
1

The Tera-Gridiron: A Natural Turf for High-Throughput Computing

Jeff Linderoth, François Margot, and Greg Thain

Abstract— Teragrid resources are often used when high-performance computing is required. We describe our experiences
in using Teragrid resources in a high-throughput manner, generating a significant number of CPU cycles over a long time
span. In particular, we discuss using Teragrid resources as part of a larger computational grid to perform computations in an
ongoing attempt to solve an open problem in mathematical coding theory—the Football Pool Problem.

Index Terms—Football Pool Problem; High-Throughput Computing; Branch-and-Bound; Condor; Master-Worker

�

1 INTRODUCTION

The Football Pool Problem is one of the most famous prob-
lems in coding theory [15]. The problem derives its name
from a lottery-type game where participants predict the out-
come of soccer matches. A ticket is winning if the outcome
of no more than d matches out of v are predicted incorrectly,
where each match has three possible outcomes—win, lose,
or draw. The goal of the Football Pool Problem is to deter-
mine the minimum-size set of lottery tickets to buy to guar-
antee at least one winning ticket, no matter the outcome of
the matches. Mathematically, the problem is to determine the
smallest covering code of radius d of ternary words of length
v. For d = 1 and v = 6, the optimal code size is only known
to be between the values of 65 and 73 [24, 26]. In this work,
we report experiences on using the Teragrid as part of a large-
scale computation aimed at sharpening these bounds.

A mathematical optimization problem, known as an integer
program, can be formed that will determine the smallest cov-
ering code (set of tickets to purchase). Specifically, let W be
the set of possible outcomes of the matches. For example, for
v = 6 matches, the size of this set is |W | = n = 36 = 729.
Define the matrix A ∈ {0, 1}n×n with aij = 1 if and only if
the ticket j ∈ W is a winning ticket for the match outcomes
i ∈ W . Binary decision variables x ∈ {0, 1}n are used to
signify (with xj = 1) that ticket j is to be purchased. The
size of the smallest covering code zv is given by the optimal

• Jeff Linderoth, Dept. of Industrial and Systems Engineering, Lehigh
University, jtl3@lehigh.edu

• François Margot, Tepper School of Business, Carnegie Mellon Uni-
versity, fmargot@andrew.cmu.edu

• Greg Thain, Computer Sciences Department, University of Wisconsin-
Madison, gthain@cs.wisc.edu

solution to the integer program:

zv = min
x∈{0,1}n

{1T x | Ax ≥ 1} (CCIP)

Integer programs such as CCIP are NP-Hard. In practice,
they are often effectively solved via a technique known as
branch-and-bound, an algorithm that dates back to the work
of Land and Doig [16]. By relaxing the binary constraints
x ∈ {0, 1}n to their linear counterparts x ∈ [0, 1]n, we
obtain a problem known as the linear programming relax-
ation of CCIP. The linear programming relaxation is solv-
able in polynomial time, and its solution value gives a lower
bound zv . Branch-and-bound is a tree-search enumeration
algorithm. At every node of the tree, the linear program-
ming relaxation of CCIP is solved and its value is used for
pruning the search. If all components of the solution to the
relaxation are integer-valued, then the solution must be opti-
mal. Otherwise, the problem is further subdivided by choos-
ing some variable xj whose solution value is fractional, and
creating two new problems that must be solved: one with the
additional constraint xj ≤ 0 and another with the constraint
xj ≥ 1. See Nemhauser and Wolsey [23] for background
material on Integer Programming.

In the case of the Football Pool Problem with v = 6 and
d = 1, CCIP is an integer program consisting of 729 vari-
ables and 729 constraints. Integer programs of this size are
routinely solved by state-of-the-art commercial solvers such
as CPLEX [7] an XPRESS-MP [8]. However, these complex
codes are unable to solve the Football Pool instance. This
is demonstrated in Figure 1, which shows the improvement
in lower bound value using CPLEX v9.1 as a function of
the number of nodes evaluated. The figure shows that after
500,000 nodes evaluated the lower bound is improved only to
58. Improving the lower bound to 65 would appear (by sim-
ple extrapolation) to be computationally impossible in this
manner.



2 3 THE COMPUTATIONAL GRID

 56.4

 56.6

 56.8

 57

 57.2

 57.4

 57.6

 57.8

 58

 58.2

 0  100000  200000  300000  400000  500000  600000

L
o
w

e
r 

B
o
u
n
d

Number of Nodes Evaluated

Fig. 1: CPLEX Lower Bound Improvement

2 IMPROVING BRANCH-AND-BOUND

A major factor that confounds the branch-and-bound process
is that CCIP is very symmetric. Loosely speaking, a sym-
metric integer program is one in which a solution to its linear
programming relaxation can be “preserved” through a per-
mutation of its column indices. In a series of papers Margot
[20, 21] demonstrated how to apply a technique known as iso-
morphism pruning, dating back to the work of Bazaraa and
Kirca [4], to mitigate the undesirable effects of symmetry.
Isomorphism pruning can recognizing and eliminate nodes of
the branch-and-bound tree that are isomorphic with respect to
the symmetry in the integer program and significantly helps
a branch-and-bound algorithm make progress towards the so-
lution of the football pool problem integer program (CCIP).
However, isomorphism pruning alone is not sufficient to im-
prove the best-known bounds on the optimal solution value
z6. Thus, in a companion work, Linderoth et al. [17] discuss
how additional techniques such as the subcode inequalities of
Östergård and Blass [25] have been combined with enumer-
ation and integer programming to attack the problem. The
result of this work is a set of integer programs for consecu-
tively larger values of the best-known lower bound on z6. In
Table 1, we show the number of integer programs that must
be solved in order to improve the lower bound on z6 to M .

M # IP
67 7
68 13
69 45
70 102
71 176
72 264
73 393

1000

Table 1: #IP Required to Establish New Lower Bounds on z6

The 1000 integer programs that must be solved to estab-
lish the optimality of z6 = 73 are each quite computation-
ally challenging, and in subsequent sections, we describe how
we have created a powerful, computational grid for the high-
throughput computations necessary to solve them.

3 THE COMPUTATIONAL GRID

Branch and bound is a natural paradigm to map to a parallel
computing platform, as nodes of the enumeration tree can be
evaluated independently. In fact, branch-and-bound and sim-
ilar tree-search techniques have been implemented on a vari-
ety of parallel computing platforms dating back to the advent
of multiprocessor machines. Gendron and Crainic [11] give
a survey of parallel branch-and-bound algorithms, including
references to early works.

Of particular interest to us in this work are parallel comput-
ing platforms created by harnessing CPU cycles from a wide
variety of resources. Further, we are interested in using the
CPU cycles in a flexible manner, using resources that would
otherwise be idle. As such, we have built our computational
grid using the Condor software system for high-throughput
computing [19]. Ideally, we would like to aggregate many
Condor clusters together to make one giant pool of resources.
However, this is not possible, for both technical and admin-
istrative reasons. Thankfully, Condor is equipped with a col-
lection of mechanisms through which CPU resources at dis-
parate locations can be federated together, with varying de-
grees of transparency and overhead. We make use of many of
these mechanisms to build our computational grid. In partic-
ular, we obtain resources via

• Condor Flocking [9],
• A manual version of Condor glide-in [10] sometimes

known as hobble-in,
• A combination of hobble-in with port-forwarding,

which we call sshidle-in,
• Direct submission of the worker executables to remote

Condor pools.
• A recently-introduced mechanism to Condor called

schedd-on-the-side [5],

TeraGrid resources are accessed for our computation via
flocking, hobble-in, and remote submission, and we now
briefly explain specifically how each method works in this
context.

3.1 Grid-Building Mechanisms
Flocking. Condor flocking works by allowing one or more
pools of execution machines to be scheduled by a single local
Condor job scheduler. From the users’ perspective, flock-
ing is the most transparent way to aggregate resources. The
user does not do any additional configuration, and submits

2



LINDEROTH et al.: THE TERA-GRIDIRON: A NATURAL TURF FOR HIGH-THROUGHPUT COMPUTING 3

jobs as usual to the local scheduler. Jobs that the local sched-
uler can not run are sent as low priority jobs to unused ma-
chines in the remote pools. Flocking is best used when there
is a close administrative relationship between the owners of
the two Condor pools, for it must be explicitly enabled on
both sides. Condor flocking requires inbound network con-
nections on many ephemeral TCP/IP ports from the flocked-
from scheduler to the flocked-to machines, so it is difficult to
use where network firewalls exist. Flocked jobs are sched-
uled by the local scheduler, so they contribute to the load of
that machine, and may limit scalability.

Glide-in. Condor glide-in is a way to construct an overlay
Condor pool on top of another batch system. This overlay
pool can then report to an existing pool. Typically Con-
dor glide-in is used to access resources via a Globus gate-
way. Condor glide-in works in two steps: set up and ex-
ecution. During set up, Condor binaries and configuration
files are automatically copied to the remote resources. The
execution step starts the Condor daemons running through
the resource’s Globus interface. Once the glide-in process is
complete, the processors simply show up in the local Condor
pool. Condor Glide-in is most useful when we have access to
a non-Condor batch system, and want to use those resources
as part of a larger Condor-aggregated computation. However,
to use Condor glide-in, the user must have an X.509 certifi-
cate, access to the Globus resource, and the Globus software
must be installed and properly configured.

To circumvent the dependency on Globus gateways config-
ured for our computation, we employed a “low-weight” ver-
sion of Condor Glide-in called Condor hobble-in. Condor
hobble-in works like a manual version of Condor glide-in.
First, the Condor binaries are copied to the remote resources
and configured to report to an existing Condor pool. Next,
batch submission requests are made to the local job sched-
ulers. When the jobs run, the processors allocated as part of
the batch request appears as workers in the local Condor pool.

When hobbling in to TeraGrid resources as part of an on-
going computation, the most effective strategy for obtaining
significant resources is to make many requests for small num-
bers of processors and for short duration. This way, the batch
requests are run more quickly, as they can be fulfilled from
the backfill of local schedulers. However, the computation
must be able to deal with the processors being reclaimed at
the end of the batch allocation.

Remote Submit. Remote submit is the least transparent
method of obtaining grid resources. In this case, we sim-
ply log into the remote system, and submit executables to the
local Condor pool. Information so that the new processes can
join the existing computation must be given as arguments to
the executable at the time of submission.

Condor remote submission is most useful when there is a
firewall in place, and the main Condor scheduler is blocked

from communication with the remote pool. When performing
a remote submission, we can even use ssh’s port forwarding
capability to forward socket connections from the remote ex-
ecute machines to a master machine via a gateway. This tech-
nique, which we call sshidle-in, allows us to run executables
on machines that are on private networks.

Schedd-on-the-side. The Schedd-on-side is a new Condor
technology which takes idle jobs out of the local Condor
queue, translates them into Grid jobs, and uses Condor-G to
submit them to a remote Grid queue. The original submitter
doesn’t know that the jobs originally destined for the local
queue have now been re-tasked to a Grid, and the schedd-on-
the-side can do matching and scheduling of jobs to one of
many remote Grid sites. This is an easy to to take advantage
of large systems like the Open Science Grid.

Putting it all together. Table 2 shows the number of avail-
able number of machines at each grid site that we used in
our computations. The table also lists the method used to ac-
cess each class of machines and the architecture and operat-
ing system for each batch of processors. The sites that begin
with OSG are processors on the Open Science Grid, and the
sites that begin with TG are TeraGrid installations.

3.2 MW

The grid-building mechanisms outlined in Section 3.1 pro-
vide the underlying CPU cycles necessary for running large-
scale branch-and-bound computations on grids, but we still
require a mechanism for controlling the branch-and-bound al-
gorithm in this dynamic and error-prone computing environ-
ment. For this, we use the MW grid-computing toolkit [14].
MW is a software tool that enables implementation of master-
worker applications on computational grids. The master-
worker paradigm consists of three abstractions: a master, a
task, and a worker. The MW API consists of three abstract
bases classes—MWDriver, MWTask, and MWWorker—
that the user must reimplement to create an MW application.

The MWDriver is the master process, and as such the
user must implement methods get userinfo() to initial-
ize the computation, setup initial tasks() to cre-
ate initial work units, and act on completed task()
to perform necessary algorithmic action (possibly the ad-
dition of new tasks via the addTasks() method) once a
task completes. The MWWorker class controls the worker
processes, so the primary method to be implemented is
execute task(). In addition, there are required meth-
ods for marshalling and unmarshalling the data that defines
the computational tasks.

MW offers advanced functionality that is often useful or
required for running large, coordinated computations in a
high-throughput fashion. Specifically, MW is equipped with

3



4 3 THE COMPUTATIONAL GRID

Site Access Method Arch/OS Machines
Wisconsin - CS Flocking x86 32/Linux 975
Wisconsin - CS Flocking Windows 126
Wisconsin - CAE Remote submit x86 32/Linux 89
Wisconsin - CAE Remote submit Windows 936
Lehigh - COR@L Lab Flocking x86 32/Linux 57
Lehigh - Campus desktops Remote Submit Windows 803
Lehigh - Beowulf ssh + Remote Submit x86 32 184
Lehigh - Beowulf ssh + Remote Submit x86 64 120
OSG - Wisconsin Schedd-on-side x86 32/Linux 1000
OSG - Nebraska Schedd-on-side x86 32/Linux 200
OSG - Caltech Schedd-on-side x86 32/Linux 500
OSG - Arkansas Schedd-on-side x86 32/Linux 8
OSG - BNL Schedd-on-side x86 32/Linux 250
OSG - MIT Schedd-on-side x86 32/Linux 200
OSG - Purdue Schedd-on-side x86 32/Linux 500
OSG - Florida Schedd-on-side x86 32/Linux 100
TG - NCSA Flocking x86 32/Linux 494
TG - NCSA Flocking x86 64/Linux 406
TG - NCSA Hobble-in ia64-linux 1732
TG - ANL/UC Hobble-in ia-32/Linux 192
TG - ANL/UC Hobble-in ia-64/Linux 128
TG - TACC Hobble-in x86 64/Linux 5100
TG - SDSC Hobble-in ia-64/Linux 524
TG - Purdue Remote Submit x86 32/Linux 1099
TG - Purdue Remote Submit x86 64/Linux 1529
TG - Purdue Remote Submit Windows 1460

19,012

Table 2: Characteristics of Computational Grid

4



LINDEROTH et al.: THE TERA-GRIDIRON: A NATURAL TURF FOR HIGH-THROUGHPUT COMPUTING 5

features for user-defined checkpointing, normalized appli-
cation and network performance measurements, eager task
scheduling [3], and methods for the dynamic prioritization
of computational tasks. This functionality is explained in
greater detail in the papers [14, 12] and the MW User’s Man-
ual [18]. In particular for this (very long-running) computa-
tion, checkpointing the state of the master-process is neces-
sary, as is the ability to dynamically prioritize the computa-
tional tasks, as discussed briefly in Section 3.3.

MW has been used to instrument branch-and-bound algo-
rithms for the quadratic assignment problem [1], mixed in-
teger nonlinear programs [13], and for mixed integer linear
programs by Chen et al. [6]. The solver in [6], called FAT-
COP, was augmented with the isomorphism pruning tech-
niques discussed in Section 2 and used in our attempt to im-
prove the lower bounds on z6 by solving the instances in Ta-
ble 1 for consecutively larger values of M .

3.3 Scaling Master-Worker Branch-and-
Bound Computations

Branch and bound is a very natural paradigm to map to run
in a master-worker framework. Simply, the master processor
can manage the tree of unexplored nodes that must be evalu-
ated and pass to the workers nodes to evaluate. When running
on large configurations of resources (with many workers),
care must be taken to ensure that the master processor is not
overwhelmed with requests from the workers. In this section,
we briefly state how by tuning the algorithm and preparing
the infrastructure appropriately, barriers to an efficient large-
scale implementation were overcome.

Grain Size. An effective way to reduce the contention at
the master in a master-worker computation is to reduce the
rate at which workers report to ask for new work. Thank-
fully, in the branch-and-bound algorithm, there is an obvious
mechanism for increasing the grain size of the worker com-
putations. Instead of having a worker’s task be the evaluating
of one node, (the solution of one LP relaxation to (CCIP)
at that node), the worker’s task can be to evaluate the entire
subtree rooted at that node. In this case, workers will per-
form the branching and pruning operations as well. This is
precisely the strategy that we employ for our parallel algo-
rithm. For load balancing purposes, it is necessary to stop
the computation on the worker after a maximum grain size
CPU time T and report unevaluated nodes from the task’s
subtree back to the master process. Typically, the value of
T = 20min or T = 30min was chosen for our runs. Larger
values of T are possible, but may result in a significant in-
crease in the number of tasks that must be rescheduled by
MW due to the worker’s being recalled for another process or
purpose. The value of T can be changed dynamically. In fact,
whenever the number of tasks remaining to be completed at
the master is less than the number of workers participating

in the computation, T is changed to a much smaller value,
typically T = 10sec. This has the effect of rapidly increas-
ing the work pool size on the master. The implementation of
the dynamic task time is accomplished by using the method
pack driver task data of the MWDriver class so that
the (current) maximum CPU time T is sent to the worker as
part of each task.

Task List Management. In MW the master class manages
a list of uncompleted tasks and a list of workers. These tasks
represent nodes in the branch-and-bound tree whose subtree
must be completely evaluated. The default scheduling mech-
anism in MW is to simply assign the task at the head of the
task list to the first idle worker in the worker list. However,
MW gives flexibility to the users in the manner in which each
of the lists are ordered. For our implementation it was advan-
tageous to make use of the set task key function()
method of the MWDriver to dynamically alter the ordering
of tasks during the computation. The main purpose of the re-
ordering was to ensure that the number of remaining tasks on
the master processor did not grow too large and exhaust the
master’s memory. Nodes deep in the branch-and-bound tree
typically require less processing than do nodes high in the
tree. Therefore, if the master task list was getting “too large”
(≥ β), the list was ordered such that deep nodes were given
as tasks. Once the size of the master task list dropped below
a specified level (≤ α), the list was again reordered so that
nodes near to the root of the tree were sent out for processing.
Typically, values of α = 15000 and β = 17000 were used in
our computation.

Fault Tolerance. The computation runs for weeks across
thousands of machines, so failures which would be rare on
a single-processor become common. Further, as discussed
in Section 3.1, the primary strategy for obtaining TeraGrid
resources was to make requests to the local schedulers for
small amounts of CPU time. In this case, “failures” of
the worker processes correspond to the processors being re-
claimed by the scheduler, so in fact worker failures are ex-
tremely common. Our primary strategy for robustness is to
detect failures on a worker machine and to re-run the failed
task elsewhere. MW has features that automatically perform-
ing the failure detection and re-scheduling. The less com-
mon, but more catastrophic, case is when the master machine
fails. To deal with this, the state of the master process is
periodically checkpointed. MW performs the checkpointing
automatically, as long as the user has re-implemented the
write ckpt info() method of the MWTask class and
the write master state() method of the MWDriver
class. Should the master crash, the computation can be
restarted from the state in the checkpoint file.

5



6 4 COMPUTATIONAL RESULTS

Infrastructure Scaling. On many of the grid sites in Ta-
ble 2, our workers are run with low priority, and the schedul-
ing policy at the sites is to simply suspend the low priority
job, rather than to preempt the low priority job. This job sus-
pension became a significant problem for our computation,
as some jobs were suspended for days, blocking the entire
computation waiting for the results of the suspended tasks.
To work around excessively long job suspension, we used
a method reassign tasks timedout workers() of
MW that will automatically reassign tasks that have not com-
pleted in a pre-specified time limit. In our case, a time limit
of one hour was sufficient, as we were already limiting the
grain size of the worker computation to less than T = 30min.

However, while running our large-scale computation, we
noticed that suspension of the workers caused a more subtle
and serious problem. The MW master is written as a single-
threaded, event-driven program. Sometimes, the worker sus-
pension would occur as the worker was writing results over
TCP to the master. When running with a large number of
workers, the suspension of a worker in the middle of an ac-
tive TCP write occurred roughly twice a week. In this case,
the master would block, waiting for the remainder of the re-
sults from the suspended worker. The effects could then cas-
cade, as writes to open socket connections from other workers
were initiated during the time when the master was blocked,
but subsequently, the worker that initiated the socket write
was itself suspended. In this case, the problem was solved by
adding timeouts to each network read in MW.

Further, our recent computations on the grid resources
listed in Table 2 have scaled to more than 4500 simultane-
ous worker processors, which necessitated re-coding MWś
socket management layer to use the epoll() system call
rather than poll(). Improving the scalability of MW’s net-
work performance is another instance in which running spe-
cific large-scale computations can bring benefit to a broad
scientific computing community. In many cases, only by run-
ning large computations can bottlenecks that limit the scala-
bility of existing software packages such as Condor or MW
be pinpointed. Subsequent releases can address the issues in
scalability, aiding the community-at-large.

4 COMPUTATIONAL RESULTS

The solution of the integer programs in Table 1 to solve the
football pool problem have been ongoing since the beginning
of 2006. The computation has not been continually running.
It is often stopped in-between the solution of integer pro-
grams or for maintenance of the master machine. To date, we
have been able to establish a new lower bound of M = 71
for the football pool problem, an improvement of 6 over the
best bound known before this work. In Table 3, we show
aggregated computational results for a portion of our com-
putation. Specifically, we show the work required to solve

Table 3: Computation Statistics

M = 70 M = 71
Avg. Workers 555.8 562.4
Max Workers 2038 1775

Worker Time (years) 110.1 30.3
Wall Time (days) 72.3 19.7

Worker Util. 90% 71%
Nodes 2.85× 109 1.89× 108

LP Pivots 2.65× 1012 1.82× 1011

the IPs to establish that z6 ≥ M = 70 and z6 ≥ M = 71.
For these two portions of the computation, over 140 CPU
years were used and delivered by grid resources in roughly
92 days. The total number of nodes in the branch and bound
trees for the solution of the IPs numbers in the billions, and
trillions of LP pivots are required to evaluate these nodes. To
our knowledge, this is the largest branch-and-bound compu-
tation ever run on a wide-area grid. For example, Anstreicher
et al. [1] required 11 CPU years to solve the nug30 quadratic
assignment problem, Mezmaz et al. [22] used 22 CPU years
to solve a flow-shop problem by branch and bound, and Ap-
plegate et al. [2] used 84 CPU years (on a tightly-coupled
cluster) for finding the shortest tour through 24,978 towns in
Sweden. The football-pool problem computation has in fact
taken more than 140 CPU years, as it is still on-going. In
fact, as mention in Section 3.3, we have used simultaneously
over 4,500 workers while solving IPs related to establishing
z6 ≥ 72.

Even though the computational grid that we have used has
evolved considerably during the course of our quest to solve
the football pool problem, it is still interesting to examine the
distribution of resources used in the computation. Figure2
shows a recent snapshot of the number of workers participat-
ing from various sites in Table 2 over time. As seen in the
figure, the Teragrid resource have played a significant role in
this large-scale computation. (This can be seen by aggregat-
ing the clusters “TG”, “NCSA”, and “Purdue” in Figure 2).
By our best estimation, we are roughly 50% through the com-
putation for M = 72 and hope to be able to announce that
z6 ≥ 72 soon.

ACKNOWLEDGMENTS

The preceding research is brought to you by the National
Science Foundation (OCI-0330607, CMMI-0522796) and
through TeraGrid resources provided by NCSA, SDSC, ANL,
TACC, and Purdue University. François Margot is also sup-
ported in part by the Office of Naval Research under grant
N00014-03-1-0188. Any rebroadcast, retransmission of the
events, descriptions, or contents of this paper without appro-

6



LINDEROTH et al.: THE TERA-GRIDIRON: A NATURAL TURF FOR HIGH-THROUGHPUT COMPUTING 7

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  5000  10000  15000  20000  25000  30000  35000

N
um

be
r 

of
 M

ac
hi

ne
s

Time

Wisconsin
UIUC
UNM

TG
Purdue
NCSA

MIT
Lehigh

Iowa
FNAL

Dartmouth
Caltech

CAE
BNL

Fig. 2: Number of workers per cluster

priate citation is expressly prohibited. The authors would like
to thank the entire Condor team for their tireless efforts to
provide a Really Useful computing infrastructure.

References
[1] K. Anstreicher, N. Brixius, J.-P. Goux, and J. T. Lin-

deroth. Solving large quadratic assignment problems
on computational grids. Mathematical Programming,
Series B, 91:563–588, 2002.

[2] D. Applegate, R. Bixby, W. Cook, and V. Chvátal. Per-
sonal Communication.

[3] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the Web. Future Gen-
eration Computer Systems, 15:559–570, 1999.

[4] M. S. Bazaraa and O. Kirca. A branch-and-bound
heuristic for solving the quadratic assignment problem.
Naval Research Logistics Quarterly, 30:287–304, 1983.

[5] D. Bradley. Schedd on the side. In Presentation at Con-
dor Week 2006, Madison, WI, 2006.

[6] Q. Chen, M. C. Ferris, and J. T. Linderoth. FATCOP
2.0: Advanced features in an opportunistic mixed in-
teger programming solver. Annals of Operations Re-
search, 103:17–32, 2001.

[7] CPLEX Optimization. Using the CPLEX Callable Li-
brary, Version 9. CPLEX Optimization, Inc., Incline
Village, NV, 2005.

[8] XPRESS-MP Reference Manual. Dash Associates,
2004. Release 2004.

[9] D. H. J. Epema, M. Livny, R. v. Dantzig, X. Evers, and
J. Pruyne. A worldwide flock of condors: Load sharing
among workstation clusters. Journal on Future Gener-
ation Computer Systems, 12, 1996.

[10] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and
S. Tuecke. Condor-G: A computation management
agent for multi-institutional grids. Cluster Copmuting,
5:237–246, 2002.

[11] B. Gendron and T. G. Crainic. Parallel branch and
bound algorithms: Survey and synthesis. Operations
Research, 42:1042–1066, 1994.

[12] W. Glankwamdee and J. Linderoth. MW: A software
framework for combinatorial optimization on computa-
tional grids. In E. Talbi, editor, Parallel Combinatorial
Optimization. John Wiley & Sons, 2006. To appear.

[13] J.-P. Goux and S. Leyffer. Solving large MINLPs on
computational grids. Optimization and Engineering, 3:
327–354, 2003.

[14] J.-P. Goux, S. Kulkarni, J. T. Linderoth, and M. Yoder.
Master-Worker: An enabling framework for master-
worker applications on the computational grid. Cluster
Computing, 4:63–70, 2001.

[15] H. Hämäläinen, I. Honkala, S. Litsyn, and P. Östergård.
Football pools–A game for mathematicians. American
Mathematical Monthly, 102:579–588, 1995.

[16] A. H. Land and A. G. Doig. An automatic method for
solving discrete programming problems. Econometrica,
28:497–520, 1960.

[17] J. Linderoth, F. Margot, and G. Thain. The football
pool problem and the computational grid. Unpublished
working paper, 2007.

[18] J. Linderoth, G. Thain, and S. J. Wright. User’s
Guide to MW. University of Wisconsin Madison, 2007.
http://www.cs.wisc.edu/condor/mw.

[19] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—
A hunter of idle workstations. In Proceedings of the
8th International Conference on Distributed Computing
Systems, pages 104–111, 1998.

[20] F. Margot. Pruning by isomorphism in branch-and-cut.
Mathematical Programming, 94:71–90, 2002.

[21] F. Margot. Exploiting orbits in symmetric ILP. Mathe-
matical Programming, Series B, 98:3–21, 2003.

[22] M. Mezmaz, N. Melab, and E.-G. Talbi. A grid-enabled
branch and bound algorithm for solving challenging
combinatorial optimization problems. Research Report
5945, INRIA, 2006.

[23] G. Nemhauser and L. A. Wolsey. Integer and Combina-
torial Optimization. John Wiley and Sons, New York,
1988.

7



8 REFERENCES

[24] P. Ostergård and A. W. A. A new lower bound for the
football pool problem for six matches. Journal of Com-
binatorial Theory, Ser. A, 99:175–179, 2002.

[25] P. Östergård and W. Blass. On the size of optimal binary
codes of length 9 and covering radius 1. IEEE Transac-
tions on Information Theory, 47:2556–2557, 2001.

[26] L. T. Wille. The football pool problem on six matches.
Journal of Combinatorial Theory, Ser. A, 45:171–177,
1987.

8


