
MILP Software

Jeffrey T. Linderoth Andrea Lodi

1 Introduction

This article concerns software for solving a general Mixed Integer Linear
Program (MILP) in the form

min{cT x : Ax ≥ b, x ≥ 0, xj ∈ Z ∀j ∈ I}. (1)

The algorithmic approach relies on the iterative solution, through general-
purpose techniques, of the Linear Programming (LP) relaxation

min{cT x : Ax ≥ b, x ≥ 0}, (2)

i.e., the same as problem (1) above but the integrality requirement on the x
variables in the set I has been dropped. We denote an optimal solution of
problem (2) as x∗. The reason for dropping such constraints is that MILP is
NP-hard while LP is polynomially solvable and general-purpose techniques
for its solution are efficient in practice.

Entries #1.8.2.1 and #1.8.2.2 cover state-of-the-art LP techniques and
solvers, while in the present entry we concentrate on the basic characteristics
and components of current, commercial and non-commercial, MILP solvers.

Roughly speaking, using the LP computation as a tool, MILP solvers
integrate the branch-and-bound and the cutting plane algorithms through
variations of the general branch-and-cut scheme proposed by Padberg & Ri-
naldi [32] in the context of the Traveling Salesman Problem (TSP). Entries
#1.3.5.1 and #1.4.1.5 discuss in detail Mathematical-Programming-based
approaches for the TSP and the branch-and-cut approach in its full general-
ity, respectively. Nevertheless, with the aim of giving a quick overview and
fixing the notation, we briefly discuss in the following both the branch-and-
bound and the cutting plane algorithms.

The branch-and-bound algorithm, Land & Doig [26]. In its basic version
the branch-and-bound algorithm iteratively partitions the solution space
into sub-MILPs (the children nodes) which have the same theoretical com-
plexity of the originating MILP (the father node, or the root node if it is
the initial MILP). Usually, for MILP solvers the branching creates two chil-
dren by using the rounding of the solution of the LP relaxation value of a

1



fractional variable, say xj , constrained to be integral

xj ≤ bx∗
jc

∨
xj ≥ bx∗

jc+ 1. (3)

The two children above are often referred to as left (or “down”) branch and
right (or “up”) branch, respectively. On each of the sub-MILPs the integral-
ity requirement on the variables xj ,∀j ∈ I is relaxed and the LP relaxation
is solved. Despite the theoretical complexity, the sub-MILPs become smaller
and smaller due to the partition mechanism (basically some of the decisions
are taken) and eventually the LP relaxation is directly integral for all vari-
ables in I. In addition, the LP relaxation is solved at every node to decide if
the node itself is worthwhile to be further partitioned: if the LP relaxation
value is already not smaller than the best feasible solution encountered so
far, called incumbent, the node can safely be fathomed because none of its
children will yield a better solution than the incumbent. Finally, a node is
also fathomed if its LP relaxation is infeasible.

The cutting plane algorithm, Gomory [22]. Any MILP can be solved
without branching by simply finding its “right” linear programming de-
scription, more precisely, the convex hull of its (mixed-)integer solutions. In
order to do that, one has to iteratively solve the so called separation problem

Given a feasible solution x∗ of the LP relaxation (2) which is
not feasible for the MILP (1), find a linear inequality αT x ≥ α0

which is valid for (1), i.e., satisfied by all feasible solutions x̄ of
the system (1), while it is violated by x∗, i.e., αT x∗ < α0.

Any inequality solving the separation problem is called a cutting plane (or
a cut, for short) and has the effect of tightening the LP relaxation to better
approximate the convex hull.

Gomory [22] has given an algorithm that converges in a finite number
of iterations for pure Integer Linear Programming (ILP)1 with integer data.
Such an algorithm solves the separation problem above in an efficient and
elegant manner in the special case in which x∗ is an optimal basis of the LP
relaxation. No algorithm of this kind is known for MILPs.

The idea behind integrating the two algorithms above is that LP relax-
ations (2) do not naturally well approximate, in general, the convex hull of
(mixed-)integer solutions of MILPs (1). Thus, some extra work to devise
a better approximation by tightening any relaxation with additional linear
inequalities (cutting planes) increases the chances that fewer nodes in the
search tree are needed. On the other hand, pure cutting plane algorithms

1ILPs are the special case of MILPs where all variables belong to I, i.e., are constrained
to be integer.

2



show, in general, a slow convergence and the addition of too many cuts can
lead to very large LPs which in turn present numerical difficulties for the
solvers. The branch-and-cut algorithm has been proven to be very effective
initially for combinatorial optimization problems (like TSP) with special-
purpose cuts based on a polyhedral analysis and later on in the general
MILP context.

The paper is split into two parts. In Section 2 we discuss the basic
components of nowadays MILP solvers. In Section 3 we list the available,
commercial and non-commercial, solvers with special emphasis to their flex-
ibility in terms of being usable within different modeling and development
environments.

Some of the solvers that will be discussed in Section 3 have their own
modeling environment and modeling language. Moreover, a recent trend
for MILP software producers has been adding additional capabilities to the
solvers, like that of solving some special classes of (Mixed Integer) Non Lin-
ear Programs (MI)NLPs. Although modeling languages and the possibility
of solving MINLPs within a MILP enumerative framework are very interest-
ing topics, they are not discussed in detail in the present paper. The reader
is referred to entry #1.8.1.2 for modeling environments and languages and
to entries #1.8.2.3, #1.8.2.5 and #1.8.2.6 for NLP and MINLP software.

2 Basic Components of MILP Solvers

Nowadays MILP solvers incorporates key ideas developed during the first
50 years of Integer Programming. In the next sections we will discuss the
main ingredients in a concise way. For more details, the reader is referred to
Achterberg [1] and Lodi [29] and to many entries in the present encyclopedia.

2.1 Presolving

In the presolving (often called preprocessing) phase the solver tries to detect
certain changes in the input that will probably lead to a better performance
of the solution process. This is generally done without “changing” the set of
optimal solutions of the problem at hand2 and it affects two main situations.

On the one side, it is often the case that MILP models can be improved
with respect to their given formulation3 by either removing redundant infor-
mation (variables or constraints) or strengthening the variable bounds gen-
erally by exploiting the integrality of variables in I. Modern MILP solvers
have the capability of “cleaning up” the models so as to create a presolved

2In fact, the set of optimal solutions might change due to presolve in case, for example,
of symmetry breaking reductions, see Margot [30] and entry #1.4.5.1.

3This is especially true for models originated from real-world applications and created
by using modeling languages.

3



instance associated with the original one on which the MILP technology is
then applied. The advantage is twofold: first the LP relaxation becomes
smaller (then, generally, quicker to solve), and second such relaxations be-
come stronger, i.e., better approximating the convex hull of (mixed-)integer
solutions. Finally, more sophisticated presolve mechanisms are also able to
discover important implications and sub-structures that might be of funda-
mental importance later on in the computation for both branching purposes
and cutting plane generation.

For a detailed overview of presolving techniques the reader is referred to
Savelsbergh [36] and Martin [31].

2.2 Cutting plane generation

The importance of cutting planes has been already pointed out in the intro-
duction: without iteratively strengthening the approximation of the convex
hull of (mixed-)integer solutions provided by the LP relaxation, current enu-
merative schemes would fail in solving difficult MILP instances.

The arsenal of separation algorithms has been continuously enlarged over
the years. A large group of cuts, with strong relationship among each other,
includes Chvátal-Gomory cuts, Gomory mixed-integer cuts, mixed-integer
rounding cuts, {0, 1

2} cuts, lift-and-project cuts, and split cuts. Essentially,
all these inequalities are obtained by applying a disjunctive argument, ex-
ploiting the integrality, on an integer or mixed-integer set given by a single
constraint generally derived by aggregating many others. This group of cuts
is presented in a brilliant and unified way by Cornuéjols [12].

Among the more ‘combinatorial’ cutting planes, i.e., those whose deriva-
tion is not directly associated with disjunctions on the integer variables,
certainly the most used and useful ones are clique and cover inequalities.
Cover inequalities played a fundamental role in pioneering MILP solvers
[13, 38].

These classes of inequalities are discussed in entries #1.4.3 and #1.4.4.

2.3 Sophisticated branching strategies

The branching mechanism introduced in Section 1 requires to take two inde-
pendent and important decisions at any step: node and variable selections.

Node Selection. This is very classical: one extreme is the so called best-
bound first strategy in which one always considers the most promising node,
i.e., the one with the smallest LP value, while the other extreme is depth
first where one goes deeper and deeper in the tree and starts backtracking
only once a node is fathomed, i.e., it is either (mixed-)integer feasible, or LP
infeasible or it has a lower bound not better (smaller) than the incumbent.
The pros and cons of each strategy are well known: the former explores
less nodes but generally maintains a larger tree in terms of memory while

4



the latter might need to explore a very large number of nodes. (See entry
#1.4.1.4 for more details.) Modern software packages typically by default
employ a hybrid of these two search techniques.

Variable Selection. The variable selection problem is the one of deciding
how to partition the current node, i.e., on which variable to branch on
in order to create the two children. For a long time, a classical choice
has been branching on the most fractional variable, i.e., in the 0-1 case
the closest to 0.5. That rule has been computationally shown [2] to be
worse than a random selection. However, it is of course cheap to evaluate.
In order to devise stronger criteria one has to do much more work. The
extreme is the so called strong branching technique (see, e.g., Linderoth
& Savelsbergh [28]) in which at any node one has to tentatively branch
on each fractional variable and select the one on which the increase in the
bound on the left branch times the one on the right branch is maximum. In
such a version strong branching is clearly unpractical but its computational
effort can be limited by (i) defining a small candidate set of variables to
branch on, and (ii) heuristically solving each LP by limiting a priori the
number of simplex pivots to be performed. Other sophisticated techniques
are pseudocost branching (see, e.g., Benichou et al. [10]) and, the recently
introduced reliability branching (see, Achterberg, Koch & Martin [2]).

2.4 Primal heuristics

Although primal heuristics have been part of the arsenal of the MILP solvers
almost since the beginning, only recently have they become a crucial com-
ponent. This is likely in response to user demands. Solving an MILP to
optimality might be less important in application than providing “good”
solutions within short computing times.

Entry #1.7.6.3 is devoted to heuristics for Mixed Integer Programming,
and two main classes of primal heuristics are considered.

On the one side, at the root node and often at the internal nodes of the
search tree, the solvers apply heuristics with the aim of converting a solu-
tion of the LP relaxation into an integer feasible solution. This is obtained
through rounding an LP solution either component by component (without
any backtracking or additional LP solve) or by diving, i.e., rounding one or
more variables and solving the LP relaxation again, iteratively. The most
successful of the algorithms falling in this category is the feasibility pump
heuristic proposed (for 0-1 MILPs) by Fischetti, Glover & Lodi [17].

On the other hand, once one or more feasible solutions are available,
improvement heuristics are executed to improve the quality of the current
incumbent solution. These heuristics are usually local search methods and
we have recently seen a variety of algorithms which solve sub-MILPs for
exploring the neighborhood of the incumbent or of a set of solutions. When
these sub-MILPs are solved in a general-purpose fashion, i.e., through a

5



nested call to an MILP solver, this is referred to as MIPping [19]. The most
successful of the algorithms falling in this category are local branching by
Fischetti & Lodi [18] and relaxation induced neighborhood search by Danna,
Rothberg & Le Pape [14].

2.5 Parallel Implementation

The branch-and-bound algorithm is a natural one to parallelize, as nodes
of the search tree may be processed independently. There is a long body
of research and implementations of parallel branch-and-bound, outlined in
the survey [21]. The two types of parallel integer programming research
can be loosely categorized based on the type of parallel computing archi-
tecture used. Distributed-memory architectures rely on message passing to
communicate results of the algorithm. Shared-memory computers commu-
nicate information among CPU’s by reading from and writing to a common
memory pool.

Eckstein [15, 16] was among the first to write an industrial strength par-
allel branch-and bound-code for general mixed integer programming. Over
the past few years, there has been an emergence of multi-core computer ar-
chitectures, so that nearly all modern CPU’s contain more than one unit
on which computation may be performed. MILP software has followed this
trend, so that many packages surveyed below have the ability to run multiple
threads of computation, thus making use of multiple cores. For many ap-
plications, an important characteristic of the branch-and-bound algorithm
is to be able to produce solutions that are reproducible. In parallel branch-
and-bound, it is well known that the order in which node computations are
completed can have a significant impact on performance, and often lead to
anomalous behavior [25]. An (often) undesirable consequence of this is that
users can run the same instance, with the same parameter settings, and
achieve very different results in terms of nodes evaluated and CPU time.
To combat this undesirable behavior, modern (shared-memory-based) MIP
software has introduced appropriate synchronization points in the algorithm
to ensure reproducible behavior in a parallel environment. Some overhead
is introduced by these synchronization mechanisms.

3 MILP Software

In this section we concentrate on MILP software by first presenting an histor-
ical perspective and briefly discussing the issue of the user interface. Then,
we review the main characteristics of both commercial and noncommercial
MILP software packages.

6



3.1 Historical Perspective

The earliest commercial grade implementations of branch-and-bound algo-
rithms for solving MILP were done by Beale & Small [9]. For a historical
perspective of the development and features of early MILP software pack-
ages, such as UMPIRE, SCICONIC, and MPSX/370, the reader is referred
to the article of Forrest & Tomlin [20]. These early MILP software packages
developed many effective branching and node selection techniques, some of
which are still in use today. A major step forward in MILP solution tech-
nology occurred in the works of Crowder, Johnson & Padberg [13] and Van
Roy & Wolsey [38]. These papers introduced many of the preprocessing and
structure-specific cutting plane techniques in use today. Another important
work from a computational perspective was by Balas et al. [7], demonstrat-
ing that the inequalities of Gomory [23] could be effectively used as cutting
planes in a branch-and-cut procedure.

Modern MILP codes synthesized many of the ideas present in the lit-
erature, taking the best points of these works and engineering them into
commercial-grade software packages. The article of Bixby & Rothberg [11]
offers a nice historical exposition of how MILP software improved by orders
of magnitude over a period of a decade, starting in late 1990’s.

3.2 User Interfaces

An important aspect of the design of software for solving MILPs is the
user interface. The range of purposes for MILP software is quite large, so
it stands to reason that the number of user interface types is also large.
In general, users may wish to solve MILPs using the solver as a “black
box”, they may wish to call the software from a third-party package, or
they may wish to embed the solver into custom applications, which would
require software to have a callable library. Often, the user may wish to
adapt certain aspects of the algorithm. For instance, the user may wish to
provide a custom branching rule or problem-specific valid inequalities. The
customization is generally accomplished either through the use of language
callback functions, or through an abstract interface wherein the user must
derive certain base classes and override default implementations for the de-
sired functions. Nearly all of the software packages surveyed below have
standalone executables, callable libraries, and allow the user to customize
the branch-and-bound algorithm to varying degrees.

3.3 MILP Software Packages

Any review of software features is inherently limited by the temporal na-
ture of software itself. In fact, algorithmic advances in the field of com-
putational integer programming, many previously described in this article,
can quickly render obsolete MILP software that was once state-of-the-art.

7



Here we give a brief overview of what are the most widely-used MILP soft-
ware packages at the time of publication. Hans Mittelmann has for many
years run independent benchmarks of MILP software, and been publishing
the results. In general, the commercial software significantly outperforms
non-commercial software on the instances in the Mittelmann suite, but it
is difficult to draw strong conclusions about the relative performance of
different commercial systems. Results of these benchmarks can be found
at http://plato.asu.edu/ftp/milpf.html and http://plato.asu.edu/
ftp/milpc.html. Many of these solvers are available for use free of charge
on the NEOS server website http://www-neos.mcs.anl.gov.

3.3.1 Commercial Software Packages

Naturally, exact implementation details of specific commercial MILP soft-
ware packages are not known, as revealing such details would be a competi-
tive disadvantage. In this article, information from the various software user
manuals was used to compile features specific to each package. Further, it is
impossible to detail all features of a software package, so we focus on those
features that are, in the opinion of the authors, particularly noteworthy.
Many of the commercial software packages listed here have free or limited
cost licensing options available for academic users.

CPLEX

Version 12.1
Website http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/
Interfaces C, C++, Java, .NET, Matlab, Python, Microsoft Excel

CPLEX is a commercial MILP software package owned and distributed
by IBM. The branch-and-cut algorithm contains a full suite of presolving
techniques, cutting planes, search strategies, and heuristic techniques for
finding feasible solutions. A special search algorithm in CPLEX, called dy-
namic search can be used instead of traditional branch-and-cut. CPLEX
also includes a mipemphasis metaparameter that adjusts many algorithmic
parameters simultaneously to help users achieve a high-level goal. CPLEX
contains facilities for automatically tuning MILP algorithm parameters for a
particular class of instances. CPLEX may parallelize the branch-and-bound
search using multiple threads in either a deterministic or non-deterministic
fashion. A final notable feature of CPLEX is its ability to enumerate multi-
ple solutions that are close to optimality and store them in a solution pool.

8



Gurobi

Version 3.0
Website www.gurobi.com
Interfaces C, C++, Java, Python, .NET, Matlab

Gurobi Optimizer contains a relatively new MILP solver that was built
from scratch to exploit modern multi-core processing technology. Gurobi
contains all advanced algorithmic features, including a variety of cutting
planes, heuristics, and search techniques. Notable features of Gurobi include
a MIPFocus metaparameter that simultaneously controls many algorithmic
parameters to achieve a desired goal. Gurobi may execute the branch-and-
bound algorithm using multiple computational threads. The parallel search
is done in a deterministic fashion. The Gurobi interactive shell is imple-
mented as a set of extensions to the Python shell. Gurobi is also available
“on demand” using the Amazon Elastic Compute Cloud.

LINDO

Version 6.1
Website www.lindo.com
Interfaces C, Visual Basic, Matlab, Ox

LINDO Systems offers a MILP solver as part of its LINDO API. The
MILP solver offers fifteen different types of cutting planes, six different node
selection rules, and a variety of preprocessing techniques and branching
rules.

Mosek

Version 6.0
Website www.mosek.com
Interfaces C, C++, Java, .NET, Python

MOSEK ApS is a company specializing in generic mathematical opti-
mization software, and their suite of software includes a solver for MILP.
The solver has six node selection rules, eleven types of cutting planes, the
feasibility pump and other heuristics, as well as advanced branching method-
ologies such as strong branching. Mosek is available for use, though a GAMS
interface, on the NEOS Server.

9



XPRESS-MP

Version 7.0
Website http://www.fico.com/en/Products/DMTools/

xpress-overview/Pages/Xpress-Optimizer.aspx
Interfaces C, C++, Java, .NET, VBA

FICO Xpress Optimization Suite 7 offers a branch-and-cut-based soft-
ware for solving MILP. XPRESS-MP offers many advanced cutting planes,
including an effective implementation of lift-and project cuts [8]. Modern
preprocessing, heuristic, and branching techniques are also available. A
unique feature of XPRESS-MP is that it offers an option to branch into
general (split) disjunctions, or to search for special structures on which to
branch. XPRESS-MP has features to enumerate multiple feasible solutions,
and also to tune algorithmic parameters. XPRESS-MP is available for use,
with three different input formats, on the NEOS Server.

3.3.2 Noncommercial MILP Packages

Here, we give a cursory description of the most popular non-commercial
MILP software packages. The paper of Linderoth & Ralphs [27] contains a
more in-depth treatment of non-commercial software packages.

BLIS

License Common Public License
Version 0.91
Website https://projects.coin-or.org/CHiPPS
Language C++

BLIS is an open-source MILP solver available as part of the COIN-OR
project. It is built on top of the COIN-OR High-Performance Parallel Search
Framework (CHiPPS), so it has been designed to run on distributed mem-
ory platforms (one of the few available MILP software packages with this
feature). Linear programs are solved using the COIN-OR linear program-
ming Solver (Clp), and cutting planes from the Coin Cut Generation Library
(CGL) are used.

CBC

10



License Common Public License
Version 2.5
Website https://projects.coin-or.org/Cbc
Language C++

CBC is an open-source MILP solver distributed under the COIN-OR
project. It is built from many COIN components, including the COIN-
OR linear programming Solver (Clp) and the Coin Cut Generation Library
(CGL). It is available both as a library and a standalone solver. CBC may be
parallelized using shared-memory parallelism, and there are a large number
of examples demonstrating its use. CBC is available for use on the NEOS
Server.

GLPK

License GNU General Public License (GPL)
Version 4.44
Website http://www.gnu.org/software/glpk/
Language C

GLPK is the GNU Linear Programming Kit, a set of subroutines com-
prising a callable library and black box solver for MILP. The software dis-
tinguishes itself by being available under the GNU GPL and through the
large number of community-built interfaces available for its use. GLPK is
available for use, though a GAMS interface, on the NEOS Server.

lp solve

License GNU lesser general public license (LGPL)
Version 5.5
Website http://lpsolve.sourceforge.net/5.5/
Language C

The software lp solve is an open source linear and integer program-
ming solver. There are a large number of interfaces available through
which lp solve can be used, including Java, AMPL, MATLAB, O-Matrix,
Sysquake, Scilab, Octave, Freemat, Euler, Python, Sage, PHP, and R.

MINTO

License Given as library only
Version 3.1
Website http://coral.ie.lehigh.edu/minto/
Language C

11



MINTO (Mixed INTeger Optimizer) is a black box solver and solver
framework for MILP. MINTO is available only in library form. MINTO relies
on external software to solve the linear programming relaxations that arise
during the algorithm. Primary development of the software was done in the
1990’s. The code was noteworthy at that time for a dynamic preprocessing
engine [6] and effective lifted cover inequalities [24]. MINTO is available for
use, though an AMPL interface, on the NEOS Server.

SCIP

License ZIB Academic License
Version 1.2
Website http://scip.zib.de/
Language C

SCIP is a MILP software package developed and distributed by a team of
researchers at Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB).
SCIP is also a framework for Constraint Integer Programming and branch-
cut-and-price, allowing the user significant control of the algorithm. Devel-
opment of SCIP was awarded the Beale Orchard Hayes Prize in 2009 [4].
Current benchmarks indicate that SCIP is likely the fastest noncommercial
MILP solver. Other references for SCIP include [3, 5]. SCIP is available for
use, though a variety of interfaces, on the NEOS Server.

SYMPHONY

License Common Public License
Version 5.2
Website http://www.coin-or.org/SYMPHONY/index.htm
Language C

SYMPHONY is a black box solver and callable library for MILPs. The
core solution methodology of SYMPHONY is a customizable branch, cut,
and price algorithm that can be executed sequentially or in parallel [34].
SYMPHONY calls on several other open source libraries for specific func-
tionality, including COIN-OR’s Cut Generation Library (CGL), and COIN-
OR’s LP Solver (Clp). There are several unique features of SYMPHONY
that are worthy of mention. First, SYMPHONY contains an implementation
of an algorithm for solving bicriteria MILPs and methods for approximat-
ing the set of Pareto outcomes [33]. SYMPHONY also contains functions
for local sensitivity analysis [37]. Second, SYMPHONY has the capability
to warm start the branch-and-bound process from a previously calculated

12



branch-and-bound tree, even after modifying the problem data. The work
[35] gives an overview of the SYMPHONY callable library. SYMPHONY is
available for use via MPS files on the NEOS Server.

4 Conclusions

As decision processes become increasingly complex, the need for formal tools
to aid in both the planning and operation of the underlying system becomes
more and more important. Many disciplines have embraced the use of opti-
mization as a central tool to enhance the quality of decisions made. A large
fraction of the models used in commercial settings are MILPs. Powerful, re-
liable, and flexible software systems (both commercial and non-commercial)
were a key component of this broad-based acceptance. The field of MILP
and computational aspects therein remain an active area of research. Given
the high commercial penetration of MILP planning models, undoubtedly
future research advances will find themselves implemented in software.

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, ZIB,
Berlin, 2007.

[2] T. Achterberg, T. Koch, and A. Martin. Branching roles revisited.
Operations Research Letters, 33:42–54, 2005.

[3] T. Achterberg. Constraint Integer Programming. PhD thesis, Technis-
chen Universtät Berlin, 2007.

[4] T. Achterberg. SCIP: solving constraint integer programs. Mathemat-
ical Programming Computation, 1(1):1–41, 2009.

[5] T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint integer
programming: a new approach to integrate CP and MIP. In Integration
of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems, volume 5015 of Lecture Notes in Computer
Science, pages 6–20, 2008.

[6] A. Atamtürk, G. Nemhauser, and M. W. P. Savelsbergh. Conflict
graphs in solving integer programming problems. European Journal
on Operations Research, 121:40–55, 2000.

[7] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj. Gomory cuts revisited.
Operations Research Letters, 19:1–9, 1996.

13



[8] E. Balas and M. Perregaard. A precise correspondence between lift-and-
project cuts, simple disjunctive cuts, and mixed integer Gomory cuts
for 0-1 programming. Mathematical Programming, 94:221–245, 2003.

[9] E. M. L. Beale and R. E. Small. Mixed integer programming by a
branch and bound method. In W. H. Kalenich, editor, Proceedings
IFIP Congress 65, volume 2, pages 450–451, 1965.

[10] M. Benichou, J. M. Gauthier, P. Girodet, and G. Hentges. Experiments
in mixed-integer programming. Mathematical Programming, 1:76–94,
1971.

[11] R. Bixby and E. Rothberg. Progress in computational mixed integer
programming – a look back from the other side of the tipping point.
Annals of Operations Research, 149:37–41, 1007.

[12] G. Cornuéjols. Valid inequalities for mixed integer linear programs.
Mathematical Programming, 112:3–44, 2008.

[13] H. Crowder, E. Johnson, and M. W. Padberg. Solving large scale zero-
one linear programming problem. Operations Research, 31:803–834,
1983.

[14] E. Danna, E. Rothberg, and C. Le Pape. Exploiting relaxation induced
neighborhoods to improve MIP solutions. Mathematical Programming,
102:71–90, 2005.

[15] J. Eckstein. Parallel branch-and-bound algorithms for general mixed
integer programming on the CM-5. SIAM Journal on Optimization,
4:794–814, 1994.

[16] J. Eckstein. Parallel branch-and-bound methods for mixed integer pro-
gramming. SIAM News, 27:12–15, 1994.

[17] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathemat-
ical Programming, 104:91–104, 2005.

[18] M. Fischetti and A. Lodi. Local branching. Mathematical Programming,
98:23–47, 2002.

[19] M. Fischetti, A. Lodi, and D. Salvagnin. Just MIP it! In V. Maniezzo,
T. Stützle, and S. Voss, editors, MATHEURISTICS: Hybridizing meta-
heuristics and mathematical programming, pages 39–70. Operations Re-
search/Computer Science Interfaces Series. Springer, 2009.

[20] J. J. H. Forrest and J. A. Tomlin. Branch and bound, integer and
non-integer programming. Annals of Operations Research, 149:81–87,
2007.

14



[21] B. Gendron and T. G. Crainic. Parallel branch and bound algorithms:
Survey and synthesis. Operations Research, 42:1042–1066, 1994.

[22] R.E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64:275–278,
1958.

[23] R.E. Gomory. An algorithm for the mixed integer problem. Technical
Report RM-2597, The Rand Corporation, 1960.

[24] Z. Gu, G. L. Nemhauser, and M. W. P. Savelsbergh. Cover inequalities
for 0-1 linear programs: Computation. INFORMS Journal on Comput-
ing, 10:427–437, 1998.

[25] T. H. Lai and S. Sahni. Anomalies in parallel branch and bound algo-
rithms. In Proceedings of the 1983 International Conference on Parallel
Processing, pages 183–190, 1983.

[26] A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28:497–520, 1960.

[27] J. T. Linderoth and T. K. Ralphs. Noncommercial software for mixed-
integer linear programming. In Integer Programming: Theory and Prac-
tice, pages 253–303. CRC Press Operations Research Series, 2005.

[28] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of
search strategies for mixed integer programming. INFORMS Journal
on Computing, 11:173–187, 1999.

[29] A. Lodi. MIP computation. In M. Jünger, T.M. Liebling, D. Naddef,
G.L. Nemhauser, W.R. Pulleyblank, G. Reinelt, G. Rinaldi, and L.A.
Wolsey, editors, 50 Years of Integer Programming 1958-2008, pages
619–645. Springer-Verlag, 2009.

[30] F. Margot. Symmetry in Integer Linear Programming. In M. Jünger,
T.M. Liebling, D. Naddef, G.L. Nemhauser, W.R. Pulleyblank,
G. Reinelt, G. Rinaldi, and L.A. Wolsey, editors, 50 Years of Integer
Programming 1958-2008, pages 647–686. Springer-Verlag, 2009.

[31] A. Martin. General mixed integer programming: Computational is-
sues for branch-and-cut algorithms. In M. Jünger and D. Naddef, edi-
tors, Computational Combinatorial Optimization, volume 2241 of Lec-
ture Notes in Computer Science, pages 1–25. Springer-Verlag, Berlin
Heidelberg, 2001.

[32] M. W. Padberg and G. Rinaldi. A branch and cut algorithm for the
resolution of large-scale symmetric traveling salesmen problems. SIAM
Review, 33:60–100, 1991.

15



[33] T. Ralphs, M. Saltzman, and M. Wiecek. An improved algorithm
for biobjective integer programming. Annals of Operations Research,
147:43–70, 2006.

[34] T. K. Ralphs, L. Ladányi, and M. J. Saltzman. Parallel branch, cut, and
price for large-scale discrete optimization. Mathematical Programming,
98:253–280, 2003.

[35] T. K. Ralphs and M. Guzelsoy. The SYMPHONY callable library for
mixed integer programming. In The Proceedings of the Ninth Confer-
ence of the INFORMS Computing Society, pages 61–71, 2005.

[36] M. P. W. Savelsbergh. Preprocessing and probing techniques for mixed
integer programming problems. ORSA Journal on Computing, 6:445–
454, 1994.

[37] L. Schrage and L. A. Wolsey. Sensitivity analysis for branch and bound
linear programming. Operations Research, 33:1008–1023, 1985.

[38] T. J. Van Roy and L. A. Wolsey. Solving mixed integer programming
problems using automatic reformulation. Operations Research, 35:45–
57, 1987.

16



Author Addresses:

Jeffrey T. Linderoth
Department of Industrial and Systems Engineering
University of Wisconsin-Madison
1513 University Avenue
3226 Mechanical Engineering Bldg.
Madison, WI 53706-1572, USA.
E-mail: linderoth@wisc.edu

Andrea Lodi
DEIS, University of Bologna
Viale Risorgimento, 2
40136 Bologna, Italy.
E-mail: andrea.lodi@unibo.it

Abstract: In this article, we give a brief overview of state-of-the-art soft-
ware for the solution of Mixed Integer Linear Programs (MILP). We begin
with a brief description of important algorithmic features and conclude with
concise individual descriptions of software packages.

Key Words: Mixed Integer Linear Programming — software — branch-
and-cut.


