:40-55, 2000.

6. E. Balas. A modified lift-and-project procedure. Math. Program., 79:19-31, 1997.

7. E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied Mathematics,
89(1-3):3-44, 1998.

8. E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical
Programming, 58:295-324, 1993.

9. E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in a branch-and-cut framework.
Management Science, 42:1229-1246, 1996.

10. E. Balas and R. G. Jeroslow. Strengthening cuts for mixed integer programs. FEuropean Journal of Operational Research,
4:224-234, 1980.

11. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. Mixed-integer nonlinear optimization. Acta
Numerica, 22:1-131, 2013.

12. P. Bonami, M. Kiling, and J. Linderoth. Algorithms and software for solving convex mixed integer nonlinear programs.
In IMA Volumes in Mathematics and its Applications, volume 54, pages 1-40, 2012.

13. P. Bonami, J. Lee, S. Leyffer, and A. Wéachter. More branch-and-bound experiments in convex nonlinear integer pro-
gramming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics and Computer Science Division,
September 2011.

14. R R Boorstyn and H Frank. Large-scale network topological optimization. IEEE Trans. Commun, pages 29-47, 1997.

15. M. R. Bussieck, A. S. Drud, and A.Meeraus. MINLPLib — a collection of test models for mixed-integer nonlinear
programming. INFORMS Journal on Computing, 15(1), 2003.

16. I. Castillo, J. Westerlund, S. Emet, and T. Westerlund. Optimization of block layout deisgn problems with unequal areas:
A comparison of MILP and MINLP optimization methods. Computers and Chemical Engineering, 30:54—69, 2005.

17. E. Dolan and J. Moré. Benchmarking optimization software with performance profiles. Mathematical Programming,
91:201-213, 2002.

18. M. A. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear programs.
Mathematical Programming, 36:307-339, 1986.

19. S. Elhedhli. Service System Design with Immobile Servers, Stochastic Demand, and Congestion. Manufacturing € Service
Operations Management, 8(1):92-97, 2006.

20. M. Fischetti, A. Lodi, and A. Tramontani. On the separation of disjunctive cuts. Mathematical Programming, pages
1-26, 2009.

21. R. Fletcher and S. Leyffer. User manual for filterSQP, 1998. University of Dundee Numerical Analysis Report NA-181.

22. I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming techniques. Optimization and Engi-
neering, 3:227-252, 2002.

23. O. Gunlik, J. Lee, and R. Weismantel. MINLP strengthening for separaable convex quadratic transportation-cost ufl.
Technical Report RC24213 (W0703-042), IBM Research Division, March 2007.

24. O. Gunlik and Y. Pochet. Mixing mixed-integer inequalities. Mathematical Programming, 90(3):429 — 457, 2001.

25. 1. Harjunkoski, R. Porn, and T. Westerlund. MINLP: Trim-loss problem. In Christodoulos A. Floudas and Panos M.
Pardalos, editors, Encyclopedia of Optimization, pages 2190-2198. Springer, 2009.

26. M. Kiling. Disjunctive Cutting Planes and Algorithms for Convex Mized Integer Nonlinear Programming,. PhD thesis,
University of Wisconsin-Madison, 2011.

27. S. Leyffer. MacMINLP: Test problems for mixed integer nonlinear programming, 2003. http://www.mcs.anl.gov/
~leyffer/macminlp.

28. J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies in mixed integer programming.
INFORMS Journal on Computing, 11:173-187, 1999.

29. G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO, a Mixed INTeger Optimizer. Operations
Research Letters, 15:47-58, 1994.

30. Y. Pochet and L. Wolsey. Lot sizing with constant batches: Formulation and valid inequalities. Mathematics of Operations
Research, 18:767-785, 1993.

21

31.

32.

33.

34.

35.

36.

37.

38.

I. Quesada and I. E. Grossmann. An LP/NLP based branch-and-bound algorithm for convex MINLP optimization
problems. Computers and Chemical Engineering, 16:937-947, 1992.

D. E. Ravemark and D. W. T. Rippin. Optimal design of a multi-product batch plant. Computers & Chemical Engineering,
22(1-2):177 — 183, 1998.

N. Sawaya. Reformulations, relazations and cutting planes for generalized disjunctive programming. PhD thesis, Chemical
Engineering Department, Carnegie Mellon University, 2006.

N. Sawaya, C. D. Laird, L. T. Biegler, P. Bonami, A. R. Conn, G. Cornuéjols, I. E. Grossmann, J. Lee, A. Lodi, F. Margot,
and A. Wichter. CMU-IBM open source MINLP project test set, 2006. http://egon.cheme.cmu.edu/ibm/page.htm.

A. Saxena, P. Bonami, and J. Lee. Convex relaxations of non-convex mixed integer quadratically constrained programs:
Extended formulations. Mathematical Programming, Series B, 124:383-411, 2010.

R. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex programming. Mathematical Programming,
86:515-532, 1999.

M. Tiirkay and I. E. Grossmann. Logic-based MINLP algorithms for the optimal synthesis of process networks. Computers
& Chemical Engineering, 20(8):959 — 978, 1996.

A. Vecchietti and I. E. Grossmann. LOGMIP: a disjunctive 0-1 non-linear optimizer for process system models. Computers
and Chemical Engineering, 23(4-5):555 — 565, 1999.

Appendix

Table 7: Number of Nodes for FILMINT, SBC, LIN and PSEUDO. Experiment is
described in Section 4.3

Problem FILMINT SBC LIN PSEUDO
BatchS151208M 4097 2853 1989 2187
BatchS201210M 4001 2521 1025 1407
Batch_Storagel0-BM_10-10_6_4 18647 12675 10999 16731
Batch_Storage_.BM_10-10_6_4 21433 11015 7293 9407
CLay0305H 10595 10039 9727 11153
FLay05H 99681 99693 99953 98449
FLay05M 93765 83409 81017 86295
fo72 84269 75711 100381 93917
fo7 265115 381401 257719 1053587
m7 587399 77263 303051 146123
nd-12 25139 10765 13429 7541
nd-13 22953 10007 8691 8365
nd-14 98507 97573 102023 97537
o072 1653741 | 1109651 1172195 2022459
o7 4025281 | 2743271 3398533 8962473
RSyn0810M02M 122077 113667 110969 124563
RSyn0810M03M 93807 106807 83659 99647
RSyn0810M04M 131657 101741 112685 135623
RSyn0815M02M 441187 458867 286589 430839
RSyn0820M02M 2126481 | 2341249 2138451 1892201
RSyn0830M02M 798717 881683 797105 1139617
Safety3 4211361 | 1317425 2177111 1877557
safety_no_rotation_.CH 23267 5239 2919 3635
SLay07H 3615 1145 133 521
SLay08H 9989 2517 829 3411
SLay09H 117219 8839 2019 15301
SLay09M 15729 4063 1169 5563
sssd-16-8-3 2026245 | 2885523 1353391 6321719
sssd-17-7-3 1314097 518221 557645 1598469
sssd-18-7-3 602883 924233 164115 2527359
sssd-20-8-3 10870313 807023 216121 1525875
Syn20M04M 90763 89253 91343 149685
Syn30MO03M 49627 53087 50895 182599
Syn30M04M 257063 251043 250663 766969
Syn40MO02M 153035 147023 138941 139131

Continued on next page

22

Table 7 — continued from previous page

Problem FILMINT SBC LIN PSEUDO
trimloss4 19159 26849 24515 24061
uflquad-15-60 2415 2275 2061 2369
uflquad-15-80 3577 3413 3179 3527
uflquad-20-40 4517 3351 2783 3981
uflquad-25-40 7001 5177 4225 7057
Arithmetic mean 762760.6 394689 | 353538.5 | 789972.8
Geometric mean 87019.1 54788.4 41021.2 70326.6

Table 8: Solution Time for FILMINT, SBC, LIN and PSEUDO. Experiment is de-

scribed in Section 4.3

Problem FILMINT SBC LIN PSEUDO
BatchS151208M 55.7 51.9 61.9 49.2
BatchS201210M 65.3 61.1 50.4 43.8
Batch_Storage10.BM_10_10.6_4 189.7 162.8 138.4 176.8
Batch_Storage_ BM_10_10_6_4 208.5 141.5 98.5 95.8
CLay0305H 59.6 42.1 62.8 53.8
FLay05H 2501.6 2515.0 2902.7 2298.7
FLay05M 1161.1 1095.1 1155.6 994.6
fo7_2 151.4 167.8 331.3 210.5
fo7 454.1 690.5 498.6 2129.4
m7 1325.7 123.2 545.1 238.9
nd-12 2423.8 875.8 2381.3 756.5
nd-13 529.1 1577.2 1852.7 921.0
nd-14 4948.2 9666.7 | 10317.9 3848.9
072 3714.9 2719.0 4399.9 4133.6
o7 8929.3 6772.7 7955.8 | 21451.6
RSyn0810M02M 364.4 403.0 650.8 394.6
RSyn0810M03M 477.4 724.8 1276.1 637.1
RSyn0810M04M 1008.4 1042.4 2078.7 1176.8
RSyn0815M02M 1531.4 1671.0 2519.6 1426.3
RSyn0820M02M 9170.8 | 10553.1 16558.4 6743.0
RSyn0830M02M 4142.6 5102.7 9651.1 4636.5
Safety3 18232.8 5540.1 | 11065.3 7152.5
safety_no_rotation_.CH 122.0 25.9 20.7 21.8
SLay07H 47.4 16.2 10.5 11.8
SLay0O8H 181.5 53.4 44.8 66.1
SLay09H 3031.1 215.9 100.1 394.6
SLay09M 123.4 33.5 23.1 48.4
sssd-16-8-3 1517.9 2156.5 3078.1 4392.1
sssd-17-7-3 854.2 397.4 1024.9 1363.7
sssd-18-7-3 430.1 659.0 207.0 8343.4
sssd-20-8-3 19030.5 621.9 604.0 | 43200.4
Syn20M04M 220.6 277.5 640.2 396.4
Syn30M03M 204.9 281.1 580.3 761.7
Syn30M04M 1623.7 1762.2 3278.0 4542.6
Syn40MO02M 465.1 498.1 1169.1 464.4
trimloss4 47.2 71.0 82.0 52.7
uflquad-15-60 607.2 586.2 689.3 652.4
uflquad-15-80 2017.3 2003.5 2412.1 1932.9
uflquad-20-40 831.9 651.3 656.2 721.6
uflquad-25-40 2146.9 1413.7 1624.0 1865.9
Arithmetic mean 2378.7 1585.6 2319.9 3220.1
Geometric mean 712.6 504.9 640.4 693.2

Table 6 Test Set Statistics

Problem NL Obj | Vars | Ints | Cons | NL Cons | GUBs
BatchS151208M v 446 203 1780 1 24
BatchS201210M Va 559 251 2326 1 24

BatchStoragel0BM101064 VA 239 89 798 1 20
BatchStorageBM101064 VA 239 89 798 1 20
CLay0305H 276 55 336 60 15
FLay05H 383 40 461 5 10
FLay05M 63 40 61 5 10

fo7.2 115 42 198 14 0

fo7 115 42 198 14 0

m7 115 42 198 14 0

nd-12 601 40 290 40 4

nd-13 641 40 317 40 2

nd-14 817 48 370 48 2

072 115 42 198 14 0

o7 115 42 198 14 0
RSyn0810M02M 411 168 855 12 200
RSyn0810M03M 616 252 1435 18 435
RSyn0810M04M 821 336 2117 24 772
RSyn0815M02M 471 188 960 22 236
RSyn0820M02M 511 208 1047 28 266
RSyn0830M02M 621 248 1233 40 322
Safety3 v 260 98 294 0 28
safety_no_rotation_.CH v 409 60 456 6 15

SLay07TH Vv 477 84 609 0 21

SLay08H V4 633 112 812 0 28

SLay09H V4 811 144 1044 0 36

SLay09M v 235 144 324 0 36

sssd-16-8-3 185 152 57 24 24

sssd-17-7-3 169 140 53 21 24

sssd-18-7-3 176 147 54 21 25

sssd-20-8-3 217 184 61 24 28

Syn20M04M 421 160 997 56 462
Syn30M03M 481 180 982 60 386
Syn30M04M 641 240 1489 80 684
Syn40MO02M 421 160 757 56 244

trimloss4 106 85 61 4 20
uflquad-15-60 Vv 916 15 960 0 0
uflquad-15-80 v 1216 15 1280 0 0
uflquad-20-40 v 821 20 840 0 0
uflquad-25-40 VA 1026 25 1040 0 0

Table 9: Computational Results Comparing SBC and GUBSBC Inequalities. Ex-
periment is described in Section 4.4

SBC GUBSBC

Problem Node Time Node Time
BatchS151208M 2853 51.9 2637 64.6
BatchS201210M 2521 61.1 3431 107.9
Batch_Storagel0-BM_10_10_6_4 12675 162.8 12327 135.2
Batch_Storage_.BM_10-10-6_4 11015 141.5 10749 122.2
CLay0305H 10039 42.1 15231 39.2
FLay05H 99693 2515.0 103261 2732.8
FLay05M 83409 1095.1 88833 1191.8
nd-12 10765 875.8 10957 979.1
nd-13 10007 1577.2 6909 744.7
nd-14 97573 9666.7 103817 | 10344.2

Continued on next page

Table 9 — continued from previous page

Problem SBC GUBSBC
Node Time Node Time
RSyn0810M02M 113667 403.0 111769 421.1
RSyn0810MO03M 106807 724.8 90209 843.5
RSyn0810M04M 101741 1042.4 114027 1321.6
RSyn0815M02M 458867 1671.0 449381 1668.3
RSyn0820M02M 2341249 | 10553.1 1388191 6714.8
RSyn0830M02M 881683 5102.7 929581 5332.2
Safety3 1317425 5540.1 1517789 6782.6
safety no_rotation_ CH 5239 25.9 5549 29.5
SLay07H 1145 16.2 1019 15.3
SLay08H 2517 53.4 3947 72.0
SLay09H 8839 215.9 14227 346.9
SLay09M 4063 33.5 13211 122.0
sssd-16-8-3 2885523 2156.5 5407233 3613.6
sssd-17-7-3 518221 397.4 435421 301.0
sssd-18-7-3 924233 659.0 390357 283.4
sssd-20-8-3 807023 621.9 1031651 893.8
Syn20M04M 89253 277.5 89589 379.4
Syn30M03M 53087 281.1 47673 309.5
Syn30M04M 251043 1762.2 117043 1776.0
Syn40MO02M 147023 498.1 138897 559.0
trimloss4 26849 71.0 27671 73.4
Arithmetic mean 367291.8 1557.9 | 409115.7 1558.7
Geometric mean 57656.1 431.2 59489.7 470.1

Table 10: Computational Results Comparing SBC versus MIXSBC. Experiment

is described in Section 4.5

SBC MIXSBC
Problem Node Time Node Time
BatchS151208M 2853 51.9 2981 85.5
BatchS201210M 2521 61.1 3107 104.8
Batch_Storagel0-BM_10_10_6_4 12675 162.8 9825 114.7
Batch_Storage . BM_10-10_-6_4 11015 141.5 8091 96.6
CLay0305H 10039 42.1 12423 60.5
FLay05H 99693 2515.0 99445 2460.5
FLay05M 83409 1095.1 91981 1198.0
fo7.2 75711 167.8 75711 159.3
fo7 381401 690.5 381401 657.7
m7 77263 123.2 77263 114.4
nd-12 10765 875.8 8765 628.0
nd-13 10007 1577.2 7597 680.5
nd-14 97573 9666.7 107587 | 12390.7
o072 1109651 2719.0 1109651 2591.4
o7 2743271 6772.7 | 2743271 6177.0
RSyn0810M02M 113667 403.0 116547 402.8
RSyn0810M03M 106807 724.8 91953 647.3
RSyn0810M04M 101741 1042.4 109603 1030.2
RSyn0815M02M 458867 1671.0 389003 1472.3
RSyn0820M02M 2341249 | 10553.1 2021433 7995.5
RSyn0830M02M 881683 5102.7 881683 4644.3
Safety3 1317425 5540.1 2282213 | 10623.0
safety no_rotation_ CH 5239 25.9 4949 30.4
SLay07H 1145 16.2 649 14.2
SLay08H 2517 53.4 1931 47.1
SLay09H 8839 215.9 16157 344.0

Continued on next page

25

Table 10 — continued from previous page

Probl SBC MIXSBC
roblem Node Time Node Time
SLay09M 4063 33.5 8545 84.6
sssd-16-8-3 2885523 2156.5 2859127 2010.0
sssd-17-7-3 518221 397.4 339627 229.2
sssd-18-7-3 924233 659.0 1290693 791.8
sssd-20-8-3 807023 621.9 751119 583.0
Syn20M04M 89253 277.5 93665 251.5
Syn30MO03M 53087 281.1 53087 260.7
Syn30M04M 251043 1762.2 251043 1659.5
Syn40MO02M 147023 498.1 136903 537.0
trimloss4 26849 71.0 26905 63.9
uflquad-15-60 2275 586.2 2509 732.6
uflquad-15-80 3413 2003.5 3473 2021.0
uflquad-20-40 3351 651.3 4207 962.4
uflquad-25-40 5177 1413.7 6411 2611.6
Arithmetic mean 394689.0 1585.6 | 412063.4 1689.2
Geometric mean 54788.4 504.9 55650.9 521.4

Table 11: Computational Results Comparing LIN versus BESTLIN. Experiment

is described in Section 4.6

LIN BESTLIN
Problem Node Time Node Time
BatchS151208M 1989 61.9 2193 52.7
BatchS201210M 1025 50.4 1111 45.5
Batch_Storage10-BM_10-10-6_4 10999 138.4 10307 108.4
Batch_Storage_.BM_10-10-6_4 7293 98.5 10335 109.3
CLay0305H 9727 62.8 11077 58.2
FLayO5H 99953 2902.7 101823 2083.9
FLay05M 81017 1155.6 85797 981.5
fo7.2 100381 331.3 133599 344.5
fo7 257719 498.6 278535 3914
m7 303051 545.1 187299 265.6
nd-12 13429 2381.3 12611 1604.4
nd-13 8691 1852.7 8377 1412.3
nd-14 102023 | 10317.9 102169 6723.5
o072 1172195 4399.9 1891701 5564.0
o7 3398533 7955.8 | 3511795 6184.1
RSyn0810M02M 110969 650.8 102967 470.0
RSyn0810M03M 83659 1276.1 78845 874.1
RSyn0810M04M 112685 2078.7 98627 1479.6
RSyn0815M02M 286589 2519.6 435263 2192.2
RSyn0820M02M 2138451 | 16558.4 1984789 | 10858.7
RSyn0830M02M 797105 9651.1 843825 6789.1
Safety3 2177111 | 11065.3 | 2446389 9328.3
safety no_rotation_.CH 2919 20.7 2173 14.4
SLay07TH 133 10.5 143 9.1
SLay08H 829 44.8 741 324
SLay09H 2019 100.1 1501 73.8
SLay09M 1169 23.1 1097 16.0
sssd-16-8-3 1353391 3078.1 1312505 2716.1
sssd-17-7-3 557645 1024.9 444949 775.9
sssd-18-7-3 164115 207.0 206693 373.3
sssd-20-8-3 216121 604.0 200725 504.7
Syn20M04M 91343 640.2 89111 410.3
Syn30MO03M 50895 580.3 50557 402.6

Continued on next page

26

Table 11 — continued from previous page

Probl LIN BESTLIN
roblem Node Time Node Time
Syn30M04M 250663 3278.0 251895 2204.6
Syn40MO02M 138941 1169.1 138493 984.8
trimloss4 24515 82.0 25919 50.4
uflquad-15-60 2061 689.3 1809 474.2
uflquad-15-80 3179 2412.1 3041 1337.0
uflquad-20-40 2783 656.2 2679 498.6
uflquad-25-40 4225 1624.0 4169 967.0
Arithmetic mean 353538.5 2319.9 | 376940.9 1744.2
Geometric mean 41021.2 640.4 41245.3 495.5

Table 12: Computational Results Comparing SBC versus SSBC. Experiment is

described in Section 4.7

SBC SSBC
Problem Node Time Node Time
BatchS151208M 2853 51.9 2853 53.0
BatchS201210M 2521 61.1 2521 63.1
Batch_Storagel0-BM_10-10-6_4 12675 162.8 11681 151.8
Batch_Storage_ BM_10_10_6_4 11015 141.5 12225 177.2
CLay0305H 10039 42.1 10039 43.0
FLay05H 99693 2515.0 99693 | 2506.3
FLay05M 83409 1095.1 83409 | 1081.7
fo7-2 75711 167.8 75711 169.5
fo7 381401 690.5 381401 692.0
m7 77263 123.2 105467 189.0
nd-12 10765 875.8 8821 969.5
nd-13 10007 1577.2 8187 881.7
nd-14 97573 9666.7 97573 | 9646.8
072 1109651 2719.0 1109651 | 2762.5
o7 2743271 6772.7 2743271 | 6761.0
RSyn0810M02M 113667 403.0 111167 422.7
RSyn0810M03M 106807 724.8 98249 706.2
RSyn0810M04M 101741 1042.4 134163 | 1506.6
RSyn0815M02M 458867 1671.0 454679 | 1674.2
RSyn0820M02M 2341249 | 10553.1 2051391 | 9520.4
RSyn0830M02M 881683 5102.7 874439 | 5065.1
Safety3 1317425 5540.1 1383869 | 5542.7
safety_no_rotation_CH 5239 25.9 5239 25.5
SLay07H 1145 16.2 1145 16.0
SLay08H 2517 53.4 2517 52.5
SLay09H 8839 215.9 8839 211.9
SLay09M 4063 33.5 4063 33.4
sssd-16-8-3 2885523 2156.5 1572157 | 1530.6
sssd-17-7-3 518221 397.4 288299 224.8
sssd-18-7-3 924233 659.0 397461 298.5
sssd-20-8-3 807023 621.9 577703 679.5
Syn20M04M 89253 277.5 91351 296.2
Syn30M03M 53087 281.1 47999 267.3
Syn30M04M 251043 1762.2 254651 | 1872.0
Syn40M02M 147023 498.1 147475 534.6
trimloss4 26849 71.0 26705 61.8
uflquad-15-60 2275 586.2 2275 601.7
uflquad-15-80 3413 2003.5 3413 | 2002.4
uflquad-20-40 3351 651.3 3451 663.3
uflquad-25-40 5177 1413.7 5171 | 1459.6

Continued on next page

27

Table 12 — continued from previous page

Problem SBC SSBC
Node Time Node Time

Arithmetic mean 394689.0 1585.6 | 332509.4 | 1535.4

Geometric mean 54788.4 504.9 51591.5 490.9

Table 13: Computational Results Comparing Normalization Conditions

aNORM, SNC and EN. Experiment is described in Section 4.8

SBCGLP-EN SBCGLP-SNC SBCGLP-INF
Problem Node Time Node Time Node Time
BatchS151208M 2089 58.9 2221 63.2 4397 102.4
BatchS201210M 2269 78.5 2067 81.1 2755 83.9
BatchS10BM 101064 10457 133.9 8403 108.7 19507 189.8
BatchSBM101064 8581 114.5 7993 102.7 12131 114.8
CLay0305H 11465 67.3 10683 54.6 17883 75.4
FLayO5H 116703 3395.2 110929 3182.4 107597 2517.0
FLay05M 84107 1123.8 79487 1062.5 79811 822.3
fo7-2 58463 180.2 50597 138.2 195049 448.1
fo7 521569 1301.2 538915 1410.5 296871 589.2
m7 2953 6.0 1719 3.7 9157 11.8
nd-12 14913 1268.4 7649 651.5 8863 638.9
nd-13 9083 1109.0 8293 1032.2 8337 1029.0
nd-14 153795 16315.1 83049 9269.5 86379 2466.9
o072 1966133 5572.3 2663961 8401.1 1596783 3439.8
o7 6595207 | 18856.6 8634197 | 24504.7 | 12127783 | 29773.0
RSyn0810M02M 11343 87.8 10295 83.2 84545 381.1
RSyn0810M03M 9827 200.4 10221 225.2 73641 764.9
RSyn0810M04M 3509 239.0 6617 337.2 115439 1808.4
RSyn0815M02M 7497 85.4 9223 94.0 230969 1060.2
RSyn0820M02M 37439 279.3 29831 242.8 1113583 5570.5
RSyn0830M02M 8573 144.2 10339 168.2 186921 1326.4
Safety3 3971759 | 20254.3 4753685 | 23666.1 1806949 6405.5
safety no_rotation_ CH 2799 21.1 5623 36.9 5013 26.8
SLay07H 311 11.9 977 18.6 705 14.8
SLay08H 2417 63.2 2855 69.1 2587 57.1
SLay09H 11679 315.2 10083 326.5 12493 300.6
SLay09M 5149 50.5 1669 20.5 4401 37.7
sssd-16-8-3 1788795 1510.2 701601 811.8 2062375 1337.7
sssd-17-7-3 994571 600.5 252627 204.0 107961 717
sssd-18-7-3 256585 173.5 162115 150.4 381639 263.8
sssd-20-8-3 553445 445.8 | 15112159 | 20816.1 407137 289.4
Syn20MO04M 571 47.5 563 46.5 9411 134.5
Syn30M03M 117 34.8 7 34.7 3039 1.7
Syn30M04M 239 90.2 281 87.6 32767 436.9
Syn40MO02M 324 26.4 267 27.3 4783 66.0
trimloss4 22591 72.6 16963 57.6 23389 52.7
uflquad-15-60 2029 797.5 2103 754.4 2547 649.0
uflquad-15-80 3347 2673.1 3493 2865.4 3459 1730.7
uflquad-20-40 2933 761.9 2763 671.2 4351 787.2
uflquad-25-40 6227 2246.3 6039 1939.2 6915 1899.9
Arithmetic mean 431546.6 2020.3 833065.8 2595.5 531508.1 1696.2
Geometric mean 16129.3 290.4 15922.6 294.3 37453.7 381.6

28

Table 14: Computational

Results
NOSB-CGLP-SNC. Experiment is described in Section 4.9

Comparing

SBCGLP-SNC

versus

Probl SBCGLP-SNC NOSB-CGLP-SNC
roblem Time(noSB) Time Node Time
BatchS151208M 2221 53.4 63.2 3527 62.1
BatchS201210M 2067 63.1 81.1 4697 86.2
Batch_Storage10-BM_10-10_6_4 8403 106.2 108.7 22257 210.6
Batch_Storage . BM_10_10_-6_4 7993 99.9 102.7 23367 232.2
CLay0305H 10683 52.2 54.6 14067 74.8
FLay05H 110929 3179.5 3182.4 98809 2104.8
FLay05M 79487 1062.4 1062.5 81819 974.9
fo7-2 50597 138.0 138.2 99441 273.4
fo7 538915 1410.3 1410.5 265121 566.9
m7 1719 3.4 3.7 3423 4.4
nd-12 7649 639.3 651.5 18787 1657.6
nd-13 8293 1015.2 1032.2 13701 468.4
nd-14 83049 9243.4 9269.5 158775 | 17835.1
o072 2663961 8400.8 8401.1 2509627 6244.6
o7 8634197 24504.5 | 24504.7 | 7310483 | 17817.5
RSyn0810M02M 10295 52.0 83.2 10311 38.1
RSyn0810M03M 10221 108.4 225.2 25319 169.2
RSyn0810M04M 6617 132.8 337.2 4481 76.4
RSyn0815M02M 9223 50.0 94.0 13175 48.7
RSyn0820M02M 29831 183.2 242.8 7805 43.9
RSyn0830M02M 10339 91.4 168.2 12131 67.2
Safety3 4753685 23664.1 | 23666.1 3858601 | 15682.2
safety no_rotation_ CH 5623 33.2 36.9 28773 135.9
SLay07H 977 11.3 18.6 3521 42.7
SLay08H 2855 48.4 69.1 10329 172.1
SLay09H 10083 284.3 326.5 65571 1590.3
SLay09M 1669 16.5 20.5 30783 251.6
sssd-16-8-3 701601 808.9 811.8 2860827 2156.1
sssd-17-7-3 252627 201.7 204.0 415133 248.3
sssd-18-7-3 162115 147.8 150.4 | 3829325 5172.7
sssd-20-8-3 15112159 20812.1 | 20816.1 1951923 1569.4
Syn20M04M 563 6.7 46.5 849 5.9
Syn30M03M 7 4.0 34.7 177 4.4
Syn30M04M 281 9.8 87.6 375 9.6
Syn40MO02M 267 4.8 27.3 160 3.1
trimloss4 16963 57.2 57.6 30761 68.5
uflquad-15-60 2103 745.1 754.4 2261 562.8
uflquad-15-80 3493 2844.8 2865.4 3635 1603.9
uflquad-20-40 2763 661.2 671.2 4397 861.0
uflquad-25-40 6039 1918.8 1939.2 7481 1780.8
Arithmetic mean 833065.8 2571.8 2595.5 | 595150.1 2024.4
Geometric mean 15922.6 209.0 294.3 26181.9 262.7
Table 15: Number of Nodes for FILMINT, BESTLIN, SSBC, and SBCGLP-SNC. Ex-
periment is described in Section 4.10
Problem FILMINT BESTLIN SSBC | SBCGLP-SNC
BatchS151208M 4097 2193 2853 2221
BatchS201210M 4001 1111 2521 2067
Batch_Storagel0-BM_10-10-6_4 18647 10307 11681 8403
Batch_Storage BM_10_10_6_4 21433 10335 12225 7993
CLay0305H 10595 11077 10039 10683
FLay05H 99681 101823 99693 110929
Continued on next page

29

Table 15 — continued from previous page

Problem FILMINT BESTLIN SSBC SBCGLP-SNC
FLay05M 93765 85797 83409 79487
fo7-2 84269 133599 75711 50597
fo7 265115 278535 381401 538915
m7 587399 187299 105467 1719
nd-12 25139 12611 8821 7649
nd-13 22953 8377 8187 8293
nd-14 98507 102169 97573 83049
072 1653741 1891701 1109651 2663961
o7 4025281 3511795 2743271 8634197
RSyn0810M02M 122077 102967 111167 10295
RSyn0810M03M 93807 78845 98249 10221
RSyn0810M04M 131657 98627 134163 6617
RSyn0815M02M 441187 435263 454679 9223
RSyn0820M02M 2126481 1984789 2051391 29831
RSyn0830M02M 798717 843825 874439 10339
Safety3 4211361 2446389 1383869 4753685
safety_no_rotation_ CH 23267 2173 5239 5623
SLay07H 3615 143 1145 977
SLay08H 9989 741 2517 2855
SLay09H 117219 1501 8839 10083
SLay09M 15729 1097 4063 1669
sssd-16-8-3 2026245 1312505 1572157 701601
sssd-17-7-3 1314097 444949 288299 252627
sssd-18-7-3 602883 206693 397461 162115
sssd-20-8-3 10870313 200725 577703 15112159
Syn20M04M 90763 89111 91351 563
Syn30M03M 49627 50557 47999 7
Syn30M04M 257063 251895 254651 281
Syn40MO02M 153035 138493 147475 267
trimloss4 19159 25919 26705 16963
uflquad-15-60 2415 1809 2275 2103
uflquad-15-80 3577 3041 3413 3493
uflquad-20-40 4517 2679 3451 2763
uflquad-25-40 7001 4169 5171 6039
Arithmetic mean 762760.6 | 376940.9 | 332509.4 833065.8
Geometric mean 87019.1 41245.3 51591.5 15922.6

Table 16: Solution Time for FILMINT, BESTLIN, SSBC, and SBCGLP-SNC. Experi-
ment is described in Section 4.10

Problem FILMINT | BESTLIN SSBC SBCGLP-SNC
BatchS151208 M 55.7 52.7 53.0 63.18
BatchS201210M 65.3 45.5 63.1 81.05
Batch_Storagel0_-BM_10_10_6_4 189.7 108.4 151.8 108.69
Batch_Storage_.BM_10-10_6_4 208.5 109.3 177.2 102.68
CLay0305H 59.6 58.2 43.0 54.55
FLay05H 2501.6 2083.9 | 2506.3 3182.42
FLay05M 1161.1 981.5 | 1081.7 1062.47
fo7.2 151.4 344.5 169.5 138.2
fo7 454.1 391.4 692.0 1410.54
m7 1325.7 265.6 189.0 3.65
nd-12 2423.8 1604.4 969.5 651.49
nd-13 529.1 1412.3 881.7 1032.16
nd-14 4948.2 6723.5 | 9646.8 9269.54
072 3714.9 5564.0 | 2762.5 8401.09
o7 8929.3 6184.1 | 6761.0 24504.69

Continued on next page

30

Table 16 — continued from previous page

Problem FILMINT BESTLIN SSBC SBCGLP-SNC
RSyn0810M02M 364.4 470.0 422.7 83.19
RSyn0810M03M 4774 874.1 706.2 225.15
RSyn0810M04M 1008.4 1479.6 | 1506.6 337.2
RSyn0815M02M 1531.4 2192.2 | 1674.2 94.04
RSyn0820M02M 9170.8 10858.7 | 9520.4 242.81
RSyn0830M02M 4142.6 6789.1 | 5065.1 168.21
Safety3 18232.8 9328.3 | 5542.7 23666.13
safety_no_rotation_.CH 122.0 14.4 25.5 36.9
SLay07H 47.4 9.1 16.0 18.59
SLay08H 181.5 32.4 52.5 69.1
SLay09H 3031.1 73.8 211.9 326.46
SLay09M 123.4 16.0 33.4 20.5
sssd-16-8-3 1517.9 2716.1 | 1530.6 811.78
sssd-17-7-3 854.2 775.9 224.8 203.98
sssd-18-7-3 430.1 373.3 298.5 150.35
sssd-20-8-3 19030.5 504.7 679.5 20816.12
Syn20M04M 220.6 410.3 296.2 46.47
Syn30MO03M 204.9 402.6 267.3 34.67
Syn30M04M 1623.7 2204.6 | 1872.0 87.59
Syn40MO02M 465.1 984.8 534.6 27.26
trimloss4 47.2 50.4 61.8 57.64
uflquad-15-60 607.2 474.2 601.7 754.38
uflquad-15-80 2017.3 1337.0 | 2002.4 2865.41
uflquad-20-40 831.9 498.6 663.3 671.22
uflquad-25-40 2146.9 967.0 | 1459.6 1939.24
Arithmetic mean 2378.7 1744.2 | 1535.4 2595.5
Geometric mean 712.6 495.5 490.9 294.3

Table 17: Extra gap closed for

LIN, PSEUDO, SBC, GUB,

MIXING, BESTLIN and

SSBC.
Problem LIN PSEUDO SBC GUB MIXING BESTLIN SSBC
BatchS151208 M 0.0 0.0 7.0 | 15.3 18.7 0.0 7.0
BatchS201210M 0.0 0.0 8.2 | 18.7 22.9 0.0 8.2
Batch_Storage10-BM_10-10_6_4 3.7 3.1 | 15,5 | 18.6 18.1 3.7 | 155
Batch_Storage_BM_10.10_6_4 4.1 3.0 | 15.6 | 19.1 18.8 4.1 15.6
CLay0305H 0.0 0.0 | 10.3 | 394 39.3 0.0 | 10.3
FLay05H 0.0 0.0 9.9 | 39.6 37.6 0.0 9.9
FLay05M 0.0 0.0 9.9 | 39.6 34.4 0.0 9.9
fo7-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
fo7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
m7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nd-12 10.1 10.1 | 10.1 | 10.1 10.4 10.1 10.1
nd-13 19.2 19.2 | 19.2 | 19.2 19.2 19.2 19.2
nd-14 0.0 0.0 5.1 5.1 7.0 0.0 5.1
o072 0.0 0.0 0.0 0.0 0.0 0.0 0.0
o7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RSyn0810M02M 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RSyn0810M03M 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RSyn0810M04M 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RSyn0815M02M 0.0 0.0 0.0 0.1 6.5 0.0 0.0
RSyn0820M02M 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RSyn0830M02M 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Safety3 0.0 0.0 5.0 | 15.1 15.1 0.0 5.0
safety no_rotation_ CH 0.0 0.0 | 10.1 | 22.0 20.0 0.0 10.1
SLay07H 0.0 0.0 | 38.8 | 69.6 69.6 0.0 | 38.8

Continued on next page

31

Table 17 — continued from previous page

Problem LIN | PSEUDO SBC GUB | MIXING | BESTLIN | SSBC
SLay08H 0.0 0.0 | 26.2 | 67.3 67.3 0.0 | 26.2
SLay09H 0.0 0.0 | 23.6 | 62.3 62.3 0.0 | 23.6
SLay09M 0.0 0.0 | 23.6 | 62.3 62.3 0.0 | 23.6
sssd-16-8-3 0.0 0.0 3.5 3.5 3.5 0.0 3.5
sssd-17-7-3 0.0 0.0 4.6 4.6 4.6 0.0 4.6
sssd-18-7-3 0.0 0.0 4.3 4.3 4.3 0.0 4.3
sssd-20-8-3 0.0 0.0 4.1 4.1 4.1 0.0 4.1
Syn20M04M 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Syn30MO03M 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Syn30M04M 0.1 0.0 0.0 0.0 0.0 0.1 0.0
Syn40MO02M 0.0 0.0 0.0 0.3 5.2 0.0 0.0
trimloss4 0.0 0.0 6.3 | 10.5 30.4 0.0 9.6
uflquad-15-60 0.0 0.0 4.0 4.0 30.5 0.0 4.0
uflquad-15-80 0.0 0.0 3.7 3.7 27.0 0.0 3.7
uflquad-20-40 0.0 0.0 3.0 3.0 329 0.0 3.0
uflquad-25-40 0.0 0.0 2.7 2.7 34.8 0.0 2.7
Average 0.9 0.9 6.9 | 14.1 17.7 0.9 6.9

Table 18: Extra gap closed for SBCGLP-EN, SBCGLP-INF, SBCGLP-SNC and

NOSB-CGLP-SNC.

Problem SBCGLP-EN SBCGLP-INF SBCGLP-SNC NOSB-CGLP-SNC
BatchS151208 M 0.0 6.3 0.0 0.0
BatchS201210M 0.0 5.2 0.0 0.0
Batch_Storagel0-BM_10_10_6_4 9.0 5.7 6.9 0.5
Batch_Storage . BM_10-10_6_4 11.1 3.0 8.3 3.6
CLay0305H 0.0 0.0 0.0 0.0
FLay05H 0.0 0.0 0.0 0.0
FLay05M 0.0 2.7 0.0 0.0
fo72 0.0 0.0 0.0 0.0
fo7 0.0 0.0 0.0 0.0
m7 0.0 0.0 0.0 0.0
nd-12 16.3 10.1 14.8 7.0
nd-13 19.2 19.5 19.2 12.5
nd-14 9.6 0.0 9.5 10.2
072 0.0 0.0 0.0 0.0
o7 0.0 0.0 0.0 0.0
RSyn0810M02M 37.1 9.6 37.2 34.1
RSyn0810M03M 44.4 12.0 44.4 40.5
RSyn0810M04M 50.9 10.2 51.8 43.7
RSyn0815M02M 29.6 16.2 29.6 31.9
RSyn0820M02M 37.3 11.5 37.1 35.9
RSyn0830M02M 38.5 16.8 37.6 37.5
Safety3 0.0 5.0 0.0 0.0
safety_no_rotation . CH 0.0 5.2 0.0 0.0
SLay07H 0.0 6.7 0.0 0.0
SLay08H 0.0 4.3 0.0 0.0
SLay09H 0.0 3.9 0.0 0.0
SLay09M 0.0 15.4 0.0 0.0
sssd-16-8-3 12.2 52.4 8.7 8.5
sssd-17-7-3 4.9 47.6 3.6 3.7
sssd-18-7-3 4.2 70.2 3.2 3.2
sssd-20-8-3 9.1 65.1 6.7 6.7
Syn20M04M 79.6 25.9 61.1 78.7
Syn30MO03M 82.6 37.2 82.3 86.4
Syn30MO04M 88.6 37.7 86.2 85.9

Continued on next page

32

Table 18 — continued from previous page

Problem SBCGLP-EN SBCGLP-INF SBCGLP-SNC NOSB-CGLP-SNC
Syn40MO02M 93.3 43.2 93.3 92.9
trimloss4 0.4 0.3 0.4 5.2
uflquad-15-60 1.4 2.7 1.6 0.0
uflquad-15-80 1.2 2.2 1.0 0.0
uflquad-20-40 1.3 1.9 1.2 0.0
uflquad-25-40 0.0 1.7 0.0 0.0
Average 17.0 13.9 16.1 15.7

