
Improving Bounds on the Football Pool Problem via
Symmetry Reduction and High-Throughput Computing

Jeff Linderoth
Department of Industrial and Systems Engineering, The University of Wisconsin-Madison, 3226

Mechanical Engineering Building, 1513 University Ave., Madison, WI 53706, USA, linderoth@wisc.edu

François Margot
Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213-3890,

USA, fmargot@andrew.cmu.edu

Greg Thain
Department of Computer Science, The University of Wisconsin-Madison, 1210 W. Dayton St., Madison,

WI 53706, USA, gthain@cs.wisc.edu

The Football Pool Problem, which gets its name from a lottery-type game where partici-

pants predict the outcome of soccer matches, is to determine the smallest covering code of

radius one of ternary words of length v. For v = 6, the optimal solution is not known. Us-

ing a combination of isomorphism-pruning, subcode enumeration, and linear-programming

based-bounding, running on a high-throughput computational grid consisting of thousands

of processors, we are able to report improved bounds on the size of the optimal code for this

open problem in coding theory.

Key words: Football Pool Problem; High-Throughput Computing; Branch-and-Bound; Con-

dor; Master-Worker

History:

1. Introduction

The Football Pool Problem is one of the most famous problems in coding theory (Hämäläinen

et al., 1995) and concerns finding small cardinality covering codes. Before formally defining

a covering code, a few definitions are necessary. Let v ≥ 1 and α ≥ 1 be two integers. Let

W (v, α) be the set of all words of length v using letters from the alphabet {0, 1, . . . α − 1}.
To simplify notation, we use W instead of W (v, α) when the values of v and α are clear from

the context or are irrelevant.

For any two words a ∈ W, b ∈ W , the Hamming distance between these two words is the

number of components in which they are different:

dist(a, b) = |{i | ai 6= bi}|.

1

A code is a subset of words C ⊆ W . A covering code of radius d for the set of words W

is a code C ⊆ W such that every word w ∈ W is at most a distance d away from at least

one word in C, i.e. a code such that ∀wi ∈ W, ∃ wj ∈ C with dist(wi, wj) ≤ d. The Football

Pool Problem is to find a minimum cardinality covering code of radius d = 1 for the set

of all ternary words of length v, W (v, 3). The problem gets its name from a lottery-type

game where participants predict the outcome of v soccer matches, and a prize is won if the

player predicts no more than d matches incorrectly. The goal of the Football Pool problem

is to determine the minimum number of tickets a player must purchase in order to ensure

themselves of winning a prize no matter the outcome of the matches. For v = 6, the size

of the optimal covering code is not known, and in fact, rather only weak bounds are known

for the value that the optimal solution might take. Table 1, shows known optimal values for

1 ≤ v ≤ 5. For v = 6, the best known feasible solution has value 73 (found by Wille (1987)

using a Tabu Search algorithm) and the best published lower bound is 65 (Österg̊ard and

Wassermann (2002)).

v 1 2 3 4 5
|C∗| 1 3 5 9 27

Table 1: Optimal values for the Football Pool Problem with v matches.

An integer program is easily formulated that will determine the optimal covering code

for any word set W and radius d. Specifically, for n = |W |, use binary decision variables

x ∈ {0, 1}n with xj = 1 if and only if word j is in the code C∗ and define the matrix

A ∈ {0, 1}n×n with aij = 1 if and only if word i ∈ W is at distance ≤ d from word j ∈ W .

A smallest covering code C∗ then corresponds to an optimal solution to the integer program

|C∗| = min
x∈{0,1}n

{eT x | Ax ≥ e}, (1.1)

where e is an n−dimensional vector of ones.

In the case of the Football Pool Problem with W = W (6, 3), (1.1) is an integer program

consisting of 729 variables and 729 constraints. Integer programs of this size are routinely

solved by state-of-the-art commercial solvers such as CPLEX and XPRESS-MP . However,

these software are unable to solve the Football Pool Problem for v = 6. This is illustrated in

Figure 1, which shows the improvement in lower and upper bound values on |C∗
6 |, the size of

an optimal covering code for W (6, 3), using CPLEX v9.1 as a function of the number of nodes

2

evaluated. After 500,000 nodes, the lower bound is improved from 56.08 (the value of the

initial linear programming relaxation of (1.1)) to only to 58. Improving the lower bound even

past the currently best known lower bound to 65 would appear (by simple extrapolation) to

be computationally impossible in this manner. A major factor that confounds the branch-

and-bound process is that (1.1) is very symmetric. Techniques for reducing the negative

impact of the symmetry are discussed in Section 2.

Best Known Lower Bound

V
al

ue

Number of Tree Nodes

CPLEX Lower Bound

CPLEX Upper Bound

Best Known Upper Bound

 55

 90

 95

 0 100000 200000 300000 400000 500000 600000

 80

 75

 70

 65

 60

 85

Figure 1: CPLEX Lower Bound Improvement

In this work, we focus on improving the lower bound for |C∗
6 |. Through a variety of

techniques that combine efficient isomorphism-free enumeration with integer programming,

the problem of improving the lower bound on |C∗
6 | is transformed into a series of (simpler)

integer programs. These integer programs are solved using a distributed branch-and-bound

algorithm equipped with isomorphism pruning. The platform we use to solve the instances

is a large-scale high-throughput computing system built mostly from CPU cycles that would

have otherwise gone unused. To date, our computations have been improve the lower bound

on |C∗
6 | from 65 to 71, and a total of more than two CPU centuries total have gone into the

computation, making it one of the largest computations of its kind ever attempted.

The remainder of the paper is divided into five sections. In Section 2, we review some

of the symmetry-reduction techniques that we employ in this work: isomorphism pruning

and covering systems. In Section 3, we introduce additional techniques for processing the

3

results obtained from enumerating solutions to the covering systems that can further reduce

the work required to improve lower bounds on |C∗
6 |. Section 4 describes our computing

platform, tools used to build that platform, and how we built a branch-and-bound algorithm

to effectively run on that platform. Section 5 contains the results of our computation, and

we offer conclusions of our work in Section 6.

2. Symmetry Handling Techniques

In this section, we define what is meant by a symmetric integer program, and discuss a

technique called isomorphism pruning that can mitigate the undesirable effects of symmetry

in integer linear programming. We then recount an enumerative technique based on covering

systems that has been used to improve lower bounds on the size of covering codes in the

past, and we describe how this technique can be combined with integer programming.

2.1. Isomorphism Pruning

Let Πn be the set of all permutations of In = {1, . . . , n}, and let x ∈ {0, 1}n. The operation

of applying a permutation π ∈ Πn to a solution x is to permute the coordinates of x according

to π. That is,

π(x) = π(x1, x2, . . . xn)
def
= (xπ(1), xπ(2), . . . , xπ(n)).

We call a permutation π a symmetry of the integer program (1.1) if the permutation preserves

feasibility. That is, x is feasible if and only if π(x) is feasible. We will denote by Γ ⊂ Πn the

set of all symmetries of (1.1). To understand why symmetries may confound the branch-and-

bound algorithm, consider the following situation. Suppose that x̂ is a (non-integral) solution

to the linear programming relaxation of (1.1), with 0 < x̂j < 1, and the decision is made to

branch down on variable xj by fixing xj = 0. If ∃π ∈ Γ such that [π(x̂)]j = 0, then π(x̂) is

a feasible solution for this child node, and eT x̂ = eT (π(x̂)), so the relaxation value for the

child node will not change. If the order of Γ is large, then there are many permutations that

can be applied to the present solution of the relaxation yielding a solution feasible for the

child node. This results in many branches that effectively do not change the solution of the

parent node. Symmetry has long been recognized as a curse for solving integer programs,

and auxiliary (usually extended) formulations are often sought to reduce the amount of

symmetry in an ILP formulation (Barnhart et al., 1998; Holm and Sørensen, 1993; Méndez-

Dı́az and Zabala, 2006). In addition, there is a body of research on valid inequalities that

4

can help exclude symmetric feasible solutions for specific permutation groups (Sherali and

Smith, 2001; Macambira et al., 2004; Kaibel and Pfetsch, 2007).

For some permutation π ∈ Γ and set of indices S ⊂ {1, 2, . . . , n}, let π(S) = {π(i) | i ∈
S}. The set {π(S) | π ∈ Γ} is an equivalence class of all equivalent “relabelings” of S ⊆
{1, 2, . . . , n} known as the orbit of S under Γ. A node a of the branch-and-bound enumeration

tree can be characterized by the set of variables fixed to zero (resp. one) by branching

decisions, i.e.

F a
1 = {i | xi fixed to 1 by branching decisions leading to a}

F a
0 = {i | xi fixed to 0 by branching decisions leading to a}

Two nodes a and b are isomorphic if

∃π ∈ Γ with π(F a
1) = F b

1 , π(F a
0) = F b

0 .

If two nodes are isomorphic, then you may prune one of the nodes a or b, as you can be sure

that if there is an optimal solution in node a, then there is an optimal solution of the same

value in b. This idea was developed and used in the combinatorics community and Bazaraa

and Kirca (1983) is one of the first application in the context of integer linear programming.

Unfortunately, the problem of calculating whether any two nodes of a branch-and-bound

tree are isomorphic is not known to be easy. However, the concept of isomorphism pruning,

is a mechanism that will determine if a node that is set to be evaluated will be isomorphic to

another evaluated node. This idea was developed and used in many different areas. See, for

example, the work of Butler and Lam (1985), Read (1998), McKay (1998), Ivanov (1985),

and the book of Kreher and Stinson (1999).

The key idea is to choose one unique representative for each potential set F 1
a . A set S is

a representative of its equivalence class (or orbit) if

S = lexmin{π(S) | π ∈ Γ}.

Now the isomorphism pruning rule is very simple to implement at a node a: If F a
1 is not a

representative, then prune node a. It has been shown that this is a valid pruning strategy,

provided that at each node of the enumeration tree, the non-fixed variable with smallest

index is always selected as branching variable.

Isomorphism pruning is a powerful technique that can extend the range of symmetric

integer programs that can be solved. For example, for the Football Pool problem on five

5

matches, branch-and-bound with isomorphism pruning can establish that optimal solution of

value |C∗
5 | = 27 in 82 seconds and 1409 nodes of the enumeration tree, while the commercial

solver CPLEX (v9.1) does not solve the problem in more than 4 hours and million of nodes.

However, for six matches, isomorphism pruning by itself is only able to establish that |C∗
6 | ≥

61, even after running for days. Our ultimate goal is to solve the Football Pool problem on

six matches, so we will require other strategies besides branch-and-bound with isomorphism

pruning to tackle this instance.

A variant of branch-and-bound with isomorphism pruning can be used to obtain all non

isomorphic solutions to an integer program (Margot, 2003). The method works in a similar

fashion to that proposed Danna et al. (2007). Namely, branching and pruning are performed

until all variables are fixed. All leaf nodes of the resulting tree are non-isomorphic solutions

to the system. This extension is necessary in order to perform some of the tasks to be

described below.

2.2. Covering Systems

An upper bound (feasible covering code) of value 73 is known for the Football Pool Problem,

and it is quite likely that 73 is indeed the optimal solution value. To establish that 73 is the

optimal solution value, techniques for improving the lower bounds on |C∗
v | are required. One

such technique was introduced by Österg̊ard and Blass (2001) and is based on partitioning the

word set into subsets and counting the words in each subset that must be covered by a given

codeword. The technique is best introduced by means of a simple example. Partition the

set of words W (6, 3) into three subsets W0, W1, W2, with Wj containing all words starting

with letter j for j ∈ {0, 1, 2}. Let C be a covering code with |C| = M . Similar to the

partition of W (6, 3), the words of C may be partitioned into words that begin with each

letter: C = C0 ∪ C1 ∪ C2. Let yj
def
= |Cj| be the number of code words beginning with each

letter j ∈ {0, 1, 2}. Observe that a word in C0 covers 11 words in W0, and a word in C1

or C2 covers one word in W0. Since, for j ∈ {0, 1, 2}, all 243 words in Wj must be covered

by words in C, the following linear system, which we refer to as the M-covering system is

feasible:

M1 = {(y0, y1, y2) ∈ Z3
+ | 11y0 + y1 + y2 ≥ 243, y0 + 11y1 + y2 ≥ 243,

y0 + y1 + 11y2 ≥ 243, y0 + y1 + y2 = M} (2.1)

6

In other words, a necessary condition for there to be a covering code of size M is that

M1 6= ∅.
Naturally, this same idea applies to a different word set partitioning. For example, if the

words in W (6, 3) are partitioned into nine subsets based on their first two letters:

W = W00 ∪W01 ∪W02 ∪W10 ∪W11 ∪W12 ∪W20 ∪W21 ∪W22,

the following M -covering system is obtained:

M2 = {(y00, y01, y02, y10, y11, y12, y20, y21, y22) ∈ Z9
+ | 9y00 + y01 + y02 + y10 + y20 ≥ 81

y00 + 9y01 + y02 + y11 + y21 ≥ 81

y00 + y01 + 9y02 + y12 + y22 ≥ 81

y00 + 9y10 + y11 + y12 + y20 ≥ 81

y01 + y10 + 9y11 + y12 + y21 ≥ 81

y02 + y10 + y11 + 9y12 + y22 ≥ 81

y00 + y10 + 9y20 + y21 + y22 ≥ 81

y01 + y11 + y20 + 9y21 + y22 ≥ 81

y02 + y12 + y20 + y21 + 9y22 ≥ 81

y00 + y01 + y02 + y10 + y11+y12 + y20 + y21 + y22 = M}.

(2.2)

The M -covering system forms the basis of a method for improving the lower bound on the

size of an optimal covering code |C∗
v |. First a potential code cardinality M = |C∗

v | is chosen.

Let m be the number of components fixed to define the word set partitioning. For example,

we have m = 1 to form the M -covering system (2.1) and m = 2 to form (2.2). All non-

isomorphic solutions to the M -covering systems for word set partitioning m = 1, 2, . . . , 6 are

enumerated. If for some m, there are no solutions to the covering system, then no covering

code with exactly M words exists.

Using this idea and induction on m for the enumeration, Österg̊ard and Blass (2001)

were able to prove that M = 62 is an optimal code length for d = 1, v = 9, α = 2, and

Österg̊ard and Wassermann (2002) were able to show M ≥ 65 for d = 1, v = 6, α = 3. The

enumeration procedure to establish the latter required over 1 CPU year using a distributed

system of twenty six 400MHz and 500 MHz computers with the batch system autoson

(McKay, 1996). The enumeration was based on the LLL basis lattice reduction algorithm of

Lenstra et al. (1982). A drawback of the method is that for intermediate values of m, the

7

number of non-isomorphic solutions to the M -covering system sometimes becomes extremely

large, and all all nonisomorphic solutions for m = k must be enumerated before moving on

to m = k + 1.

2.3. Integer Programming and Covering Systems

The performance of the enumeration procedure described in Section 2.2 can be improved by

combining the enumeration with integer programming. Specifically, the enumeration can be

carried out up to a certain point of refinement m of the word set. Then, integer programming

can be used to establish that no covering code exists with the specific combination of words

belonging to each of the word set partitions specified by the solution to the M -covering

system. In what follows, we call a solution y to the M -covering system a code sequence. In

our work, we focus on the case m = 2. For each code sequence

y = {y00, y01, y02, y10, y11, y12, y20, y21, y22},

there is an associated integer program, which we call the y-sequence IP (y-SIP):

min
x∈{0,1}n

{eT x | Ax ≥ e, x ∈M(y)}, (2.3)

where

M(y) = {x ∈ {0, 1}n |
∑

i∈Wjk

xi = yjk for j, k ∈ {0, 1, 2}}.

If for every solution y to the M -covering system found by the enumeration, the corre-

sponding y-SIP (2.3) has no feasible solution, then no covering code with exactly M words

exists.

3. Additional Steps

The combination of the enumeration of non-isomorphic solutions to M -covering systems (2.2)

and the solution of the corresponding y- sequence IPs (2.3) forms the basis of our method

for further improving the lower bound on |C∗
6 |. However, we perform three additional steps

that are designed to reduce the number of y-SIPs that must be solved and improve the speed

with which y-SIPs are solved. First, for reasons linked to the isomorphism pruning algorithm

employed, by reordering the components of the y vectors before using them in the y-SIP, the

solution time of the y-SIP is significantly reduced. Second, recognizing that some sequences

8

are very similar to each other, aggregating some components of the sequence together and

solving an aggregated version of the y-SIP is advantageous. Finally, by a preprocessing

operation, many sequences may be removed from consideration as potentially leading to an

optimal solution. Each of these steps is discussed in detail in this section.

3.1. Sequence Reordering

Given a covering code C of W (v, 3), we can by symmetry arrive at another covering code by

choosing a permutation σ of {0, 1, 2} and applying σ` to the letter in one particular position

in all the words of C. We also can choose a permutation σv of the v entries of the words in

W (v, 3) and create another code by permuting the entries in the codewords of C according

to the permutation σv. Moreover, any combination of these two types of permutations can

be applied, and a covering code will result.

These permutations applied to W (v, 3) also will induce permutations in the entries of a

code sequence y. For example, assume that

y = (y00, y01, y02, y10, y11, y12, y20, y21, y22).

The cyclic permutation σ̂` sending 0 → 1, 1 → 2, and 2 → 0 of the first letter of the words

in W (v, 3) yields the vector

y′ = (y20, y21, y22, y00, y01, y02, y10, y11, y12).

Then, applying the permutation σ̂v that swaps the first two letters in each of the words of

W to y′ yields

y′′ = (y02, y12, y22, y00, y10, y20, y01, y11, y21).

Since the permutations σ̂` and σ̂v we applied can be used to create permutations in the

symmetry group Γ of the y-SIP (2.3), then y-SIP, y′-SIP and y′′-SIP are either all feasible

or all infeasible.

Thus, entries in y can be permuted in certain ways before solving y-SIP, and the result

of the computation will still reliably conclude whether the instance is feasible or infeasible.

We would like to permute the entries such that the resulting y-SIP instances will require

a minimum amount of computational effort. For reasons linked to the branching rule used

in the isomorphism-pruning implementation, it was determined that permuting the original

sequences to result in the new sequence

y = (y00, y01, y02, y10, y20, y11, y12, y21, y22)

9

works best.

This ordering matters for the efficiency of the isomorphism pruning algorithm in branch-

and-bound, but is otherwise irrelevant to the presentation. In the sequel, all code sequences

are represented with this reordering of the components.

3.2. Sequence Aggregation

Components of the code sequences y can be aggregated together in order to reduce the

number of y-SIPs that need to be solved to establish a lower bound. For example, suppose

that the following four sequences were found during the enumeration procedure:

y00 y01 y02 y10 y20 y11 y12 y21 y22

20 7 5 5 8 7 5 7 8
20 7 5 5 8 7 5 6 9
20 7 5 5 7 8 5 7 8
20 7 5 5 7 8 5 6 9.

By aggregating the last four entries of of the y vector, we get the sequences

y00 y01 y02 y10 y20 ȳ
20 7 5 5 8 27
20 7 5 5 8 27
20 7 5 5 7 28
20 7 5 5 7 28.

Since we have only two distinct aggregated sequences, we need to solve only two integer

programs. In general, the aggregated y-SIP for an aggregated sequence y has the form

min
x∈{0,1}n

{eT x | Ax ≥ e, x ∈ AM(y)}, (3.1)

where

AM(y) = {x ∈ {0, 1}n |
∑

i∈W00

xi = y00,
∑

i∈W01

xi = y01,
∑

i∈W02

xi = y02,∑
i∈W10

xi = y10,
∑

i∈W20

xi = y20,
∑

i∈W11∪W12∪W21∪W22

xi = y11 + y12 + y21 + y22}.

Note that the aggregated y-SIP (3.1) should be harder to solve than each (non aggregated)

y-SIP (2.3). After all, aggregating all nine entries of the sequences would get us back to

the original problem. However, in the majority of the cases, the information loss due to the

aggregation of the last four entries is more than compensated by the reduction in the number

of y-SIPs that need to be solved.

10

Margot et al. (2003) use this technique to improve the lower bound for the Football Pool

Problem on six matches to |C∗
6 | ≥ 67. The code sequences are obtained by enumerating the

nonisomorphic solutions to the M -covering systems (2.2) by using the algorithm of Österg̊ard

and Blass (2001). For M = 64, 65, 66, the number of code sequences to handle is respectively

423, 839 and 1,674. These numbers drop to 27, 40, and 65 respectively after aggregation

and regrouping (aggregation and regrouping use slightly different rules than those presented

above). The total CPU time (in seconds) for solving the corresponding aggregated y-SIP on

an IBM Thinkpad with a clock speed of 2.0 GHz is respectively 30,932, 95,160, and 580,080.

3.3. Sequence Exclusion

Another idea to reduce the number of y-SIP that must be solved is a preprocessing operation

that excludes sequences that cannot lead to a code of cardinality smaller than the best known

code of size 73. Suppose for example, we could establish that in any covering code, there

must be at least 19 words from W0 in the code, i.e. y0 ≥ 19. If such a fact were known, then

all sequences with y00 +y01 +y02 ≤ 18 could be immediately discarded. Proving that y0 > 18

is a matter of establishing that the following integer program has no feasible solution:

min
x∈Bn

{eT x | Ax ≥ e,
∑
i∈W0

xi ≤ 18}. (3.2)

By symmetry, we can assume that the code C satisfies |C ∩W0| ≤ |C ∩Wi| for i = 1, 2, so

the constraints
∑

i∈W1
xi ≥ 18 and

∑
i∈W2

xi ≥ 18 can be added to (3.2) without affecting

the outcome. Solving (3.2) takes about 15 minutes for a branch-and-bound code equipped

with isomorphism pruning (Margot, 2002). We can extend this approach further. Since the

infeasibility of (3.2) established that at least 19 words in a covering code for W (6, 3) begin

with 0, we can ask if there does indeed exist a covering code such that y0 = 19. In general, if

we know that no covering code C with |C ∩W0| < p words exists, we can check if one exists

with |C ∩W0| = p and |C ∩Wi| ≥ p for i = 1, 2 by solving the following sequence-exclusion

integer program:

min
x∈{0,1}n

{eT x | Ax ≥ e,
∑
i∈W0

xi = p,
∑
i∈Wk

xi ≥ p k ∈ {1, 2}, eT x ≤ 72} (3.3)

It required more than a week of CPU time to prove that (3.3) is infeasible for p = 19. The

increased difficulty of (3.3) from p = 18 to p = 19 makes the solution of the case p = 20 by

this method unattractive.

11

3.3.1. Sequence Squashing

During the computations for solving sequence-exclusion IP (3.3) for p = 18 and p = 19, it was

noted that a significant portion of the CPU time was used in solving the linear programming

relaxations. Therefore, another procedure, called squashing, was used to solve (3.3) much

more quickly. The technique works by aggregating variables together, enumerating potential

solutions, and then proving that none of the potential solutions leads to a feasible solution

for (3.3). This squashing procedure allowed us to also solve the sequence exclusion IP (3.3)

for the cases p = 20 and p = 21.

The squashing procedure begins by replacing two “similar” variables in (3.3) by one

aggregated version of that variable. For example, suppose that x1a and x2a are variables

associated with words 1a ∈ W1 and 2a ∈ W2, i.e. two words differing only in their first

entry, respectively. A new continuous variable 0 ≤ z1a ≤ 2 is created. This variable creation

is done for all words in W1 ∪W2, which results in a squashed version of sequence-exclusion

IP:

min
(x,z)∈{0,1}n/3×[0,2]n/3

{eT x + eT z | Ax ≥ e,
∑
i∈W0

xi = p,
∑
i∈W1

zi ≥ 2p, eT x + eT z ≤ 72}. (3.4)

The squashed sequence-exclusion IP (3.4) is a relaxation of the original sequence-exclusion

IP (3.3).

The next step in the squashing procedure is to enumerate all non-isomorphic x that

are part of a solution to (3.4). Then, each such vector x is substituted into (3.3), and

the resulting, much simpler, integer program is solved via a “regular” branch-and-bound

algorithm. If (3.3) is infeasible after fixing the x portion of each non-isomorphic solution

to (3.4), then the original (3.3) is also infeasible. This complicated way to solve (3.3) is

justified by the fact that the linear relaxation of the squashed problem is solved much faster

than the one of (3.3), as well as the reoptimization required during the branch-and-bound

enumeration for solving (3.3).

Enumerating all non isomorphic feasible solutions x for (3.4) for p = 19 requires less than

10 CPU minutes and results in 169 x vectors that need to be plugged into the sequence-

exclusion IP (3.3). All but two of these integer programs are solved in less than 0.5 seconds by

an unsophisticated branch-and-bound algorithm based on the COIN-OR software BCP. The

last two instances were solved using CPLEX9.1 and each requires less than 80 seconds to be

shown infeasible. Taking all the operations of this alternative squashing procedure together,

12

proving that (3.3) is infeasible for p = 19 takes less than 15 minutes CPU time, as opposed

to more than one week for the straightforward application of isomorphism-pruning-based

branch-and-bound.

This great increase in efficiency from the squashing procedure spurred us on to attempt to

solve the sequence-exclusion IP (3.4) for p = 20 and p = 21. Enumerating the non-isomorphic

solutions to (3.4) that may lead to a feasible solution to (3.3) can be a very CPU-intensive

procedure for larger values of p. As such, the enumerations was done in parallel, using (a

portion) of the high-throughput computing grid that we introduce in full detail in Section 4.

The enumeration portion of the p = 20 calculation required a total of 1088 CPU hours. The

total wall clock time of the computation was 6.3 hours, as the calculation ran on an average

of roughly 200 machines simultaneously. There were 9451 non-isomorphic solutions to (3.4)

for p = 20. Solving all 9451 sequence-exclusion IPs (3.3) with the corresponding x portion

fixed required just over 8 CPU hours using the branch-and-bound code BCP.

The calculations required to solve (3.4) for p = 21 were even more extensive. There

were 385, 967 non-isomorphic solutions to (3.4) for p = 21, and enumerating these solutions

required a total of 49, 023 CPU hours (5.6 CPU years). The 385,967 instances of (3.3) were

solved in parallel on a Beowulf Cluster consisting of 264 processors, and 83 CPU days was

required to solve (most) of the instances. Some of the instances (6,535 of the 385,967) took

more than 10 minutes for the rudimentary branch-and-bound code BCP to solve. These

6,535 difficult instances were solved with the more sophisticated IP solver MINTO, which

required another 139 hours of CPU time. None of the 385,967 IP instances has a feasible

solution. This establishes that any covering code of W (6, 3) contains at least 22 words

that begin with 0, and thus (by symmetry), proves the result |C∗
6 | ≥ 66, improving on the

previously best-published result by Österg̊ard and Wassermann (2002).

3.4. Impact of Novel Techniques

Establishing that any covering code of W (6, 3) contains at least 22 codewords from W0

was particularly important for our approach for improving the lower bound on |C∗
6 | and

(hopefully) eventually proving the optimality of the code of size 73. Specifically, given the

demonstration that there does not exist a solution of (3.3) for p = 21, the constraints

y00 + y01 + y02 ≥ 22, y10 + y11 + y12 ≥ 22, and y20 + y21 + y22 ≥ 22

13

can be added to the M -covering system (2.2). With these constraints added to the M -

covering system, the enumeration of all non-isomorphic solutions to the M -covering system

for all values M ∈ {66, 67, 68, . . . , 72} can be accomplished. In Table 2, we show the number

of non-isomorphic solutions to the enhanced M -covering system for each value of M . In total,

there are 91,741 solutions, and after regrouping and aggregation, there are 1000 aggregated

sequence IPs of the form (3.1). Solving all IPs for a given value of M , and demonstrating

that there is no feasible solution to any of them, establishes a lower bound of |C6|∗ ≥ M +1.

M # Seq. # Agg. Seq.
66 797 7
67 1,723 13
68 3,640 45
69 7,527 102
70 13,600 176
71 24,023 264
72 40,431 393

91,741 1000

Table 2: # Sequences and Aggregated Sequences for each value of M

4. The Computational Grid

The aggregated y-SIP’s from the enumeration still contain a large amount of symmetry and

for many sequences y can be very difficult to solve. Therefore, we would like to employ

the isomorphism-pruning-based branch-and-bound algorithm and use a powerful distributed

computing platform to solve each instance.

Of particular interest to us in this work are large parallel computing platforms created by

harnessing CPU cycles from a wide variety of resources. Further, we are interested in using

the CPU cycles in a flexible manner, using resources that would otherwise be idle. This type

of computing platform is often known as a computational grid, (Foster and Kesselman, 1999).

Computational grids can be very powerful, but they can also be difficult to use effectively.

In this section, we discuss two software toolkits that allow us to build a computational grid,

Condor and mw. In addition, we discuss a variety of mechanisms for building large-scale

computational grids, and we address issues in scaling the branch-and-bound algorithms to

run effectively on such a platform.

14

4.1. Condor

Condor (http://www.cs.wisc.edu/condor) is a job management system for compute-intensive

jobs (Litzkow et al., 1998). Condor provides a job queueing mechanism, scheduling policy,

resource monitoring, and resource management. Condor runs as a collection of daemon pro-

cesses that perform the necessary services. Users submit their jobs to the Condor scheduler

daemon (the schedd), which places the jobs in a queue. Jobs are run when machines meet-

ing the job’s requirements become available. Condor carefully monitors the progress of the

running job, and informs the user upon the job’s completion.

Condor provides these “traditional” batch-queueing system features, but also offers ad-

ditional functionality that is especially relevant for building the computational grids for our

applications. Specifically, Condor has mechanisms to effectively harness wasted CPU power

from otherwise idle desktop workstations. For instance, Condor can be configured run jobs

on desktop machines where the keyboard and mouse are idle. Should Condor detect that a

machine is no longer available (such as a key press detected), in many circumstances Con-

dor is able to transparently checkpoint the running job, and migrate the job to a different

machine without any loss of the computation. Condor does not require a shared file system

across machines. Condor can transfer files on behalf of the user, or Condor may be able to

transparently redirect all the job’s I/O requests back to the submitting machine.

Condor is especially well-designed for completing jobs in a high-throughput manner. That

is, jobs that require large amounts of processing over long periods of time. This is in contrast

to traditional high performance computing, in which jobs require large computing power over

a relatively short interval.

Many companies and universities are building collections of processors that run the nec-

essary Condor daemons to create a Condor pool at that site. In our computation, we use

Condor pools at the University of Wisconsin and Lehigh University that all together total

over 3000 processors.

4.2. Existing Computational Grids

There are currently two large US national initiatives aimed at building large federations of

computing resources. We use processors from both of these grids in our computations.

The TeraGrid (www.teragrid.org) is an open scientific discovery infrastructure combin-

ing large computing resources at nine partner sites: Indiana, NCAR, NCSA, ORNL, PSC,

15

Purdue, SDSC, TACC and UC/ANL. The Teragrid consists of over 100 teraflops of comput-

ing power, and over 3 petabytes of computing storage. The partner sites are interconnected

at 10/30 gigabits/second via a dedicated national network. Access to TeraGrid is available

through scientific peer review, at no cost, to any academic researcher in the United States.

The Teragrid is built using a top-down approach for federating computational resources.

In contrast, the Open Science Grid (OSG) (www.opensciencegrid.org) uses a bottom-up

approach, bringing together computing and storage resources from campuses and research

communities into a common, shared grid infrastructure via a common set of middleware.

OSG offers participating research communities low-threshold access to more resources than

they could afford individually. At the time of this writing, there are 75 sites on the Open

Science Grid, and they are organized into 30 virtual organizations. Users at sites in the same

virtual organization can share computational resources. We use OSG resources from Wis-

consin, Nebraska, Caltech, Arkansas, Brookhaven National Lab, MIT, Purdue, and Florida

in our computation.

4.3. Grid-Building Mechanisms

Ideally, we would like to aggregate many Condor clusters together to make one giant pool

of resources. However, this is not possible, for both technical and administrative reasons.

Thankfully, Condor is equipped with a collection of mechanisms through which CPU re-

sources at disparate locations (like those on the Teragrid and Open Science Grid) can be

federated together, with varying degrees of transparency and overhead. We make use of many

of these mechanisms to build our computational grid. In particular, we obtain resources via

— Condor Flocking (Epema et al., 1996),

— A manual version of Condor glide-in (Frey et al., 2002) sometimes known as hobble-in,

— A combination of hobble-in with port-forwarding, which we call sshidle-in,

— Direct submission of the worker executables to remote Condor pools.

— A recently-introduced mechanism to Condor called schedd-on-the-side (Bradley, 2006),

TeraGrid resources are accessed for our computation via flocking, hobble-in, and remote

submission, and we now briefly explain specifically how each method works in this context.

Flocking. Condor flocking works by allowing one or more pools of execution machines to

be scheduled by a single local Condor job scheduler. From the user’s perspective, flocking

16

is the most transparent way to aggregate resources. Jobs that the local scheduler can not

run are sent as low priority jobs to unused machines in the remote pools. Flocking is best

used when there is a close administrative relationship between the owners of the two Condor

pools, for it must be explicitly enabled on both sides. Condor flocking requires inbound

network connections on many TCP/IP ports from the flocked-from scheduler to the flocked-

to machines, so it is difficult to use where network firewalls exist.

Glide-in. Condor glide-in is a way to construct an overlay Condor pool on top of another

batch queueing system. This overlay pool can then report to an existing pool. Typically

Condor glide-in is used to access resources via a Globus gateway. Globus is an open source

software toolkit used for building Grid systems and applications (Foster and Kesselman,

1997). See the URL www.globus.org for information on Globus. Condor glide-in works in

two steps: set up and execution. During set up, Condor binaries and configuration files are

automatically copied to the remote resources. The execution step starts the Condor daemons

running through the resource’s Globus interface. Once the glide-in process is complete, the

processors simply show up in the local Condor pool and jobs are scheduled by the local

Condor job scheduler. Condor glide-in is most useful when we have access to a non-Condor

batch system, such as systems on the Teragrid, and want to use those resources as part of

a larger Condor-aggregated computation. However, to use Condor glide-in, the user must

have an X.509 certificate, access to the Globus resource, and the Globus software must be

installed and properly configured.

To circumvent the dependency on Globus gateways configured for our computation, we

employed a “low-weight” version of Condor glide-in that we call Condor hobble-in. Condor

hobble-in works like a manual version of Condor glide-in. First, the Condor binaries are

copied to the remote resources and configured to report to an existing Condor pool. Next,

batch submission requests are made to the local job schedulers. When the jobs run, the

processors allocated as part of the batch request appears as workers in the local Condor

pool.

When hobbling in to batch-scheduled supercomputing sites, the most effective strategy

for obtaining significant CPU resources is to make many requests for small numbers of

processors and for short duration. In this way, the batch requests are run more quickly, as

they can be fulfilled from the backfill of local schedulers, by “squeezing” them into empty

slots on the supercomputer.

17

Remote Submit. Remote submit is the least transparent method of obtaining grid re-

sources. In this case, we simply log into the remote system, and submit executables to the

local Condor pool. Required information so that the new processes can join the existing

computation must be given as arguments to the executable at the time of submission.

Condor remote submission is most useful when there is a firewall in place, and the main

Condor scheduler is blocked from communication with the remote pool. When performing

a remote submission, we can even use ssh’s port forwarding capability to forward socket

connections from the remote execute machines to a master machine via a gateway. This

technique allows us to run executables on machines that are on private networks.

Schedd-on-the-side. The Schedd-on-side is a new Condor technology which takes idle

jobs out of the local Condor queue, translates them into Grid jobs, and uses a Globus-

enhanced version of Condor called Condor-G to submit the jobs to a remote Grid queue.

The original submitter doesn’t know that the jobs originally destined for the local queue have

now been re-tasked to a different queue, and the schedd-on-the-side can do matching and

scheduling of jobs to one of many remote Grid sites. This is an easy way to take advantage

of large systems like the Open Science Grid.

Putting it all together. Table 3 shows the number of available number of machines at

each grid site that we used in our computations. The table also lists the method used to

access each class of machines and the architecture and operating system for each batch of

processors. In total, there are over 19,000 processors available, but we will not have access

to all of them at any one time. The sites that begin with OSG are processors on the Open

Science Grid, and the sites that begin with TG are TeraGrid installations.

4.4. MW

The grid-building mechanisms outlined in Section 4.3 provide the underlying CPU cycles nec-

essary for running large-scale branch-and-bound computations on grids, but we still require a

mechanism for controlling the branch-and-bound algorithm in this dynamic and error-prone

computing environment. For this, we use the mw grid-computing toolkit (Goux et al.,

2001). mw is a software tool that enables implementation of master-worker applications on

computational grids. The master-worker paradigm consists of three abstractions: a master,

18

Site Access Method Arch/OS Machines
Wisconsin - CS Flocking x86 32/Linux 975
Wisconsin - CS Flocking Windows 126
Wisconsin - CAE Remote submit x86 32/Linux 89
Wisconsin - CAE Remote submit Windows 936
Lehigh - COR@L Lab Flocking x86 32/Linux 57
Lehigh - Campus desktops Remote Submit Windows 803
Lehigh - Beowulf ssh + Remote Submit x86 32 184
Lehigh - Beowulf ssh + Remote Submit x86 64 120
OSG - Wisconsin Schedd-on-side x86 32/Linux 1000
OSG - Nebraska Schedd-on-side x86 32/Linux 200
OSG - Caltech Schedd-on-side x86 32/Linux 500
OSG - Arkansas Schedd-on-side x86 32/Linux 8
OSG - BNL Schedd-on-side x86 32/Linux 250
OSG - MIT Schedd-on-side x86 32/Linux 200
OSG - Purdue Schedd-on-side x86 32/Linux 500
OSG - Florida Schedd-on-side x86 32/Linux 100
TG - NCSA Flocking x86 32/Linux 494
TG - NCSA Flocking x86 64/Linux 406
TG - NCSA Hobble-in ia64-linux 1732
TG - ANL/UC Hobble-in ia-32/Linux 192
TG - ANL/UC Hobble-in ia-64/Linux 128
TG - TACC Hobble-in x86 64/Linux 5100
TG - SDSC Hobble-in ia-64/Linux 524
TG - Purdue Remote Submit x86 32/Linux 1099
TG - Purdue Remote Submit x86 64/Linux 1529
TG - Purdue Remote Submit Windows 1460

19,012

Table 3: Characteristics of Our Computational Grid

a task, and a worker. The mw API consists of three abstract bases classes—MWDriver,

MWTask, and MWWorker—that the user must reimplement to create an mw application.

The MWDriver is the master process, and as such the user must implement methods

get userinfo() to initialize the computation, setup initial tasks() to create initial

work units, and act on completed task() to perform necessary algorithmic action (pos-

sibly the addition of new tasks via the addTasks() method) once a task completes. The

MWWorker class controls the worker processes, so the primary method to be implemented is

execute task(). In addition, there are required methods for marshalling and unmarshalling

the data that defines the computational tasks.

mw offers advanced functionality that is often useful or required for running large,

coordinated computations in a high-throughput fashion. Specifically, mw is equipped with

features for user-defined checkpointing, normalized application and network performance

measurements, and methods for the dynamic prioritization of computational tasks. This

functionality is explained in greater detail in the papers Goux et al. (2001); Glankwamdee

and Linderoth (2006) and the mw User’s Manual Linderoth et al. (2007). In particular

for this (very long-running) computation, checkpointing the state of the master-process is

19

necessary, as is the ability to dynamically prioritize the computational tasks, as discussed in

Section 4.5.

mw has been used to instrument branch-and-bound algorithms for the quadratic as-

signment problem (Anstreicher et al., 2002), mixed integer nonlinear programs (Goux and

Leyffer, 2003), and for mixed integer linear programs by Chen et al. (2001). In this work, the

solver in (Chen et al., 2001), called FATCOP, was augmented with the isomorphism pruning

techniques discussed in Section 2.1 and used in our attempt to improve the lower bounds on

|C∗
6 | by solving the aggregated sequence IPs of Table 2 for consecutively larger values of M .

4.5. Scaling Master-Worker Branch-and-Bound Computations

Branch and bound is a very natural paradigm to map to run in a master-worker framework.

Simply, the master processor can manage the tree of unexplored nodes that must be eval-

uated and pass to the workers nodes to evaluate. When running on large configurations of

resources (with many workers), care must be taken to ensure that the master processor is

not overwhelmed with requests from the workers. In this section, we briefly state how by

tuning the algorithm and preparing the infrastructure appropriately, barriers to an efficient

large-scale implementation were overcome.

Grain Size. An effective way to reduce the contention at the master in a master-worker

computation is to reduce the rate at which workers report to ask for new work. Thankfully,

in the branch-and-bound algorithm, there is an obvious mechanism for increasing the grain

size of the worker computations. Instead of having a worker’s task be the evaluation of one

node, the worker’s task can be to evaluate the entire subtree rooted at that node. In this

case, workers will perform the branching and pruning operations as well. This is precisely

the strategy that we employ for our parallel algorithm, and many other authors have also

suggested a similar strategy (Anstreicher et al., 2002; Xu et al., 2005). For load balancing

purposes, it is necessary to stop the computation on the worker after a maximum grain

size CPU time T and report unevaluated nodes from the task’s subtree back to the master

process. Typically, the value of T = 20min or T = 30min was chosen for our runs. Larger

values of T are possible, but may result in a significant increase in the number of tasks

that must be rescheduled by mw due to the worker’s being recalled for another process or

purpose. The value of T can be changed dynamically. In fact, whenever the number of tasks

remaining to be completed at the master is less than the number of workers participating

20

in the computation, T is changed to a much smaller value, typically T = 10sec. This has

the effect of rapidly increasing the work pool size on the master. The implementation of

the dynamic task time is accomplished by using the method pack driver task data of the

MWDriver class so that the (current) maximum CPU time T is sent to the worker as part of

each task.

Task List Management. In mw the master class manages a list of uncompleted tasks and

a list of workers. These tasks represent nodes in the branch-and-bound tree whose subtree

must be completely evaluated. The default scheduling mechanism in mw is to simply assign

the task at the head of the task list to the first idle worker in the worker list. However, mw

gives flexibility to the users in the manner in which each of the lists are ordered. For our

implementation it was advantageous to make use of the set task key function() method

of the MWDriver to dynamically alter the ordering of tasks during the computation. The

main purpose of the re-ordering was to ensure that the number of remaining tasks on the

master processor did not grow too large and exhaust the master’s memory. Nodes deep in

the branch-and-bound tree typically require less processing than do nodes high in the tree.

Therefore, if the master task list was getting “too large” (≥ β), the list was ordered such

that deep nodes were given as tasks. Once the size of the master task list dropped below a

specified level (≤ α), the list was again reordered so that nodes near to the root of the tree

were sent out for processing. Typically, values of α = 15000 and β = 17000 were used in our

computation.

Fault Tolerance. The computation to improve the lower bound on |C∗
6 | ran for months

across thousands of machines, so failures which would be rare on a single-processor become

common. Further, as discussed in Section 4.3, the primary strategy for obtaining TeraGrid

resources was to make requests to the local schedulers for small amounts of CPU time. In

this case, “failures” of the worker processes correspond to the processors being reclaimed by

the scheduler, so in fact worker failures are extremely common. Our primary strategy for

robustness is to detect failures on a worker machine and to re-run the failed task elsewhere.

mw has features that automatically performing the failure detection and re-scheduling.

The less common, but more catastrophic, case is when the master machine fails. To deal

with this, the state of the master process is periodically checkpointed. mw performs the

checkpointing automatically, as long as the user has re-implemented the read ckpt info()

21

and write ckpt info() methods of the MWTask class and the read master state() and

write master state() methods of the MWDriver class. Should the master crash, the com-

putation can be restarted from the state in the checkpoint file.

Infrastructure Scaling. On many of the grid sites in Table 3, our workers are run with

low priority, and the scheduling policy at the sites is to simply suspend the low priority

job, do the process “hangs”, rather than to preempt the low priority job, so the process

“fails.” This job suspension became a significant problem for our computation, as some

jobs were suspended for days, blocking the entire computation waiting for the results of

the suspended tasks. To work around excessively long job suspension, we used the method

reassign tasks timedout workers() of mw that will automatically reassign tasks that

have not completed in a pre-specified time limit. In our case, a time limit of one hour was

sufficient, as we were already limiting the grain size of the worker computation to less than

T = 30min.

A more sever problem occurred when the job suspension occurred during the middle of

an active TCP write to the master process. In this case, the master would block, waiting for

the remainder of the results from the suspended worker. The effects could then cascade, as

writes to open socket connections from other workers were initiated during the time when

the master was blocked, but subsequently, the worker that initiated the socket write was

itself suspended. In this case, the problem was solved by adding timeouts to each network

read in mw.

Another way in which we needed to change the mw code to account for the scale of our

computations, was to re-write mwś socket management layer. The poll() function can have

a maximum of 4096 open sockets, and since we require one socket from the master to each

workers, we could never use more than 4096 workers simultaneously. Re-writing the socket

management code to use the epoll() function removed this limitation, and in our most

recent computations, we have used more than 4500 processors from Table 3 simultaneously.

An apparent shortcoming of the simple master-worker task-distribution scheme is that

the underlying architecture is not theoretically scalable. As the number of worker processes

increases, the single master process may not be able to efficiently handle all incoming re-

quests for work. In this work, by engineering the branch-and-bound algorithm properly, and

by instrumenting the mw code to effectively deal with events occurring in such a large,

distributed, system, our algorithm scales very effectively to over 4000 workers processors.

22

Table 4: Computation Statistics

M = 69 M = 70
Avg. Workers 555.8 562.4
Max Workers 2038 1775

Worker Time (years) 110.1 30.3
Wall Time (days) 72.3 19.7

Worker Util. 90% 71%
Nodes 2.85× 109 1.89× 108

LP Pivots 2.65× 1012 1.82× 1011

5. Computational Results

The solution of the integer programs in Table 2 to solve the football pool problem have been

ongoing since 2006. The computation has not been continually running. It is often stopped

in-between the solution of integer programs or for maintenance of the master machine. To

date, we have been able to establish a new lower bound of |C∗
6 | ≥ 71 for the football pool

problem, an improvement of 6 over the best published bound by Österg̊ard and Wassermann

(2002). In Table 4, we show aggregated computational results for a portion of our compu-

tation. Specifically, we show the work required to solve the aggregated y-sequence IPs in

Table 2 to establish that |C∗
6 | ≥ 70(M = 69) and |C∗

6 | ≥ 71 (M = 70). For these two por-

tions of the computation, over 140 CPU years were used and delivered by grid resources in

roughly 92 days. The total number of nodes in the branch and bound trees for the solution

of the IPs numbers in the billions, and trillions of LP pivots are required to evaluate these

nodes. To our knowledge, this is the largest branch-and-bound computation ever run on a

wide-area grid. For example, Anstreicher et al. (2002) required 11 CPU years to solve the

nug30 quadratic assignment problem, Mezmaz et al. (2006) used 22 CPU years to solve a

flow-shop problem by branch and bound, and Applegate et al. (2006) used 84 CPU years

(on a tightly-coupled cluster) for finding the shortest tour through 24,978 towns in Sweden.

The football-pool problem computation has in fact taken more than 140 CPU years, as it

is still on-going. In fact, as mention in Section 4.5, we have used simultaneously over 4,500

workers while solving IPs related to establishing |C∗
6 | ≥ 72. Figure 2 shows the number of

workers used during a portion of the run in which this maximum was reached.

23

Figure 2: Workers During Portion of Aggregated Sequence IP Calculation

6. Conclusions

In this work, we have performed extensive high-throughput computations aimed at improving

the lower bound on the Football Pool Problem on six matches. To date, we have been able

to establish that |C∗
6 | ≥ 71, which is a significant improvement over the previously best

published bound of |C∗
6 | ≥ 65. Besides being (to our knowledge) the largest computation

of its kind ever undertaken, novel aspects in this work are the combination of isomorphism-

free enumeration, aggregation, and integer programming used in establishing the bound.

Also novel is the demonstration that properly engineered branch-and-bound algorithms can

efficiently scale to over 4500 processors. We note that our work is not a “proof” in the

mathematical sense, as the certificate of the proof would involve demonstrating that all

computer codes used in our work performed flawlessly. Nevertheless, we view our work

as significant evidence of an improvement in the lower bound. Even more important, we

hope that this work demonstrates to the Operations Research community the tremendous

computing power available on computational grids, especially if the processors are used in

a flexible, opportunistic manner. The high-throughput computation continues, and we hope

to establish soon that the optimal code size for the football pool problem on 6 matches is

|C∗
6 | = 73.

24

Acknowledgements

This work has been supported in part by the National Science Foundation, through grant

agreements OCI-0330607 and CMMI-0522796 and through TeraGrid resources provided by

NCSA, SDSC, ANL, TACC, and Purdue University. François Margot is also supported in

part by the Office of Naval Research under grant N00014-03-1-0188. The authors would

like to thank Preston Smith of Purdue University for his help in accessing the computing

resources there, Dan Bradley of the University of Wisconsin-Madison for help in accessing

OSG resources, and the entire Condor team for their tireless efforts to provide a really useful

computing infrastructure.

References

Anstreicher, K., N. Brixius, J.-P. Goux, J. T. Linderoth. 2002. Solving large quadratic

assignment problems on computational grids. Mathematical Programming, Series B 91

563–588.

Applegate, D., R. Bixby, W. Cook, V. Chvátal. 2006. Personal Communication.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, P. H. Vance. 1998.

Branch and price: Column generation for solving huge integer programs. Operations

Research 46 316–329.

Bazaraa, M. S., O. Kirca. 1983. A branch-and-bound heuristic for solving the quadratic

assignment problem. Naval Research Logistics Quarterly 30 287–304.

Bradley, D. 2006. Schedd on the side. Presentation at Condor Week 2006 . Madison, WI.

Butler, G., W. H. Lam. 1985. A general backtrack algorithm for the isomorphism problem

of combinatorial objects. Journal of Symbolic Computation 1 363–381.

Chen, Q., M. C. Ferris, J. T. Linderoth. 2001. FATCOP 2.0: Advanced features in an

opportunistic mixed integer programming solver. Annals of Operations Research 103

17–32.

Danna, E., M. Fenelon, Z. Gu, R. Wunderling. 2007. Generating multiple solutions for

mixed integer programming problems. M. Fischetti, D. Williamson, eds., IPCO 2007: The

25

Twelfth Conference on Integer Programming and Combinatorial Optimization. Springer,

280–294.

Epema, D. H. J., M. Livny, R. van Dantzig, X. Evers, J. Pruyne. 1996. A worldwide flock

of condors: Load sharing among workstation clusters. Journal on Future Generation

Computer Systems 12.

Foster, I., C. Kesselman. 1997. Globus: A metacomputing infrastructure toolkit. Interna-

tional Journal of Supercomputer Applications 11 115–128.

Foster, I., C. Kesselman. 1999. Computational grids. I. Foster, C. Kesselman, eds., The

Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 15–52. Chapter

2.

Frey, J., T. Tannenbaum, I. Foster, M. Livny, S. Tuecke. 2002. Condor-G: A computation

management agent for multi-institutional grids. Cluster Copmuting 5 237–246.

Glankwamdee, W., J. Linderoth. 2006. MW: A software framework for combinatorial op-

timization on computational grids. E. Talbi, ed., Parallel Combinatorial Optimization.

John Wiley & Sons, 239–261.

Goux, J.-P., S. Kulkarni, J. T. Linderoth, M. Yoder. 2001. Master-Worker: An enabling

framework for master-worker applications on the computational grid. Cluster Computing

4 63–70.

Goux, J.-P., S. Leyffer. 2003. Solving large MINLPs on computational grids. Optimization

and Engineering 3 327–354.

Hämäläinen, H., I. Honkala, S. Litsyn, P. Österg̊ard. 1995. Football pools–A game for

mathematicians. American Mathematical Monthly 102 579–588.

Holm, S., M. Sørensen. 1993. The optimal graph partitioning problem: Solution method

based on reducing symmetric nature and combinatorial cuts. OR Spectrum 15 1–8.

Ivanov, A. V. 1985. Constructive enumeration of incidence systems. Annals of Discrete

Mathematics 26 227–246.

Kaibel, V., M. Pfetsch. 2007. Packing and partitioning orbitopes. Mathematical Programming

To appear.

26

Kreher, D. L., D. R. Stinson. 1999. Combinatorial Algorithms, Generation, Enumeration,

and Search. CRC Press.

Lenstra, A. K., H. W. Lenstra, L. Lovász. 1982. Factoring polynomials with rational coeffi-

cients. Mathematische Annalen 261 515–534.

Linderoth, J., G. Thain, S. J. Wright. 2007. User’s Guide to MW . University of Wisconsin

Madison. http://www.cs.wisc.edu/condor/mw.

Litzkow, M. J., M. Livny, M. W. Mutka. 1998. Condor—A hunter of idle workstations.

Proceedings of the 8th International Conference on Distributed Computing Systems . 104–

111.

Macambira, E. M., N. Maculan, C. C. de Souza. 2004. Reducing symmetry of the SONET

ring assignment problem using hierarchical inequalities. Tech. Rep. ES-636/04, Programa

de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro.

Margot, F., , P. Österg̊ard. 2003. Unpublished results.

Margot, F. 2002. Pruning by isomorphism in branch-and-cut. Mathematical Programming

94 71–90.

Margot, F. 2003. Small covering designs by branch-and-cut. Mathematical Programming 94

207–220.

McKay, B. 1996. autoson—A distributed batch system for UNIX workstation networks

(version 1.3). Technical report, Computer Sciences Department, Australian National Uni-

versity.

McKay, D. 1998. Isomorph-free exhaustive generation. Journal of Algorithms 26 306–324.

Méndez-Dı́az, I., P. Zabala. 2006. A branch-and-cut algorithm for graph coloring. Discrete

Applied Mathematics 154 826–847.

Mezmaz, M., N. Melab, E-G. Talbi. 2006. A grid-enabled branch and bound algorithm for

solving challenging combinatorial optimization problems. Research Report 5945, INRIA.

Österg̊ard, P., W. Blass. 2001. On the size of optimal binary codes of length 9 and covering

radius 1. IEEE Transactions on Information Theory 47 2556–2557.

27

Österg̊ard, P., A. Wassermann. 2002. A new lower bound for the football pool problem for

six matches. Journal of Combinatorial Theory, Ser. A 99 175–179.

Read, R. C. 1998. Every one a winner or how to avoid isomorphism search when cataloguing

combinatorial configurations. Annals of Discrete Mathematics 2 107–120.

Sherali, H. D., J. C. Smith. 2001. Improving zero-one model representations via symmetry

considerations. Management Science 47 1396–1407.

Wille, L. T. 1987. The football pool problem on six matches. Journal of Combinatorial

Theory, Ser. A 45 171–177.

Xu, Y., T. K. Ralphs, L. Ladányi, M.J. Saltzman. 2005. ALPS: A framework for implement-

ing parallel search algorithms. Proceedings of the Ninth INFORMS Computing Society

Conference. 319–334.

28

