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Abstract. The mathematical modeling of systems often requires the use of both nonlinear and
discrete components. Discrete decision variables model dichotomies, discontinuities, and general
logical relationships. Nonlinear functions are required to accurately represent physical properties
such as pressure, stress, temperature, and equilibrium. Problems involving both discrete
variables and nonlinear constraint functions are known as mixed-integer nonlinear programs
(MINLPs) and are among the most challenging computational optimization problems faced by
researchers and practitioners. In this paper, we describe relevant scientific applications that are
naturally modeled as MINLPs, we provide an overview of available algorithms and software, and
we describe ongoing methodological advances for solving MINLPs. These algorithmic advances
are making increasingly larger instances of this important family of problems tractable.

1. Introduction
A mixed-integer nonlinear program (MINLP) is the numerical optimization problem of finding

zminlp = minimize
x∈X,y∈Y ∩Zp

f(x, y) subject to g(x, y) ≤ 0, (MINLP)

where f : Rn+p → R and g : Rn+p → Rm are continuously differentiable functions; x and y are
continuous and discrete variables, respectively; and X and Y are compact polyhedral subsets
of Rn and Rp, respectively. If the objective function f(x, y) and the constraint function g(x, y)
are convex functions, then the problem is known as a convex MINLP, otherwise the problem is
a nonconvex MINLP.

Given their generality and flexibility, MINLPs have been proposed for many diverse and
important scientific applications, including the efficient management of electricity transmission
[1], contingency analysis and blackout prevention of electric power systems [2], the design of
water distribution networks [3], operational reloading of nuclear reactors [4], and minimization
of the environmental impact of utility plants [5].

Unfortunately, current algorithms and available software are often unable to solve practically-
sized instances of these important models. Our research is aimed at correcting the mismatch
between natural optimization models and available robust optimization solvers. We hope to



enable application scientists to confidently employ MINLP tools to address their challenging
scientific problems.

2. Applications
Design of thermal insulation layer for the large hadron collider: A thermal insulation system
uses a series of heat intercepts and surrounding insulators to minimize the power required to
maintain the heat intercepts at certain temperatures. Problems of this type arise in the design
of superconducting magnetic energy storage systems and have been used in the Large Hadron
Collider project. Figure 1-(a) shows the conceptual design.

The designer chooses the maximum number of intercepts, the thickness and area of each
intercept, and the material of intercept from a discrete set of materials. The choice of material
affects the thermal conductivity and total mass of the insulation system. Nonlinear functions
in the model are required to accurately model system characteristics such as heat flow between
the intercepts, thermal expansion, and stress constraints. Integer variables are used to model
the discrete choice of the type of material to use in each layer.

(a) Conceptual Design of Insulation
Layer

(b) Optimal Temperature Profile

Figure 1. Design of Thermal Insulation

In [6], by using MINLP, we have identified solutions that were as much as 4% better than those
identified by any previously available method. The improvement is largely due to the ability to
handle a larger number of intercepts than previously possible. The optimal temperature profile
of the new design is shown as the blue curve in Figure 1-(b), compared to the red curve for the
previous suboptimal design. The area between the two profiles corresponds to the savings in
cooling power.

Nuclear core-reload: The fuel elements in a nuclear reactor core are divided into groups of
different ages. At the end of each cycle the oldest group is removed, the remaining groups are
reshuffled, and a fresh group is brought in. Finding a pattern for how to move the elements to
maximize fuel efficiency, subject to power safety constraints, leads to a mixed-integer nonlinear
problem. The model includes dependent variables that describe physical properties such as
neutron flux, burn-up, and yield. The neutron transport equations are converted to a set of
algebraic equations using Green’s functional theory, giving rise to a stationary description of
the neutron flux in the core. The fuel burn-up is approximated by discretizing the differential
equation. The resulting MINLP contains binary variables that model the reloading operation
and algebraic equations arising from the discretization of the PDE. Figure 2-(a) shows an initial
design that ignores the integrality of the reloading operation, and Figure 2-(b) shows the optimal
reloading pattern, where different colors represent the different age groups. It is important to
note that simple rounding of the solution in Figure 2-(a) does not produce a valid reload-pattern.



(a) Solution to NLP Relaxation (b) Solution to MINLP

Figure 2. Core-reload Problem Solutions
3. Algorithms for MINLP
The basic operations common to algorithms for solving (MINLP) are relax and search.
Algorithms differ in the manner these operations are performed. For convex MINLPs, the most
natural relaxation is to disregard the integrality constraints y ∈ Zp. The resulting nonlinear
program (NLP), when solved to global optimality, provides a lower bound on the optimal solution
value zminlp. If the solution (x̂, ŷ) to the relaxation has y ∈ Zp, then (x̂, ŷ) must be the optimal
solution to (MINLP), otherwise there is a j ∈ {1, . . . , p} with ŷj 6∈ Z. In branch-and-bound, the
search continues by creating two new subproblems, one with the additional constraint yj ≤ bŷjc,
and one with the additional constraint yj ≥ dŷje. Each of these two subproblems is then
(recursively) solved by the same procedure, resulting in a search-tree of subproblems that are
evaluated. Software that implements a branch-and-bound algorithm for convex MINLPs is listed
in Table 1. The software packages differ in the way the search-tree is created and in the NLP
algorithm used to solve relaxations.

Unfortunately, if f(x, y) or g(x, y) are not convex functions, then standard algorithms for
solving NLP are able to guarantee convergence only to a local minimum. Thus, the solution of
the relaxation does not provide a lower bound on zminlp. In this case of non-convex MINLP, an
additional relaxation step is required. Typically, the relaxation is based on a decomposition of the
nonlinear functions into components, and for each component, a “convex envelope” relaxation is
built [7]. Branch and bound is again applied to the relaxation, with the additional complication
that continuous variables x may require branching to improve the convex relaxation of the
original nonconvex functions. Solvers of this class (listed in Table 1) differ in the manner in
which relaxations are created. The impact of creating strong relaxations for nonconvex functions
is briefly demonstrated in Section 4.2.

The final class of algorithms developed for solving convex MINLP are those based on
linearizations. If f(x, y) and g(x, y) are convex, then for any point (x̂, ŷ) the inequalities

f(x̂, ŷ) +∇f(x̂, ŷ)T

[
x− x̂
y − ŷ

]
≤ f(x, y) and g(x̂, ŷ) +∇g(x̂, ŷ)T

[
x− x̂
y − ŷ

]
≤ 0, (1)

underestimate the objective function and form a linear outer approximation of the feasible region,
respectively. In linearization-based methods, a linear approximation to (MINLP) is dynamically
created by applying the inequalities (1) at many different points (x̂, ŷ). The approximation is
solved by a branch-and-bound procedure to ensure convergence. There is significant flexibility
in where linearizations are taken and how they are combined with the branch-and-bound search.
Software packages with implementations of linearization-based algorithms are listed in Table 1.
Most of the codes listed in Table 1 are available for use free of charge via the NEOS server:
http://www-neos.mcs.anl.gov/.



Table 1. Software for solving MINLP

Algorithm Software
Branch and Bound, Convex Bonmin, KNITRO, MINLP-BB, SBB
Branch and Bound, Nonconvex BARON, Couenne, LINDO-Global
Linearization-Based, Convex Alpha-ECP, Bonmin, Dicopt, FilMINT

4. Strong reformulations
Recognizing and exploiting instance-specific structure in (MINLP) to create strong
reformulations can have a huge impact on an algorithm’s ability to solve an instance. We
conclude with two brief examples demonstrating this point.

4.1. Strong reformulations for convex MINLPs
Integer variables in MINLPs are often used as “indicator variables.” For example, consider

S = {(x, y, z) ∈ R2 × {0, 1} : y ≥ x2, uz ≥ x ≥ lz, x ≥ 0}, where u, l ∈ R. (2)

Setting the indicator variable z = 0 forces x = 0, but when z = 1, the inequalities x ∈ [l, u], y ≥
x2 are enforced. We have shown in [8] that the convex hull of S is given by the perspective
reformulation: conv(S) =

{
(x, y, z) ∈ R3 : yz ≥ x2, uz ≥ x ≥ lz, 1 ≥ z ≥ 0, x, y ≥ 0

}
.

Reformulating simple sets S that appear in (MINLP) in the form conv(S) will significantly
strengthen the relaxation and improve algorithm performance.

As a concrete example, consider a Separable Quadratic Uncapacitated Facility Location
Problem (SQUFL) [9]. The MINLP formulation of SQUFL has constraints of the form

x2
ij − yij ≤ 0 and yij ≤ zi ∀i, j. (3)

The indicator variable zi should take the value 1 if facility i is opened. If zi = 0, then the
constraints (3) force yij = xij = 0, meaning that no demand for customer j can be served
from facility i. Since inequalities (3) are of the form (2), the perspective reformulation may be
applied, replacing x2

ij − yij ≤ 0 with x2
ijzi − yij ≤ 0 ∀i, j.

In [10], an instance with 30 facilities and 100 customers was solved by applying Bonmin to
the original reformulation. The solution required 16,697 CPU seconds and 45,901 nodes in the
search-tree. By applying the perspective reformulation, the same instance was solved in 23 CPU
seconds, enumerating 44 nodes of the search tree [8]. The speedup factor is more than 700.

4.2. Strong relaxations of multilinear forms
A particular nonconvex structure we are studying is the case of multilinear functions of the form
φ(x) =

∑m
i=1 ai

∏
j∈Si

xj where ai ∈ R and Si ⊆ N := {1, . . . , n} and we assume l ≤ x ≤ u for
some l, u ∈ Rn. Many applied problems have terms of this form, either explicitly (e.g. the pooling
problem [11]) or after reformulation. The “textbook” approach for obtaining relaxations of such
problems is to reformulate the problem (by adding new variables) into a problem in which the
only nonconvexities remaining are bilinear constraints of the form xk = xixj , and then to relax
each of these constraints using a set of simple linear inequalities known as the the McCormick
inequalities [12]. We consider an alternative approach in which we use the convex hull of the
set {z ∈ R, x ∈ Rn | z = φ(x), l ≤ x ≤ u}, which can be obtained by writing the vector x as a
convex combination of the vertices of the hypercube containing x [13].

To demonstrate the impact of this reformulation technique, we conducted a preliminary test
on the following example problem:
minimize

l≤x≤u
4(x1 + x2 + x3) + 3(x4 + x5) + 3.5(x6 + x7) + 2.5x8

subject to x1x2x3x4 − x1x2 − x4x5 + x5 + x6 ≥ 230, x3x4x5x6 − x1x4 − x6x7 + x2 + x8 = −2,



where l = [−1,−2.5,−0.5,−0.5, 1, 1, 1, 1] and u = [4, 4, 6, 6, 6, 5, 3]. For this example, the
McCormick relaxation based on a bilinear reformulation yields a lower bound of 2.33 on the
value of the best possible solution, compared to a significantly better lower bound of 36.33
obtained by solving the convex hull relaxation. We then passed the solution of each of these
relaxations to the NLP solver IPOPT [14] in an attempt to find a good feasible solution. IPOPT
failed to find a feasible solution when given the McCormick relaxation solution as an initial point,
but found a feasible solution of value 72.1 when starting from the convex hull relaxation solution.
Solving this problem with the global optimization solver BARON [7] confirmed that this solution
is optimal. This example suggests that the convex hull approach may be useful both for yielding
stronger lower bounds and for finding better feasible solutions.
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