
Digital Object Identifier (DOI) 10.1007/s10107-005-0582-7

Math. Program., Ser. B 103, 251–282 (2005)

Jeff Linderoth

A simplicial branch-and-bound algorithm for solving
quadratically constrained quadratic programs

Received: May 20, 2004 / Accepted: February 3, 2005
Published online: April 28, 2005 – © Springer-Verlag 2005

Abstract. We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained qua-
dratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the
Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave
envelopes of bilinear functions over triangles and rectangles are derived and shown to be second-order cone
representable. The usefulness of these new relaxations is demonstrated both theoretically and computationally.

Key words. Nonconvex quadratic programming – Global optimization – Convex envelope – Branch-and-
bound

1. Introduction

In this paper, we discuss branch-and-bound methods for solving the quadratically con-
strained quadratic program (QCQP) which can be written as

min
x∈Rn

{q0(x) | qk(x) ≥ bk ∀k ∈ M, li ≤ xi ≤ ui ∀i ∈ I },

where qk = cT
k x +xT Qkx ∀k ∈ M ∪{0}, and I = {1, 2, . . . n}. We assume that explicit

lower bounds and upper bounds on xi are known, so that the feasible region is compact.
We do not assume any convexity properties of the qk(x), so the objective function of the
problem may be convex, concave, or indefinite, and the set of feasible solutions need
not be convex or connected.

QCQP generalizes many well-known, difficult optimization problems. Linear mixed
0-1 programming, fractional programming, bilinear programming, polynomial program-
ming, and bilevel programming problems can all be written as instances of QCQP, so
QCQP is NP-Hard. From a practical standpoint, QCQP is one of the most challeng-
ing optimization problems—the current size of instances that can be solved to provable
optimality remains very small in comparison to other NP-Hard problem classes such
as mixed integer programming.

In this work, we describe a branch-and-bound algorithm for solving QCQP that is
based on subdividing the feasible region into the Cartesian product of triangles and rect-
angles. It can be viewed as an extension of the work of Al-Khayyal and Falk [2], who
derive a formula for the convex envelope of a product of variables over a rectangle and
give a branch-and-bound algorithm based on the formula. Al-Khayyal [1] extends the

J. Linderoth: Industrial and Systems Engineering Department, Lehigh University, 200 West Packer Avenue,
Bethlehem, PA 18015, USA. e-mail: jtl3@lehigh.edu

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

252 J. Linderoth

formula for the concave envelope of the product of variables, and Al-Khayyal, Larsen,
and Van Voorhis develop a branch-and-bound algorithm based on these relaxations [3].

Raber [24, 25] also gives a simplicial-subdivision based algorithm for QCQP. In
Raber’s work, the feasible region is enclosed in a high-dimensional simplex, and this
simplex is subdivided in the spirit suggested by Horst [15]. Our work is different in
that the feasible region is enclosed in an initial hyper-rectangle, and that hyper-rectangle
is subdivided into the Cartesian product of rectangles and triangles (low-dimensional
simplices). Sherali andAlameddine [30] use the Reformulation-Linearization Technique
(RLT) to solve bilinear programming problems, and Audet et al. [5] extend the use of
RLT in solving QCQP by including different classes of linearizations. Kim and Kojima
[19] extend the lift-and-project idea of RLT to create a second-order cone programming
relaxation for QCQP. DC (Difference of Convex) programming techniques were used
by Phong, Tao and Hoai An to solve QCQP, and DC programming techniques form the
basis of the general global optimization software αBB [4]. BARON [28, 33] is a mature,
sophisticated software package that can solve QCQP using convex/concave envelopes
(in the spirit of [2]), but augmented with features such as sophisticated range reduction
and branching techniques [27, 34]. BARON also can be accessed through a link to the
commercial modeling language GAMS.

The paper is organized as follows. In Sect. 2, expressions for the convex and concave
envelope of the bilinear function f (x, y) = xy over rectangular and triangular regions
are derived. In Section 3 a simple triangle-based branching scheme is introduced, and
based upon such a scheme a nonlinear programming relaxation for QCQP is given.
Section 4 demonstrates that the nonlinear constraints in the relaxation are representable
as second-order cone constraints. A polyhedral outerapproximation to the second-order
cone is given, resulting in a new linear programming relaxation to QCQP. Section 5
introduces two measures of the tightness of approximations to the convex and concave
envelopes and computes these measures for the envelope expressions derived in Sect. 2.
In Sect. 6, computational results are given to show the usefulness of the triangle-based
branch-and-bound method.

2. Relaxations for QCQP

Tractable relaxations of the nonconvex problem QCQP can be obtained using the notions
of convex envelopes and concave envelopes. For a function f : � → R, the convex enve-
lope of f over �, denoted vex�(f), is the pointwise supremum of convex underestima-
tors of f over �. Likewise, the concave envelope of f over �, denoted cav�(f) is the
pointwise infimum of concave overestimators of f over �. This paper refers extensively
to the convex and concave envelope expressions for the bilinear function f (x, y) = xy.
To simplify the notation, the following definitions are made:

vexxy�
def= vex�(xy) and

cavxy�
def= cav�(xy).

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 253

2.1. Envelopes over rectangles

McCormick [22] gave a linear relaxation for the product of variables xy over a rectangle
R = {(x, y) ∈ R

2 | lx ≤ x ≤ ux, ly ≤ y ≤ uy}, and Al-Khayyal and Falk [2] and
Al-Khayyal [1] subsequently showed that the linear relaxation defined the convex and
concave envelopes.

Theorem 1 (McCormick [22], Al-Khayyal and Falk [2], Al-Khayyal [1]).
The convex and concave envelopes of the bilinear function xy over a rectangular

region

R
def= {(x, y) ∈ R

2 | lx ≤ x ≤ ux, ly ≤ y ≤ uy}
are given by the expressions

vexxyR(x, y) = max{lyx + lxy − lx ly, uyx + uxy − uxuy} (1)

cavxyR(x, y) = min{uyx + lxy − lxuy, lyx + uxy − uxly}. (2)

Using Theorem 1 and introducing auxiliary variables zij to act as an approximation
of xixj , a linear programming relaxation LPR1 of QCQP can be written. For ease of
notation, the zij variables are arranged into a matrix Z, and we write the inner product
of two matrices A ∈ R

n×n, B ∈ R
n×n as A • B = ∑n

i=1
∑n

j=1 aij bij .

vLPR1 = min
x,z

cT x + Q0 • Z (LPR1)

subject to

cT
k x + Qk • Z ≥ bk ∀k ∈ M,

zij − lixj − lj xi + li lj ≥ 0 ∀i ∈ I, j ∈ I,

zij − uixj − ujxi + uiuj ≥ 0 ∀i ∈ I, j ∈ I,

zij − lixj − ujxi + liuj ≤ 0 ∀i ∈ I, j ∈ I,

zij − uixj − lj xi + uilj ≤ 0 ∀i ∈ I, j ∈ I,

xi ∈ [li , ui] ∀i ∈ I.

In practice, the auxiliary variables zij need only be introduced for the nonzero elements
of the Q matrices, and the expressions for the convex or concave envelopes are included
to bound the values of zij depending on the sign of the matrix elements qij and right
hand side elements bk .

Figure 1 shows a plot of the function xy and of its convex and concave envelopes
over a rectangle. The envelopes vexxyR and cavxyR define a simplex in R

3, and using
this geometric observation, an equivalent linear programming relaxation can be written
using a dual notion of the convex and concave envelope. The relaxation is obtained by
noticing that over R, the values of xy are contained in the convex hull of the points
obtained by evaluating xy at the extreme points of R. Because xy is a linear function
if either x or y is fixed, the approximation is exact along the boundary. Sherali and
Alameddine derive a similar expression using arguments from LP duality [29]. We use
�k to denote the unit simplex in R

k .

254 J. Linderoth

(a) f (x, y) = xy (b) Convex envelope of xy

over R

(c) Concave envelope of xy

over R

Fig. 1. xy and its convex and concave envelopes

Theorem 2 (Sherali and Alameddine [29]). The convex and concave envelopes of the
bilinear function xy over a rectangular region

R
def= {(x, y) ∈ R

2 | lx ≤ x ≤ ux, ly ≤ y ≤ uy}

are given by the expressions

vexxyR(x, y) = min
λ∈�4

{lx lyλ1 + uxlyλ2 + uxuyλ3 + lxuyλ4 |
x = lx(λ1 + λ4) + ux(λ2 + λ3), y = ly(λ1 + λ2) + uy(λ3 + λ4)}

and

cavxyR(x, y) = max
λ∈�4

{lx lyλ1 + uxlyλ2 + uxuyλ3 + lxuyλ4 |
x = lx(λ1 + λ4) + ux(λ2 + λ3), y = ly(λ1 + λ2) + uy(λ3 + λ4)}.

By Theorem 2, a linear programming relaxation LPR2 of QCQP can be written as
follows:

vLPR2 = min cT x + Q0 • Z (LPR2)

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 255

subject to

cT
k x + Qk • Z ≥ bk ∀k ∈ M,

(λij1 + λij4)li + (λij2 + λij3)ui = xi ∀i ∈ I,

(λij1 + λij2)lj + (λij3 + λij4)uj = xj ∀j ∈ I,

λij1li lj + λij2uilj + λij3uiuj + λij4liuj = zij ∀i ∈ I, j ∈ I,

4∑

l=1

λijl = 1 ∀i ∈ I, ∀j ∈ I,

xi ∈ [li , ui] ∀i ∈ I,

λij l ≥ 0 ∀i ∈ I, ∀j ∈ I, ∀l ∈ {1, 2, 3, 4}.

It follows directly from Theorems 1 and 2 that vLPR1 = vLPR2 .

2.2. Envelopes over triangles

The branch-and-bound method described subsequently in Sect. 3 subdivides the initial
hyper-rectangle � = ×i∈N [li , ui] not into finer and finer hyper-rectangles, but into the
Cartesian product of triangles and rectangles. To develop tight and tractable relaxations
for the method, it is useful to complement Theorem 1 by deriving expressions for the
convex and concave envelopes of the function xy over various triangular shapes. Two
of the expressions (Theorems 3 and 4) also appear in an implicit form in the work of
Sherali and Alameddine [29], but this is the first work to explicitly give an algebraic
description of the envelopes over triangular regions. For the remainder of the paper, we
will refer to the following triangular regions.

Rx,y
def= {(x, y) ∈ R

2 | lx ≤ x ≤ ux, ly ≤ y ≤ uy} (3)

SEx,y
def= Rx,y ∩ {(x, y) ∈ R

2 | (y − ly)(ux − lx) ≤ (uy − ly)(x − lx)} (4)

NWx,y
def= Rx,y ∩ {(x, y) ∈ R

2 | (y − ly)(ux − lx) ≥ (uy − ly)(x − lx)} (5)

SWx,y
def= Rx,y ∩ {(x, y) ∈ R

2 | (y − uy)(ux − lx) ≤ (ly − uy)(x − lx)} (6)

NEx,y
def= Rx,y ∩ {(x, y) ∈ R

2 | (y − uy)(ux − lx) ≥ (ly − uy)(x − lx)} (7)

Nx,y
def= NEx,y ∩ NWx,y, (8)

Sx,y
def= SEx,y ∩ SWx,y, (9)

Ex,y
def= NEx,y ∩ SEx,y, and (10)

Wx,y
def= NWx,y ∩ SWx,y. (11)

Figure 2 depicts the various triangular regions. The N , S, E, and W notation is meant
to mimic the “North”, “South”, “East”, and “West” compass directions.

256 J. Linderoth

Fig. 2. Pictorial description of triangular regions studied

Theorem 3 (Sherali and Alameddine [29]). The convex envelope of the function xy

over the triangular region SEx,y is given as

vexxySEx,y
(x, y) =

{
uxly if x = ux and y = ly ,

qSE(x, y)/ lSE(x, y) otherwise,
(12)

where

qSE(x, y)
def= (l2

y − lyuy)x
2 + (u2

x − lxux)y
2

+(lyux − lxuy)xy + (lx lyuy + lyuxuy − 2l2
yux)x

+(lx lyux + lxuxuy − 2u2
xly)y + (l2

yu2
x − lx lyuxuy),

and

lSE(x, y)
def= −2lyux + lx ly + uxuy + (ux − lx)y + (ly − uy)x.

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 257

Fig. 3. Depiction of entities in proof of theorem 3

The convex envelopes of the function xy over the triangular regions SEx,y, Sx,y, Ex,y

are the same:

vexxySEx,y
(x, y) = vexxySx,y

(x, y) = vexxyEx,y
(x, y). (13)

Proof. In Fig. 3, the line segment L1 = {(x, y) ∈ R
2 | y − ly = m(x − ux)}, where

m = (ly − ŷ)/(ux − x̂). The function xy is strictly concave on the domain L1, since
on this domain, xy = mx2 + (ly − mux)x, which is a strictly concave function, since
m < 0. Our aim is to define the equation of line segment connecting (x̂, ŷ, x̂ŷ) and
(ux, ly, uxly) ∈ R

3 as a function of x and y. To that end, define (convex) multipliers
λ1, λ2, λ3 associated with the points (lx, ly), (ux, ly), and (ux, uy), respectively. The
following five equations all define valid relationships between x, y, x̂, ŷ, λ1, λ2, and λ3:

(ŷ − ly)(ux − lx) = (uy − ly)(x̂ − lx),

(ŷ − ly)(ux − x) = (ly − y)(x̂ − ux),

λ1lx + λ2ux + λ3ux = x,

λ1ly + λ2ly + λ3uy = y,

λ1 + λ2 + λ3 = 1.

The solution of these five equations in the five unknowns (x̂, ŷ, λ1, λ2, λ3) yields the
unique solution

x̂ = (u2
x − lxux)y + (lx ly − lxuy)x − u2

xly + lxuxuy

(ux − lx)y + (ly − uy)x + lx ly + uxuy − 2lyux

(14)

ŷ = (uxuy − lxuy)y + (l2
y − lyuy)x − l2

yux + lx lyuy

(ux − lx)y + (ly − uy)x + lx ly + uxuy − 2lyux

(15)

λ2 = (uy − ly)x − (ux − lx)y + lyux − uylx

uxuy − lyux + lx ly − uylx
. (16)

258 J. Linderoth

The line segment connecting (x̂, ŷ, x̂ŷ) and (ux, ly, uxly) can be written as

FSE(x, y)
def= λ2uxly + (1 − λ2)x̂ŷ. (17)

Substituting equations (14)–(16) into (17) yields

FSE(x, y) = qSE(x, y)/ lSE(x, y).

The remainder of the proof argues that FSE(x, y) is indeed the convex envelope. It is
clear that no convex function is larger, since FSE(x, y) is the functional form of the line
segment connecting the two endpoints of a strictly concave function. The convexity of
FSE(x, y) can be established by examining its Hessian. The function FSE(x, y) is not
defined at (ux, ly), but it follows from construction that vexxySE(ux, ly)) = uxly . (See
also Corollary 2.5 of Tawarmalani and Sahinidis [33]). The exact same proof also shows
that vexxySEx,y

is the convex envelope over the regions Sx,y and Ex,y . �	
Example 1. Let SE′ = {(x, y) ∈ R

2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x ≥ y}, then

vexxySE′(x, y) = y2

1 + y − x
.

Figure 4 is a plot of vexxySE′(x, y). (Note that the function is only the convex envelope
in the lower triangular region of the figure). The convexity of the function can be seen
by computing the Hessian matrix for vexxySE′(x, y):

∇2(vexxySE′(x, y)) = 1

(1 − x + y)3

[
2y2 2y(1 − x)

2y(1 − x) 2(1 − 2x + x2)

]

.

For (x, y) ∈ SE′, the relations (1 − x + y)3 ≥ 0, 2y2 ≥ 0, 2(1 − 2x + x2) ≥ 0,
and 4y2(1 − 2x + x2) − 4y2(1 − x)2 = 0 all hold, so ∇2vexxySE′(x, y) is positive
semidefinite, and vexxySE′(x, y) is indeed convex on SE′.

Theorem 4. The convex envelope of the function xy over the triangular region NWx,y

is given as

vexxyNWx,y
(x, y) =

{
lxuy if x = lx and y = uy ,

qNW(x, y)/ lNW (x, y) Otherwise,
(18)

where

qNW(x, y) = (u2
y − lyuy)x

2 + (uylx − lyux)xy

+(−lxux + l2
x)y2 + (uylyux − 2u2

ylx + uylylx)x

+(lx lyux − 2l2
xuy + lxuyux)y − lxuylyux + u2

yl
2
x

and

lNW (x, y) = (uy − ly)x + (lx − ux)y + uyux − 2uylx + ly lx .

Further, the convex envelopes of the function xy over the triangular regions NWx,y,Nx,y,

Wx,y are equivalent:

vexxyNWx,y
(x, y) = vexxyNx,y

(x, y) = vexxyWx,y
(x, y). (19)

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 259

Proof. The proof proceeds in a similar fashion to the proof of Theorem 3. Namely, it
can be shown that qNW(x, y)/ lNW (x, y) is precisely the expression for the line segment
connecting the point (lx, uy, lxuy) and (x̂, ŷ, x̂ŷ) where (x̂, ŷ) is on the line segment
L2 in Fig. 3, and the same proof suffices to show that the the convex envelopes over the
triangles NWx,y , Nx,y and Wx,y all share the same functional form. �	
Concave envelopes for triangles SWx,y and NEx,y are derived from similar arguments.

Theorem 5. The concave envelope of the function xy over the region SWx,y is given as

cavxySWx,y
(x, y) =

{
lx ly if x = lx and y = ly ,

qSW (x, y)/ lSW (x, y) otherwise.
(20)

where

qSW (x, y) = (lyuy − l2
y)x2 + (uxuy − lx ly)xy

+(lxux − l2
x)y2 + (−lx lyuy − lyuxuy + 2l2

y lx)x

+(−lx lyux − lxuxuy + 2l2
x ly)y + (−l2

x l2
y + lx lyuxuy)

and

lSW (x, y) = (uy − ly)x + (ux − lx)y − lxuy − uxly + 2lx ly .

The concave envelopes of the function xy over the triangular regions SWx,y, Sx,y, Wx,y

are equivalent:

cavxySWx,y
(x, y) = cavxySx,y

(x, y) = cavxyWx,y
(x, y).

Fig. 4. vexxySE′ (x, y)

260 J. Linderoth

Fig. 5. Depiction of entities in proof of theorem 5

Proof. In Figure 5, the line segment L1 = {(x, y) ∈ R
2 | y − ly = m(x − lx)}, where

m = (ŷ − ly)/(ux − x̂), and the function xy is strictly convex on L1, since on this
domain xy = mx2 + (ly − mlx)x, with m > 0. Similar to the proof of Theorem 3, it
can be shown that qSW (x, y)/ lSW (x, y) is the functional form of the line segment in
R

3 connecting (lx, ly, lx ly) to (x̂, ŷ, x̂ŷ), and that the infinite collection of these line
segment forms the concave envelope. The same proof suffices to establish the formulae
for the concave envelopes over Sx,y and Wx,y . �	

Example 2. Let SW ′ = {(x, y) ∈ R
2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y ≤ 1}, then

cavxySW ′(x, y) = xy

x + y
.

Figure 6 shows a graph of cavxySWx,y
.

Theorem 6. The concave envelope of the function xy over the region NEx,y is given as

cavxyNE(x, y) =
{

uxuy if x = ux and y = uy ,

qNE(x, y)/ lNE(x, y) otherwise.
(21)

where

qNE(x, y) = (u2
y − lyuy)x

2 + (uxuy − lx ly)xy

+(u2
x − lxux)y

2 + (−2u2
yux + uxlyuy + lx lyuy)x

+(−2u2
xuy + lxuxuy + lx lyux)y + u2

xu
2
y − lxuxlyuy

and

lNE(x, y) = (uy − ly)x + (ux − lx)y − 2uxuy + lxuy + lyux.

The concave envelopes of the function xy over the triangular regions NEx,y, Nx,y, Ex,y

are the same:

cavxyNEx,y
(x, y) = cavxyNx,y

(x, y) = cavxyEx,y
(x, y). (22)

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 261

Proof. The proof is to show that qNE(x, y)/ lNE(x, y) is the expression for the line seg-
ment in R

3 connecting (ux, uy, uxuy) to (x̂, ŷ, x̂ŷ), where (x̂, ŷ) is on the line segment
L2 in Fig. 5. Once again, the same proof shows that NEx,y , Nx,y , and Ex,y all share the
same concave envelope. �	
To augment Theorems 3–6, we give the complementary convex and concave expres-
sions over the four triangular regions of the theorems. The envelopes are the equations
of appropriate planes in the convex and concave envelope expressions of xy over a
rectangle R from Theorem 1:

cavxySEx,y
(x, y) = lyx + uxy − uxly, (23)

cavxyNWx,y
(x, y) = uyx + lxy − lxuy, (24)

vexxySWx,y
(x, y) = lyx + lxy − lx ly, (25)

vexxyNEx,y
(x, y) = uyx + uxy − uxuy. (26)

3. Triangle-based branch-and-bound

This section demonstrates how to exploit the formulae for convex and concave envelopes
derived in Sect. 2 in a triangle-based branch and bound scheme.

3.1. Partitioning schemes

Starting with each pair of variables (xi, xj) being constrained to lie in the rectangle
Rxi,xj

, the branch-and-bound procedure partitions the feasible region by subdividing

Fig. 6. cavxySWx,y
(x, y)

262 J. Linderoth

Fig. 7. Sample partitioning schemes

the regions Rxi,xj
. The partitioning tightens the convex and concave envelope approx-

imations of the bilinear term xixj by tightening the lower and upper bounds on the
variables xi and xj , which in turn improves the bounds on the variable zij . Typically, in
a rectangle-based branch-and-bound scheme, the original rectangle is subdivided into
either two or four rectangles [2, 3]. When triangles are allowed as elements of the par-
tition, the variety of ways in which the feasible region might be divided increases. For
example, a rectangular region Rxi,xj

might be divided into four triangular regions of the
type Nxi,xj

, Sxi ,xj
, Exi ,xj

, Wxi,xj
, as in Fig. 7(a). A rectangular region Rxi,xj

might be
divided into two regions, one of the type NWxi,xj

and the other of the type SExi,xj
, like

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 263

Fig. 8. Example of partitioning scheme

Fig. 7(b). A region of type NWxi,xj
might be divided into a region of type Rxi,xj

and two
regions of type NWxi,xj

in a manner suggested by Fig. 7(c). A complete descripition of
a partitioning rule is given by specifying the manner to partition each shape that might
occur in a rule. An example of such a rule is depicted by Fig. 8. In this partitioning rule,
each rectangular region is divided into two triangular regions, of types {NW , SE} or
{SW , NE}), depending on whether the value of variable zij is smaller or larger than the
product of values xixj . Triangular regions are partitioned into the union of one rectangle
and two smaller triangular regions of the same type.

In practice, partitioning schemes often ensure that the solution to the relaxed prob-
lem intersects with the boundary of feasible region in child subproblems. In order to
ensure global convergence, the branching scheme should partition the region so that
nested sequences of partitions converge to a singleton point. Then, since the convex and
concave envelope approximations are exact at such a point, the bounding procedure is
consistent and global convergence can be assured as long as the node selection operation
periodically evaluates the node with the smallest lower bound (c.f. [16]).

3.2. Nonlinear programming relaxations

In any of the partitioning schemes of Section 3.1, each pair of variables (xi, xj) is con-
strained to be in a rectangular or triangular region of a type given by the sets (3)–(11) in
which the lower and upper bounds on the variables xi and xj have been adjusted accord-
ing to the partitioning. In what follows, we let the bounds (lxi

, uxi
) on a variable xi refer

264 J. Linderoth

to the lower and upper bounds of a variable at a particular node of the branch-and-bound
tree (i.e. within a particular partitioning of the feasible region), not the original lower
and upper bounds on variable xi .

In order to concisely write down a valid relaxation for an arbitrary direct product of
partitions, let the sets

R def= {(i, j) ∈ I × I | (xi, xj) ∈ Rxi,xj
},

SE def= {(i, j) ∈ I × I | (xi, xj) ∈ SExi,xj
},

NW def= {(i, j) ∈ I × I | (xi, xj) ∈ NWxi,xj
},

SW def= {(i, j) ∈ I × I | (xi, xj) ∈ SWxi,xj
},

NE def= {(i, j) ∈ I × I | (xi, xj) ∈ NExi,xj
},

N def= {(i, j) ∈ I × I | (xi, xj) ∈ Nxi,xj
},

S def= {(i, j) ∈ I × I | (xi, xj) ∈ Sxi ,xj
},

E def= {(i, j) ∈ I × I | (xi, xj) ∈ Exi,xj
},

W def= {(i, j) ∈ I × I | (xi, xj) ∈ Wxi,xj
}

be the index sets of pairs of variables that are constrained to be in a region of each shape.
Thus, the polyhedron

F = {x ∈ R
n | (xi, xj) ∈ Rxi,xj

∀(i, j) ∈ R, (xi, xj) ∈ SExi,xj
∀(i, j) ∈ SE,

(xi, xj) ∈ NWxi,xj
∀(i, j) ∈ NW, (xi, xj) ∈ SWxi,xj

∀(i, j) ∈ SW,

(xi, xj) ∈ Nxi,xj
∀(i, j) ∈ N , (xi, xj) ∈ Sxi ,xj

∀(i, j) ∈ S,

(xi, xj) ∈ Exi,xj
∀(i, j) ∈ E, (xi, xj) ∈ Wxi,xj

∀(i, j) ∈ W}

is the set of points satisfying the inequalities defining a particular element of the partition
(a node of the branch-and-bound tree).

A nonlinear programming relaxation NLPR of QCQP where the pairs of terms
(xi, xj) are constrained to lie in the region F is

vNLPR = min
x,z

cT x + Q0 • Z (NLPR)

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 265

subject to

cT
k x + Qk • Z ≥ bk ∀k ∈ M,

zij − lixj − lj xi + li lj ≥ 0 ∀(i, j) ∈ R,

zij − uixj − ujxi + uiuj ≥ 0 ∀(i, j) ∈ R,

zij − lixj − ujxi + liuj ≤ 0 ∀(i, j) ∈ R,

zij − uixj − lj xi + uilj ≤ 0 ∀(i, j) ∈ R,

zij − vexxyNWxi ,xj
(xi, xj) ≥ 0 ∀(i, j) ∈ N ∪ W ∪ NW,

zij − cavxyNExi ,xj
(xi, xj) ≤ 0 ∀(i, j) ∈ N ∪ E ∪ NE,

zij − vexxySExi ,xj
(xi, xj) ≥ 0 ∀(i, j) ∈ S ∪ E ∪ SE,

zij − cavxySWxi ,xj
(xi, xj) ≤ 0 ∀(i, j) ∈ S ∪ W ∪ SW,

x ∈ F .

4. Second-order cone representations

In this section, we demonstrate that the nonlinear constraints in the relaxation NLPR

are representable as second-order cone constraints. A second-order cone constraint is a
constraint of the form

‖Ax + b‖2 ≤ cT x + d.

The second-order (or Lorentz) cone of order n is the set of points

Kn
q =

x ∈ n | x1 ≥

√
√
√
√

n∑

i=2

x2
i

.

The set of points that satisfy a second-order cone constraint is a convex set (the set is the
inverse image of the unit second-order cone under an affine mapping), and hence effi-
cient and robust algorithms exist for the solution of problems containing second-order
cone constraints [31, 23]. Kim and Kojima [19] have also considered relaxations of
QCQP consisting of second-order cone and semidefinite cone constraints. These relax-
ations are based on the idea of lift-and-project and are of a different flavor than those
presented herein. The second-order cone relaxations presented here are more in the fla-
vor of Tawarmalani and Sahinidis [32], who describe the convex envelope of a simple
function of two variables over a rectangle as being characterized by the set of points
obeying a semidefinite programming constraint.

The ability to represent inequalities (27)–(27) as second-order cone constraints more
directly stems from the fact that they can be shown to be what is known as hyperbolic
constraints of the form w2 ≤ uv, with u ≥ 0, v ≥ 0. Hyperbolic constraints are sec-
ond-order cone constraints, which is evident from the relations

w2 ≤ uv, u ≥ 0, v ≥ 0 ⇔
∥
∥
∥
∥

[
2w

u − v

]∥
∥
∥
∥

2
≤ u + v ⇔

u + v

2w

u − v

 ∈ K3
q . (27)

266 J. Linderoth

Theorems (7)–(10) show that each nonlinear constraint present in our nonlinear pro-
gramming relaxation to QCQP can be represented as a second-order cone constraint.

Theorem 7. Let (x, y) ∈ SEx,y and define

wSE = y − ly

uy − ly
,

uSE = z − lyx − lxy + lx ly

(ux − lx)(uy − ly)
, and

vSE = 1 − x − lx

ux − lx
+ y − ly

uy − ly
.

Then

z ≥ vexSEx,y (x, y) ⇔

uSE + vSE

2wSE

uSE − vSE

 ∈ K3
q .

Proof. The proof is a tedious exercise in algebra to show that

z ≥ qSE(x, y)

lSE(x, y)

if and only if

(
y − ly

uy − ly

)2

≤
(

z − lyx − lxy + lx ly

(ux − lx)(uy − ly)

)(

1 − x − lx

ux − lx
+ y − ly

uy − ly

)

. (28)

The proof is completed by recognizing the terms wSE , uSE , and vSE in (28), noting that
(x, y) ∈ SE, z ≤ xy ⇒ uSE ≥ 0, vSE ≥ 0, and using the relations (27). �	
Theorem 8. Let (x, y) ∈ NWx,y and define

wNW = x − lx

ux − lx
,

uNW = z − lyx − lxy + lx ly

(ux − lx)(uy − ly)
, and

vNW = 1 − y − ly

uy − ly
+ x − lx

ux − lx
.

Then

z ≥ vexNW(xy) ⇔

uNW + vNW

2wNW

uNW − vNW

 ∈ K3
q .

Proof. The proof is a nearly identical exercise in algebra to that found in the proof of
Theorem 7. �	

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 267

Theorem 9. Let (x, y) ∈ SWx,y and define the variables

wSW = x − lx

ux − lx
, (29)

uSW = uyx + lxy − lxuy − z

(ux − lx)(uy − ly)
, (30)

vSW = x − lx

ux − lx
+ y − ly

uy − ly
. (31)

Then

z ≤ cavSW (xy) ⇔

uSW + vSW

2wSW

uSW − vSW

 ∈ K3
q .

Proof. The proof begins by showing that

z ≤ qSW (x, y)

lSW (x, y)

if and only if

(
x − lx

ux − lx

)2

≤
(

uyx + lxy − lxuy − z

(ux − lx)(uy − ly)

)(
x − lx

ux − lx
+ y − ly

uy − ly
.

)

(32)

Substituting (29), (30), and (31) into (32), noting that (x, y) ∈ SW, z ≥ xy ⇒ uSW ≥ 0
and vSW ≥ 0, and using the relations (27) completes the proof. �	

Theorem 10. Let (x, y) ∈ NEx,y and define the variables

wNE
def= 1 − y − ly

uy − ly
,

uNE
def= uyx + lxy − lxuy − z

(ux − lx)(uy − ly)
,

vNE
def= 2 − x − lx

ux − lx
− y − ly

uy − ly
.

Then

z ≤ cavNE(xy) ⇔

uNE + vNE

2wNE

uNE − vNE

 ∈ K3
q .

Proof. The proof is a nearly identical exercise in algebra to that of Theorem 9. �	

268 J. Linderoth

4.1. A linear relaxation

The convex and concave envelope inequalities over the triangular regions in the relaxa-
tion NLPR to QCQP are nonlinear. Nonlinear programs (even if posed as second-order
cone programs) are more difficult to solve and in general pose more numerical difficulties
that linear programs. In branch-and-bound, portions of the search space are fathomed
based on bounds provided by the solution of relaxed problems, so relaxations that are
numerically unstable pose considerable difficulties. In general, when bounding proce-
dures are based on calculations using floating point arithmetic, mathematically rigorous
guarantee of global optimality can only be ensured using interval methods [18, 14], but
the problem is only exacerbated if the solvers for the relaxations are not numerically
robust or reliable. Due to the huge commercial success of linear programming, pow-
erful, numerically robust tools can be used for its solution, so it is useful to have an
outerapproximation to the convex and concave envelope constraints of NLPR that can
be solved using linear programming. The relaxation given here is in the same spirit of
Ben-Tal and Nemirovski [6] who give a polyhedral approximation to the second-order
cone and in the spirit of the BARON (v6.0) package [33, 34] whose default behavior is
to use polyhedral outer-approximations of nonlinear relaxations through a variant of the
sandwich algorithm [26].

Take for example the triangular region SEx,y , (as development for the other regions is
similar). In Theorem 3, it was shown that vexxySEx,y

(x, y) was the line segment through
the points (ux, ly) and (x, y). This line segment is labeled L1 in Fig. 3 and intersects
the line segment L2 defining the boundary SEx,y . Therefore, appealing to the dual (or
convex hull) representation of the convex envelope and to the geometry of the bilinear
form xy, we can write vexxySEx,y

(x, y) as the solution to the following semi-infinite
optimization problem:

vexxySEx,y
(x, y) = min

ξ,λ

∑

(x̂i ,ŷi∈L2)

x̂i ŷiξi + uxlyλ

subject to

∑

(x̂i ,ŷi)∈L2

x̂iξi + uxλ = x,

∑

(x̂i ,ŷi)∈L2

ŷiξi + lyλ = y,

∑

(x̂i ,ŷi)∈L2

ξi + λ = 1,

λ ≥ 0,

ξi ≥ 0 ∀i | (x̂i , ŷi) ∈ L2.

We outerapproximate this semi-infinite program through a discretization procedure,
underestimating the objective function coefficient for ξi at certain points on L2 us-
ing the subgradient inequality. For simplicity, assume that all points are equally spaced.
Then a polyhedral outerapproximation to vexxySEx,y

can be written as follows.

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 269

Let

x̂k = lx + k(ux − lx)

2K + 2
k = 0, 1, . . . 2K + 2, (33)

ŷk = ly + k(uy − ly)

2K + 2
k = 0, 1, . . . 2K + 2, (34)

ẑk =
{

x̂kŷk if k is even

x̂k−1ŷk−1 + 1
2K+2 (ŷk−1(ux − lx) + x̂k−1(uy − ly)) if k is odd.

(35)

The outerapproximation is accomplished by associating with each of the points k =
0, 1, . . . , 2K + 2 a convex multiplier variable ξk, and writing (x, y, z) as appropriate
combinations of these multipliers:

x = uxλ2 +
2K+2∑

k=0

x̂kξk, (36)

y = lyλ2 +
2K+2∑

k=0

ŷkξk, (37)

z ≥ uxlyλ2 +
2K+2∑

k=0

ẑkξk. (38)

With these definitions, a polyhedral set that contains the epigraph of vexxySEx,y
can be

written as

PSEx,y(K) = {(x, y, z) ∈ R
3 | (x, y) ∈ Rx,y,

(x̂, ŷ, ẑ) obey (33), (34), (35),

(x, y, z) obey (36), (37), (38),

(λ2, ξ) ∈ �2K+4}.
A similar outerapproximating polyhedra can be defined for NWx,y triangular regions by
writing (x, y, z) in a similar fashion:

x = lxλ4 +
2K+2∑

k=0

x̂kξk, (39)

y = uyλ4 +
2K+2∑

k=0

ŷkξk, (40)

z ≥ lxuyλ4 +
2K+2∑

k=0

ẑkξk. (41)

PNWx,y(K) = {(x, y, z) ∈ R
3 | (x, y) ∈ Rx,y,

(x̂, ŷ, ẑ) obey (33), (34), (35),

(x, y, z) obey (39), (40), (41),

(λ4, ξ) ∈ �2K+4}.

270 J. Linderoth

For the regions SWx,y and NEx,y a similar discretization procedure can be applied. In
these cases, the discretization points are

x̂k = lx + k(ux − lx)

2K + 2
k = 0, 1, . . . 2K + 2, (42)

ŷk = uy + k(ly − uy)

2K + 2
k = 0, 1, . . . 2K + 2, (43)

ẑk =
{

x̂kŷk if k is even

x̂k−1ŷk−1 + 1
2K+2 (ŷk−1(ux − lx) + x̂k−1(ly − uy)) if k is odd.

(44)

As above, associate with each of the points k = 0, 1, . . . , 2K + 2 a convex multiplier
variable µk , defining points and function values to obey

x = lxλ1 +
2K+2∑

k=0

x̂kµk, (45)

y = lyλ1 +
2K+2∑

k=0

ŷkµk, (46)

z ≤ lx lyλ1 +
2K+2∑

k=0

ẑkµk. (47)

PSWx,y(K) = {(x, y, z) ∈ R
3 | (x, y) ∈ Rx,y,

(x̂, ŷ, ẑ) obey (42), (43), (44),

(x, y, z) obey (45), (46), (47),

(λ1, µ) ∈ �2K+4}.
Construction of a polyhedral set containing the hypograph of cavxyNEx,y

is similar.

x = uxλ3 +
2K+2∑

k=0

x̂kµk, (48)

y = uyλ3 +
2K+2∑

k=0

ŷkµk, (49)

z ≤ uxuyλ3 +
2K+2∑

k=0

ẑkµk. (50)

PNEx,y(K) = {(x, y, z) ∈ R
3 | (x, y) ∈ Rx,y,

(x̂, ŷ, ẑ) obey (42), (43), (44),

(x, y, z) obey (48), (49), (50),

(λ3, µ) ∈ �2K+4}.

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 271

Make one final definition of PRx,y as

PRx,y = {(x, y, z) ∈ R
3 | x = (λ1 + λ4)lx + (λ2 + λ3)ux

y = (λ1 + λ2)ly + (λ3 + λ4)uy

z = lx lyλ1 + uxlyλ2 + uxuyλ3 + lxuyλ4

λ ∈ �4}.

Using the linear outerapproximations of all nonlinear constraints, a linear programming
relaxation LPR3 to QCQP can be written:

min cT x + Q0 • Z (LPR3)

subject to

cT
k x + Qk • Z ≥ bk ∀k ∈ M,

xi ∈ [li , ui] ∀i ∈ I,

(xi, xj , zij) ∈ PRxi,xj
∀(i, j) ∈ R,

(xi, xj , zij) ∈ PSExi,xj
∀(i, j) ∈ SE ∪ S ∪ E,

(xi, xj , zij) ∈ PNWxi,xj
∀(i, j) ∈ NW ∪ N ∪ W,

(xi, xj , zij) ∈ PSWxi,xj
∀(i, j) ∈ SW ∪ S ∪ W,

(xi, xj , zij) ∈ PNExi,xj
∀(i, j) ∈ NE ∪ N ∪ E .

5. Strength of envelope expressions

In this section we quantify the strength of convex and concave envelope expressions for
the bilinear expression xy. In some sense, one cannot hope to obtain a tighter (tractable)
relaxation for xy than by using the convex and concave envelopes. Still, it may be that
certain regions have tighter relaxations than others, and the strength of the relaxation can
be taken into account when designing partitioning rules for an algorithm, a few examples
of which are presented in Sect. 3. To quantify the strength of the convex and concave
envelopes expressions, there are a number of useful measures that can be defined. For
example, over a region � ⊂ R

2, the total lower error (ηL), total upper error (ηU), and
total error (η) of a convex/concave envelope approximation to xy can be defined as

ηL(�)
def=
∫

�

(xy − vexxy�(x, y))dx dy,

ηU (�)
def=
∫

�

(cavxy�(x, y) − xy)dx dy,

η(�)
def=
∫

�

(cavxy�(x, y) − vexxy�(x, y))dx dy.

= ηL(�) + ηU(�).

272 J. Linderoth

Using the functional expressions for the convex and concave envelopes (1) and (2), it
is an exercise in integration to compute the η error measures for the rectangular region
Rx,y . To ease notation, we define the symbolic constants

α
def= u2

xu
2
y + u2

xl
2
y + u2

yl
2
x + l2

x l2
y,

β
def= u2

xuyly + uxu
2
yly + uxlxl

2
y + uyl

2
x ly, and

γ
def= uxuylxly .

The formula for error measure for Rx,y is

η(Rx,y) = α/6 − β/3 + 2γ /3.

By symmetry, it is not surprising that

ηL(Rx,y) = ηU(Rx,y) = η(Rx,y)/2.

In a similar fashion, the error integrals for the triangular regions SEx,y , NWx,y , SWx,y ,
and NEx,y can be computed to be

ηL(SWx,y) = α/24 − β/12 + γ /6,

ηL(NEx,y) = ηL(SWx,y),

ηL(NWx,y) = α/72 − β/36 + γ /18,

ηL(SEx,y) = ηL(NWx,y),

ηU (NWx,y) = α/24 − β/12 + γ /6,

ηU (SEx,y) = ηU(NWx,y),

ηU (SWx,y) = α/72 − β/36 + γ /18,

ηU (NEx,y) = ηU(SWx,y).

Note that for the triangular regions NWx,y and SEx,y , the lower envelope approximation
is better than the upper envelope approximation. For the triangular regions SWx,y and
NEx,y , the upper envelope approximation is better than the lower envelope. This asym-
metry is not present for the triangular regions Nx,y, Sx,y, Ex,y , and Wx,y , as evidenced
by the computed formulae for the error integrals:

η(Nx,y) = α/72 − β/36 + γ /18,

η(Sx,y) = η(Ex,y) = η(Wx,y).

Measuring the maximum approximation error is also useful, and similar error expres-
sions for the maximum lower error (φL), maximum upper error (φU), and maximum
total error (φ) can be defined:

φL(�)
def= max

�
(xy − vexxy�(x, y)),

φU (�)
def= max

�
(cavxy�(x, y) − xy),

φ(�)
def= cavxy�(x, y) − vexxy�(x, y).

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 273

Note that it is not in general true that φL(�) + φU(�) = φ(�) as is the case for the η

measure of error. It may also be of interest to know the point at which the maximum
error is achieved, and to that end define

(x
φ
L(�), y

φ
L(�))

def= arg max
�

(xy − vexxy�(x, y)),

(x
φ
U (�), y

φ
U (�))

def= arg max
�

(cavxy�(x, y) − xy),

(xφ(�), yφ(�))
def= arg max

�
(cavxy�(x, y) − vexxy�(x, y)).

In the rectangular case, the point with the largest error is in the middle of the region
Rx,y :

(x
φ
L(�), y

φ
L(�)) = (x

φ
U (�), y

φ
U (�)) = (xφ(�), yφ(�)) =

(
1

2
(lx + ux),

1

2
(ly + uy)

)

.

So the max error measures for the convex and concave envelope over Rx,y are

φL(Rx,y) = 1
4 (uxuy − uxly − lxuy + lx ly)

φU (Rx,y) = 1
4 (uxuy − uxly − lxuy + lx ly)

φ(Rx,y) = 1
2 (uxuy − uxly − lxuy + lx ly)

Computing φ for the triangular regions is slightly more complicated, but can be accom-
plished by examining the optimality conditions for the optimization problem present in
the definition of φ. Performing the analysis yields

(x
φ
L(SEx,y), y

φ
L(SEx,y)) = (3

4ux + 1
4 lx,

3
4 ly + 1

4uy

)
,

(x
φ
U (SEx,y), y

φ
U (SEx,y)) = (1

2 (lx + ux),
1
2 (ly + uy)

)
,

(xφ(SEx,y), y
φ(SEx,y)) = (1

2 (lx + ux),
1
2 (ly + uy)

)
,

φL(SEx,y) = 1
16 (uxuy − uxly − lxuy + lx ly),

φU (SEx,y) = 1
4 (uxuy − uxly − lxuy + lx ly),

φ(SEx,y) = 1
4 (uxuy − uxly − lxuy + lx ly).

Not surprisingly (by symmetry), the error measures for similar shaped triangles are the
same. They are included in the Appendix.

For the triangles Sx,y , Nx,y , Ex,y , and Wx,y a similar analysis can be performed to
show that

(x
φ
L(Sx,y), y

φ
L(Sx,y)) = (x

φ
U (Sx,y), y

φ
U (Sx,y)) = (xφ(Sx,y), y

φ(Sx,y))

=
(

1

2
(lx + ux),

1

2
ly +

√
2 − 1

2
uy

)

,

274 J. Linderoth

φ(Sx,y) =
(

3
2 −

√
2
)

(uxuy + lx ly − lxuy − uxly),

and

φ(Sx,y) = φ(Nx,y) = φ(Ex,y) = φ(Wx,y).

(The points at which the maximum error are obtained for regions besides Sx,y are listed
in the Appendix.)

Example 3. Consider a region R̂ = {(x, y) ∈ [0, 2] × [0, 2]} that we divide into four
subrectangles:

ŜW = {(x, y) ∈ [0, 1] × [0, 1]},
N̂W = {(x, y) ∈ [0, 1] × [1, 2]},
N̂E = {(x, y) ∈ [1, 2] × [1, 2]},
ŜE = {(x, y) ∈ [1, 2] × [0, 1]}.

The difference between concave and convex envelopes over these regions are

η(ŜW) = η(N̂W) = η(N̂E) = η(ŜE) = 1
6 .

If the same region R̂ is subdivided into the four triangles

N̂ = R̂ ∩ {(x, y) | x + y ≥ 2, y ≥ x},
Ŝ = R̂ ∩ {(x, y) | x + y ≤ 2, y ≤ x},
Ê = R̂ ∩ {(x, y) | x + y ≤ 2, y ≥ x},
Ŵ = R̂ ∩ {(x, y) | x + y ≥ 2, y ≤ x},

The total error in the resulting relaxations of xy are

η(N̂) = η(Ŝ) = η(Ê) = η(Ŵ) = 2
9 .

Thus we are led to the somewhat surprising conclusion that for this particular branching
scheme, measure by the total error measure η, it is better to subdivide the region into
rectangles. The story is different if the maximum error measure φ is used. In this case,

φ(ŜW) = φ(N̂W) = φ(N̂E) = φ(ŜE) = 1
2 ,

and

φ(N̂) = φ(Ŝ) = φ(Ê) = φ(Ŵ) = 6 − 4
√

2 ≈ 0.343.

So in terms of the maximum error, it is better to partition the region into triangles.

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 275

Example 4. Suppose we wish to decide whether to partition the region R̂ = {(x, y) ∈
[0, 2] × [0, 2]} into two regions

R̂1 = {(x, y) ∈ [0, 1] × [0, 2]}
R̂2 = {(x, y) ∈ [1, 2] × [0, 2]}

or into the two regions

ŜE = R̂ ∩ {(x, y) | y ≤ x}
N̂W = R̂ ∩ {(x, y) | y ≥ x}.

The total error measures are

ηL(R̂1) = ηL(R̂2) = ηU(R̂1) = ηU(R̂2) = 1
3 ,

η(R̂1) = η(R̂2) = 2
3 ,

ηL(ŜE) = ηL(N̂W) = 2
9 ,

ηU (ŜE) = ηU(N̂W) = 2
3 ,

η(ŜE) = η(N̂W) = 8
9 .

The maximum error measures are

φL(R̂1) = φL(R̂2) = φU(R̂1) = φU(R̂2) = 1
2 ,

φ(R̂1) = φ(R̂2) = 1,

φL(ŜE) = φL(N̂W) = 1
4 ,

φU (ŜE) = φU(N̂W) = 1,

φ(ŜE) = φ(N̂W) = 1.

Since ηL(ŜE) = ηL(N̂W) < ηL(R̂1) = ηL(R̂2), what example 4 demonstrates is that
the triangle-based branching scheme improves the lower approximation more than a
rectangle-based scheme. In general, by branching into triangles, one can specifically
improve one of the lower or over approximations, depending on where the relaxed solu-
tion z∗

ij lies in relation to the desired value x∗
i x∗

j . This can be used to advantage in
designing a branch-and-bound algorithm. For example, this is precisely the manner in
which we partition the rectangular regions into triangular regions for the computational
results presented in Sect. 6.

6. Computational results

The purpose of this section is to demonstrate that branch-and-bound algorithms for solv-
ing QCQP can benefit from a triangular partitioning scheme, and thus the convex and
concave envelope expressions derived in this paper. The utility of a triangular branching
scheme is demonstrated by comparing the solution times and number of branch-and-
bound nodes for two and four rectangle partitioning schemes with a simple triangle-based
scheme on a fixed set of QCQP test instances. Most of the test instances come from the

276 J. Linderoth

Table 1. Characteristics of test instances

name n m so bo sc bc

audet4 6 4 0 3 4 3
audet7 16 23 0 5 5 37
ex2 1 9 10 1 0 22 0 0
ex3 1 1 8 6 0 0 0 5
ex3 1 2 5 6 1 1 2 16
ex3 1 4 3 3 0 0 3 3

ex5 2 2 case1 9 6 0 0 0 4
ex5 2 2 case2 9 6 0 0 0 4
ex5 2 2 case3 9 6 0 0 0 4

ex5 3 2 22 16 0 0 0 12
ex5 4 2 8 6 0 0 0 5
ex5 4 3 16 13 0 0 0 8
ex5 4 4 27 19 0 0 0 15

ex7 3 3-bounded 5 8 0 0 1 3
himmel11 9 3 1 1 1 8
himmel16 15 21 0 0 45 23

prolog-bounded 20 22 0 4 0 4

GAMS GlobalLib [12]. Versions of these instance in the AMPL modeling language are
available from the COCONUT Benchmark [7]. The test suite has been augmented with
problems 4 and 7 from Audet et al. [5], and one instance (ex 7 3 3) has been altered by
added artificial upper and lower bounds on all of the variables. The instances were cho-
sen to contain a significant number of bilinear terms (in comparison to squared terms),
since a triangular partitioning only has any real impact in the case of quadratics with
bilinear terms. Table 1 shows some characteristics of our test instances, where n is the
number of variables, m is the number of constraints, so is the number of squared terms
in the objective function, bo is the number of bilinear terms in the objective function, sc
is the number of squared terms in the constraints, and bc is the number of bilinear terms
in the constraints.

The relaxations and partitioning schemes have been implemented in a code called
QPBB consisting of roughly 10,000 lines of C++. Linear programming relaxations in
QPBB are created and solved through the COIN-OR OsiSolverInterface, and as
such can use a number of different linear programming solvers [8]. We use theClp linear
programming toolkit (also from COIN-OR) to produce the computational results in this
paper. Nonlinear relaxations can be modeled using the NLPAPI available in COIN-OR,
which has interfaces to both the nonlinear programming solvers Lancelot [9] or IPOPT
[35]. However, in this study, the nonlinear programming software is not used, instead we
use the linear programming outerapproximation to the nonlinear constraints developed
in Section 4.1. QPBB has an interface to the AMPL modeling language. The QPBB
branch-and-bound code is implemented as an instantiation of the virtual class library
MW [13], and therefore QPBB is capable of running in parallel on a loose federation of
processors known as a computational grid [11]. In this study QPBB has been compiled
with the Gnu g++ compiler and configured to run (using the MW Independent mode)
on a single Intel Pentium(R) CPU with a clock speed of 2.40GHz.

QPBB solves instances to approximate global optimality, where approximate is de-
fined using the following two definitions.

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 277

Definition 1. A solution (x̄, z̄) to a relaxation of QCQP is said to be εf -feasible for
QCQP if and only if

– li ≤ x̄i ≤ ui, ∀i ∈ I ,
– cT

k x̄ + Qk • Z̄ ≥ bk, ∀k ∈ M , and
– |z̄ij − x̄i x̄j | ≤ εf ∀i ∈ I ∀j ∈ I .

Definition 2. A solution (x̄, z̄), with relaxation objective value v∗ is said to be (εf −εv)

optimal if and only if (x̄, z̄) is εf -feasible and there does not exist another εf -feasible
solution whose relaxation objective value v̂ satisfies |v∗ − v̂| ≥ εv .

In our experiments, we attempt to solve all instances to the precision εf = εv = 10−6.
We assume that the relaxations are solved exactly, though this assumption could be
relaxed by obtaining rigorous lower bounds in a manner suggested by Jansson [17].
Since the purpose of this experiment is solely to test the usefulness of a triangular par-
titioning scheme, no advanced branching or range reduction techniques are employed
by QPBB. Given a solution to the relaxation (x̂, ẑ), we branch on the pair of variables
xi∗ , xj∗ satisfying

(i∗, j∗) = arg max
i,j∈I

{|ẑij − x̂i x̂j |}.

For this experiment, QPBB had been configured to evaluate the node of the branch and
bound tree whose parent has the smallest relaxation value (best bound node selection).

The triangular branching scheme tested was the scheme depicted pictorially in Fig-
ure 8. Namely,

– Rectangular regions Rxi,xj
were partitioned into two regions SExi,xj

and NWxi,xj

(like in Figure 7(a)) if the lower envelope approximation needed to be improved
more than the upper. Conversely a rectangular region Rxi,xj

was partitioned into
two regions SWxi,xj

and NExi,xj
if the upper envelope approximation needed to

be improved more than the lower (measured in terms of the absolute error of the
approximation).

– Triangular regions were partitioned into two triangular regions and a rectangular
region in a manner depicted by Figure 7(c).

This triangular partitioning scheme was compared against a two-rectangle partitioning
scheme, where the rectangle was divided into two subrectangles by bisecting the longest
edge and a four-rectangle scheme obtained by bisecting the original rectangle along both
edges. The results of the computational experiment are given in Table 2. Figure 9 shows a
performance profile (see [10] for an explanation of performance profiles) of the number
of nodes of the branch-and-bound tree, and Figure 10 shows a profile of the CPU time
used by each of the three partitioning methods. The experimental results show that the
four rectangle-based scheme and the triangle-based scheme exhibit fairly similar per-
formance, and both of these methods dominate the two triangle-based scheme. For the
instances requiring less than 3 CPU seconds, the rectangular schemes are clearly better,
but as the difficulty of the problem instance increases, the triangle-based scheme seems
to outperform both the two and four rectangle-based schemes. Future work will aim

278 J. Linderoth

Table 2. Results of branch-and-bound for various partitioning schemes

Two Rectangles Four Rectangles Triangles and Rectangles
Name Nodes Time(s) Nodes Time(s) Nodes Time(s)
audet4 410 0.88 372 0.79 286 0.75
audet7 14655 112.3700 4119 30.6200 1886 20.6700
ex2 1 9 3527 12.84 3574 12.92 821 6.15
ex3 1 1 27370 48.41 50236 87.96 8810 28.92
ex3 1 2 57 0.10 53 0.11 55 0.14
ex3 1 4 43 0.06 43 0.06 47 0.08

ex5 2 2 case1 225 0.25 125 0.15 138 0.18
ex5 2 2 case2 420 0.47 246 0.28 299 0.38
ex5 2 2 case3 299 0.32 141 0.16 147 0.18

ex5 3 2 2099 5.45 497 1.04 465 1.47
ex5 4 2 3817 6.13 1844 2.80 1884 3.59
ex5 4 3 22 0.03 6 0.01 13 0.03
ex5 4 4 100 0.28 59 0.17 247 1.19

ex7 3 3-bounded 86 0.11 83 0.10 209 0.30
himmel11 57 0.10 54 0.10 56 0.14
himmel16 228 1.11 230 1.15 327 2.05

prolog-bounded 5515 11.68 1194 2.47 962 2.62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4

Two Rectangles
Four Rectangles

Triangles and Rectangles

Fig. 9. Performance profile comparing number of branch-and-bound nodes for three partitioning methods

on testing different triangle-based partitioning schemes and on combining the schemes
with more advanced techniques for branch selection, node selection, and problem pre-
processing.

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 279

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4

Two Rectangles
Four Rectangles

Triangles and Rectangles

Fig. 10. Performance profile comparing CPU time for three partitioning methods

7. Conclusions and Future Directions

In this paper, nonlinear expressions for the convex and concave envelopes of a bilinear
function f (x, y) = xy over various triangular shapes were derived. These expressions
were used to create a second-order cone programming relaxation of the quadratically
constrained quadratic program (QCQP), and a polyhedral outerapproximation of the
second-order cones was described, yielding a new linear programming relaxation to
QCQP. Two measures of the tightness of convex and concave envelope approximations
were introduced, and we showed that the envelopes over triangular regions are often
demonstrably tighter than their rectangular counterparts under these measures. The for-
mulae were embedded into a branch-and-bound algorithm for solving QPBB and shown
to often reduce the computational effort required to solve instances.

The ultimate goal of this research is to create a solver capable of solving QCQP
instances of larger magnitude than currently possible. There are a number of areas for
further investigation required to make this goal possible. First, investigation of more
sophisticated partitioning schemes that adaptively use the error measure formulae to
decide on a proper partitioning is required. Partitioning rules that subdivide the region
so that the solution to the relaxation is on the boundary of the new feasible regions will
be explored. The QPBB solver has already been augmented with features to choose a
better branching entity by solving auxiliary linear programs (akin to strong branching in
mixed integer programming) and to tighten variable bounds at nodes of the branch-and-
bound tree by solving auxiliary linear programs (strong preprocessing) [20, 21]. Since
the QPBB code uses the MW software framework, ultimately it has been designed to

280 J. Linderoth

run on a high-powered computational grid computing platform. The resulting code will
be used to solve large-scale QCQP instances.

Appendix—Error Measure Formulae

The maximum errors for the triangular regions NWx,y, SWx,y , and NEx,y are the fol-
lowing:

φL(NWx,y) = 1
16 (uxuy + −uxly − lxuy + lx ly),

φU (NWx,y) = 1
4 (uxuy − uxly − lxuy + lx ly),

φ(NWx,y) = 1
4 (uxuy − uxly − lxuy + lx ly),

φU (SWx,y) = 1
16 (uxuy + −uxly − lxuy + lx ly)

φL(SWx,y) = 1
4 (uxuy + −uxly − lxuy + lx ly)

φ(SWx,y) = φL(SWx,y)

φU (NEx,y) = φU(SWx,y)

φL(NEx,y) = φU(SWx,y)

φ(NEx,y) = φ(SWx,y).

The points at which the maximum errors are achieved in the triangular regions Nx,y ,
Wx,y , Ex,y are the following:

(x
φ
L(Nx,y), y

φ
L(Nx,y)) = (x

φ
U (Nx,y), y

φ
U (Nx,y)) = (xφ(Nx,y), y

φ(Nx,y))

=
(

1

2
(lx + ux),

1

2
ly + 3 − √

2

2
uy

)

,

(x
φ
L(Wx,y), y

φ
L(Wx,y)) = (x

φ
U (Wx,y), y

φ
U (Wx,y)) = (xφ(Wx,y), y

φ(Wx,y))

=
(

1

2
lx +

√
2 − 1

2
ux,

1

2
(ly + uy)

)

,

(x
φ
L(Ex,y), y

φ
L(Ex,y)) = (x

φ
U (Ex,y), y

φ
U (Ex,y)) = (xφ(Ex,y), y

φ(Ex,y))

=
(

1

2
lx + 3 − √

2

2
ux,

1

2
(ly + uy)

)

.

Acknowledgements. The author would like to thank Ellis Johnson for suggesting that a triangular branching
scheme was likely to be powerful for bilinear programming problems and for describing the alternative LP
relaxation LPR2. The author would like to thank Kurt Anstreicher for suggesting that the convex and concave
envelope expressions were likely to be SOC-representable and Masakazu Muramatsu for initially demonstrat-
ing how to create one such SOC-representation. The author would like to thank Sven Leyffer and Jorge Moré
for inviting him to present a preliminary version of this work at the Argonne Global Optimization Theory
Institute in September, 2003. The advice of an anonymous referee and the editor greatly helped improve the
presentation. This work is supported in part by NSF Grant ANI-0330607.

Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs 281

References

1. Al-Khayyal, F.A.: Generalized bilinear programming, part I: Models, applications, and linear program-
ming relaxation. European Journal on Operations Research 60, 306–314 (1992)

2. Al-Khayyal, F.A., Falk., J.E.: Jointly constrained biconvex programming. Mathematics of Operations
Research 8, 273–286 (1983)

3. Al-Khayyal, F.A., Larsen, C., Van Voorhis., T.: A relaxation method for nonconvex quadratically con-
strained programs. Journal of Global Optimization 6, 215–230 (1995)

4. Androulakis, I.P., Maranas, C.D., Floudas., C.A.: aBB : A global optimization method for general con-
strained nonconvex problems. Journal of Global Optimization 7, 337–363 (1995)

5. Audet, C., Hansen, P., Jaumard, B., Savard., G.: A branch and cut algorithm for nonconvex quadratically
constrained quadratic programs. Mathematical Programming 87, 131–152 (2000)

6. Ben-Tal, A., Nemirovski., A.: On polyhedral approximations of the second-order cone. Mathematics of
Operations Research 26, 193–205 (2001)

7. The COCONUT benchmark: A benchmark for global optimization and constraint satisfaction, 2004.
http://www.mat.univie.ac.at{/˜n}eum/glopt/coconut/benchmark.html.

8. COIN-OR: Computational Infrastructure for Operations Research, 2004.
http://www.coin-or.org.

9. Conn, A.R., Gould, N.I.M., Toint. Ph.L.: LANCELOT: A Fortran Package for Large-scale Nonlinear
Optimization (Release A). Springer–Verlag, 1992

10. Dolan, E., Moré., J.: Benchmarking optimization software with performance profiles. Mathematical Pro-
gramming 91, 201–213 (2002)

11. Foster, I., Kesselman, C.: Computational grids. In: I. Foster, C. Kesselman (eds.), The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, 1999, Chapter 2.

12. Globallib, 2004. http://www.gamsworld.org/global/globallib.htm.
13. Goux, J.-P., Kulkarni, S., Linderoth, J.T., Yoder., M.: Master-Worker : An enabling framework for mas-

ter-worker applications on the computational grid. Cluster Computing 4, 63–70 (2001)
14. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica. A Modeling Language for Global Optimization.

MIT Press, Cambridge, MA, 1997
15. Horst., R.:An algorithm for nonconvex programming problems. Mathematical Programming 10, 312–321

(1976)
16. Horst, R., Tuy, H.: Global Optimization. Springer-Verlag, New York, 1993
17. Jansson., C.: Rigorous lower and upper bounds in linear programming. SIAM Journal on Optimization

14, 914–935 (2004)
18. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, 1996
19. Kim, S., Kojima., M.: Second order cone programming relaxation methods of nonconvex quadratic opti-

mization problems. Optimization Methods and Software 15, 201–224 (2001)
20. Lebbeh,Y., Rueher, M., Michel, C.: A global filtering algorithm for handling systes of quadratic equations

and inequations. In: P. van Hentenryck (ed.), Lecture Notes in Computer Science: Principles and Practice
of Constraint Programming: CP 2002, vol. 2470, Springer, 2002, pp. 109–123

21. Linderoth, J.T.: Applying integer programming techniques to global optimization problems, 2003. Pre-
sentation at INFORMS National Meeting.

22. McCormick., G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex
underestimating problems. Mathematical Programming 10, 147–175 (1976)

23. Mosek ApS, 2004. www.mosek.com.
24. Raber., U.:A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. Journal

of Global Optimization 13, 417–432 (1998)
25. Raber, U.: Nonconvex All-Quadratic Global Optimization Problems: Solution Methods, Application and

Related Topics. PhD thesis, Universität Trier, Germany, 1999
26. Rote., G.: The convergence of the sandwich algorithm for approximating convex functions. Computing

48, 337–361 (1992)
27. Ryoo, H.S., Sahinidis., N.V.: A branch-and-reduce approach to global optimization. Journal of Global

Optimization 8, 107–139 (1996)
28. Sahinidis., N.V.: BARON: A general purpose global optimization software package. Journal of Global

Optimization 8, 201–205 (1996)
29. Sherali, H.D., Alameddine., A.R.: An explicit characterization of the convex envelope of a bivariate

function over special polytopes. Annals of Operations Research, Computational Methods in Global Opti-
mization, 197–210 (1990)

30. Sherali, H.D., Alameddine., A.R.: A new reformulation linearization technique for bilinear programming
problems. Journal of Global Optimization 2, 379–410 (1992)

282 J. Linderoth: Simplicial Branch-and-Bound for Quadratically Constrained Quadratic Programs

31. Sturm., J.F.: Using SeDuMi 1. 02, a MATLAB toolbox for optimization over symmetric cones. Optimi-
zation Methods and Software 11 (12), 625–653 (1999)

32. Tawarmalani, M., Sahinidis., N.V.: Semidefinite relaxations of fractional programs via novel convexifi-
cations techniques. Journal of Global Optimization 20, 137–158 (2001)

33. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic
Publishers, Boston MA, 2002

34. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed integer nonlinear programs:A theoretical
and computational study. Mathematical Programming, 2004, to appear

35. Wächter,A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm
for large-scale nonlinear programming. Research report, IBM T. J. Watson Research Center, Yorktown,
USA, 2004

