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Abstract We study approaches for obtaining convex relaxations of global optimization
problems containing multilinear functions. Specifically, we compare the concave and convex
envelopes of these functions with the relaxations that are obtained with a standard relaxation
approach, due to McCormick. The standard approach reformulates the problem to contain
only bilinear terms and then relaxes each term independently. We show that for a multi-
linear function having a single product term, this approach yields the convex and concave
envelopes if the bounds on all variables are symmetric around zero. We then review and
extend some results on conditions when the concave envelope of a multilinear function can
be written as a sum of concave envelopes of its individual terms. Finally, for bilinear func-
tions we prove that the difference between the concave upper bounding and convex lower
bounding functions obtained from the McCormick relaxation approach is always within a
constant of the difference between the concave and convex envelopes. These results, along
with numerical examples we provide, give insight into how to construct strong relaxations
of multilinear functions.

Keywords Global optimization · Bilinear function · Multilinear function

1 Introduction

The construction of convex lower bounding and concave upper bounding functions for non-
convex functions plays a critical role in algorithms for globally solving nonconvex optimiza-
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tion problems. In this work, we focus on multilinear functions φ : [`, u] → R, where

φ(x) =
∑
t∈T

at
∏
j∈Jt

xj , (1)

and [`, u] = {x ∈ Rn | ` ≤ x ≤ u}. Specifically, we are interested in comparing the strength
of relaxations of the graph of such a function, given by the set

X
def
= {(x, z) ∈ [`, u]× R | z = φ(x)}.

An important special case is when φ is a bilinear function, i.e., |Jt| ≤ 2 for all t ∈ T .
When φ(x) consists of a single bilinear term, McCormick [14] proposed to relax the set

B = {(x1, x2, z) ∈ [`1, u1]× [`2, u2]×R | z = x1x2} with the following inequalities, which
we refer to as the McCormick inequalities:

z ≥ u2x1 + u1x2 − u1u2, z ≥ `2x1 + `1x2 − `1`2, (2a)

z ≤ u2x1 + `1x2 − `1u2, z ≤ `2x1 + u1x2 − u1`2. (2b)

Al-Khayyal and Falk [1] showed that the convex hull of B is described by (2). For more
general factorable nonconvex functions, including multilinear functions of the form (1), Mc-
Cormick proposed a recursive procedure in which additional variables and constraints are
added to obtain a formulation of the problem having only bilinear equations which are sub-
sequently relaxed using (2). The resulting relaxation, which we refer to as the McCormick
relaxation, has formed a basis for the relaxations used in many global optimization solution
approaches, such as implemented in BARON [21,24], Couenne [3], and [23].

The strongest possible relaxation of X, its convex hull conv(X), has been shown to be
a polyhedron with the following characterization [6–8,19,22]:

conv(X) = Proj
x,z

{
(x, z, λ) ∈ [`, u]× R×∆2n | x =

2n∑
j=1

λjx
j , z =

2n∑
j=1

λjφ(x
j)
}
, (3)

where x1, x2, . . . x2
n

are the vertices of [`, u], and ∆2n is the 2n-dimensional simplex. In
general, the McCormick relaxation may strictly contain the convex hull, leading to weaker
relaxation bounds. On the other hand, direct use of the convex hull characterization (3)
to create a convex relaxation of X is limited by the exponential growth in the number of
variables. Thus, a natural idea is to seek relaxations of X that may be tighter than what is
obtained with the standard McCormick approach, but which are not as prohibitively large
as the full convex hull approach. A simple idea along these lines is to use the formulation
(3) over subsets of the variables chosen small enough to keep the size of the relaxation
tractable. This idea has already been explored with promising results by Bao, Sahinidis, and
Tawarmalani [2], where procedures to find valid inequalities based on the dual formulation
of (3) are investigated. We also refer the reader to the Ph.D. thesis of the second author [17]
for a more detailed exposition of some of the results presented in this paper.

Since using (3) in any form is likely to increase the computational burden in solving
the relaxation, it is important to understand when this extra work is most likely to yield sig-
nificant benefits in relaxation quality. To this end, we explore conditions under which the
convex hull formulation yields nothing more than McCormick relaxation approach, and, for
the case of bilinear functions, we provide bounds on how much worse the McCormick relax-
ation can be. To our knowledge, this is the first result of this type in the global optimization
literature.
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We begin in §2 with the case in which φ consists of single product term (|T | = 1).
We first review a result of Ryoo and Sahinidis [20] that shows the McCormick relaxation
is equivalent to the convex hull when the bounds on the variables are all [0, 1]. We then
provide the new result that this also holds when the bounds are symmetric about zero, i.e.,
xi ∈ [−ui, ui]. Finally, we provide examples that when these conditions do not hold, the
difference between the convex hull and McCormick relaxations can be arbitrarily large.

In §3, we consider the case when φ can have multiple terms. We begin in §3.1 by re-
viewing an existing result of Meyer and Floudas [15] which states that the concave envelope
of φ over x ∈ [0, 1]n can be obtained as the sum of concave envelopes of the individual
terms of φ when the coefficients on each term are positive. We show that this result ex-
tends to x ∈ [`, u] provided ` ∈ Rn

+, and to general [`, u] if φ is bilinear. Note that these
results do not say anything about how the convex lower bounding function obtained from
the McCormick relaxation compares to the convex envelope.

In §3.2 we focus on bilinear functions of the form b(x) =
∑

{i,j}∈E aijxixj , where E

is a set of unordered pairs of distinct elements of N = {1, . . . , n}, and obtain results that
provide insight into the strength of the McCormick upper and lower bounding functions,
relative to the concave and convex envelopes. To motivate these results, consider an experi-
ment comparing the McCormick relaxation to the convex hull for the following two bilinear
functions defined on x ∈ H = [0, 1]7:

b1(x) =x1x2 + x1x3 + x1x4 + x1x5 + x1x6 + x2x3 + x2x4 + x2x5 + x3x4

+ x3x5 + x4x5 + x4x6 + x5x7 + x6x7,

b2(x) =x1x2 − x1x3 + x1x4 + x1x5 + x1x6 + x2x3 − x2x4 − x2x5 + x3x4

+ x3x5 − x4x5 + x4x6 − x5x7 + x6x7.

For each of these functions, we randomly generated 5000 points uniformly in H and, for
each point xk, calculated the difference between the concave and convex envelopes of b at
xk, denoted chgapH [b](xk), and also calculated the difference between the upper and lower
bounds of b(xk) defined by the McCormick relaxation, denoted mcgapH [b](xk). (These
terms are formally defined in §3.2.) We then construct a scatter plot, shown in Figure 1, of
the points (mcgapH [b](xk), chgapH [b](xk)), k = 1, . . . , 5000. Because the McCormick re-
laxation is weaker than the convex hull, it always holds that mcgapH [b](x) ≥ chgapH [b](x)

and so all of these points lie below the line of slope one passing through the origin. The
distance of the points from this line provides a graphical illustration of the quality of the
McCormick relaxation at each point. A surprising feature of these plots is that all points lie
above a line having smaller slope, suggesting that there exists a constant Cb ≥ 1, depending
on the bilinear function b, such that mcgapH [b](x)/ chgapH [b](x) ≤ Cb holds for all x ∈ H .
In §3.2, we prove that this is indeed the case, and furthermore we provide bounds on the
approximation constant Cb. If aij > 0 for all {i, j} ∈ E, this constant is always less than 2,
and decreases with the coloring number of the graph G = (N,E). This yields, as a special
case, the result of [5,9] that the McCormick relaxation is equivalent to the convex hull when
G is bipartite. When the coefficients are not all positive, our bound on Cb is O(n). We also
show that for any bilinear function, as terms are removed the difference between the convex
hull and McCormick relaxation gaps decreases, suggesting that the improvement in relax-
ation quality by using the convex hull formulation will be more significant when the graph
G is denser.

In §4 we present numerical examples that show our results are tight, and also provide
insights into the gap between these relaxations for cases where our results do not apply. We
make some concluding remarks in §5.
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Fig. 1 Scatter plots of McCormick gap vs. convex hull gap for random points in [0, 1]7 for a bilinear function
having positive coefficients (left) and mixed-sign coefficients (right).

Notation: Given a function f : D → R, the concave envelope of f over D, written cavD[f ],
is the minimum concave upper bounding function of f on D. That is, cavD[f ](x) ≥ f(x)

for all x ∈ D, and if g : D → R is any other concave function with g ≥ f on D, then
g ≥ cavD[f ]. Similarly, the convex envelope of f over D, written vexD[f ], is the maximum
convex lower bounding function of f on D. We let 0 and 1 denote vectors of all zeros and
all ones, and ei be a vector of all zeros except the ith component which has value 1. The
lengths of 0,1, and ei will be clear from context (but are usually all n). We let H = [0,1]

be the unit hypercube. For u ∈ Rn, we define Diag(u) to be the n× n diagonal matrix with
Diag(u)ii = ui.

2 Recursive McCormick relaxation of a single multilinear term

In this section, we consider a multilinear function consisting of a single term, f(x) =∏n
j=1 xj . Specifically, we compare relaxations of set

X[`,u] = {(x, y1) ∈ [`, u]×R | y1 = f(x)}.

We consider cases in which a recursive McCormick relaxation, constructed by recursively
applying the McCormick relaxation to products of pairs of variables, is as strong as conv(X).

2.1 Preliminaries

We first formally define the recursive McCormick relaxation of the set X[`,u]. This re-
laxation is referred to as a recursive Arithmetic Interval in [20]. First, for fixed inter-
vals [`1, u1] and [`2, u2], define the set MC[`1,u1]×[`2,u2] to be the set of (y, x1, x2) ∈
R× [`1, u1]× [`2, u2] that satisfy the McCormick inequalities (2):

y ≥ u2x1 + u1x2 − u1u2, y ≥ `2x1 + `1x2 − `1`2,

y ≤ u2x1 + `1x2 − `1u2, y ≤ `2x1 + u1x2 − u1`2.

Now suppose `, u ∈ Rn with ` ≤ u. A relaxation of this nonconvex set X[`,u] can be
constructed in a higher-dimensional space by introducing variables y2, . . . , yn that satisfy
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yi = xiyi+1 for i = 1, . . . , n − 1 and yn = xn and then relaxing these bilinear con-
straints with the McCormick inequalities. This leads to a “recursive” McCormick relaxation
of X[`,u] which is the polytope defined by:

RMC
(
X[`,u]

)
=

{
(x, y) ∈[`, u]×Rn | yn = xn,

(yi, xi, yi+1) ∈ MC[`i,ui]×[˜̀i+1,ũi+1]
, i = 1, . . . , n− 1

}
where ˜̀n

def
= `n and ũn

def
= un and ˜̀

i = min{ũi+1ui, ũi+1`i, ˜̀i+1ui, ˜̀i+1`i} and ũi =

max{ũi+1ui, ũi+1`i, ˜̀i+1ui, ˜̀i+1`i} are implied lower and upper bounds on yi for i =

n− 1, . . . , 1. The variable yn could be eliminated from the description of RMC
(
X[`,u]

)
, but

we include it for notational convenience.
Ryoo and Sahinidis [20] proved the following result.

Theorem 1 ([20]) Let f(x) =
∏n

i=1 xi. The recursive McCormick relaxation describes the
convex hull of f over the unit hypercube, i.e., Proj(x,y1) (RMC(XH)) = conv(XH).

As observed in [20], when ` = 0, the assumption that u = 1 is without loss of generality;
i.e., we can show the same result holds for f(x) over [0, u].

Corollary 1 Proj(x,y1)

(
RMC(X[0,u])

)
= conv(X[0,u]).

Proof We only need to prove Proj(x,y1)

(
RMC(X[0,u])

)
⊆ conv(X[0,u]). Let (x′, y′1) ∈

Proj(x,y1)

(
RMC(X[0,u])

)
, y1 =

(∏n
i=1 ui

)−1
y′1, and Du = Diag(u). We claim that(

D−1
u x′, y1

)
∈ Proj(x,y1) (RMC(XH)). Clearly, D−1

u x′ ∈ H . Let y′2, . . . , y
′
n be such that

(x′, y′) ∈ RMC(X[0,u]) and let yi = y′i
(∏n

j=i uj
)−1, i = 1, . . . , n. Then, it is easy to

check that (D−1
u x′, y) ∈ RMC(XH). Then, because (D−1

u x′, y1) ∈ Proj(x,y1) (RMC(XH))

Theorem 1 implies there exists λ ∈ ∆2n such that
∑

k λk(x
k, yk) = (D−1

u x′, y1) where
xk, k = 1, . . . , 2n are the vertices of XH and yk = f(xk). This implies x′ =

∑
k λkDux

k,
and y′ =

∑
k λkf(x

k)
∏n

i=1 ui. Since Dux
k ∈ [0, u] and f(Dux

k) = f(xk)
∏n

i=1 ui for
all k this implies (x′, y′) can be written as a convex combination of points in X[0,u]. ut

2.2 Symmetric bounds

We now show another, somewhat surprising, case where the recursive McCormick relaxation
defines the convex hull of a single multilinear term. Specifically, we show that the two
relaxations are the same if the bounds on x are symmetric about zero, i.e., x ∈ [−u, u] for
some u ∈ Rn

+. We begin with the case in which x ∈ [−1,1]. First observe that in this case,
the implied bounds on yi for i = 1, . . . , n are [l̃i, ũi] = [−1, 1]. Consequently, the conditions
(yi, xi, yi+1) ∈ MC[−1,1]2 in the definition of RMC(X[−1,1]) have the form

yi ≥ −xi − yi+1 − 1, yi ≥ xi + yi+1 − 1,

yi ≤ xi − yi+1 + 1, yi ≤ −xi + yi+1 + 1,

for i = 1, . . . , n− 1.
The result is based on the following characterization of the extreme points of RMC(X[−1,1]).

Theorem 2 If (x, y) is an extreme point of RMC(X[−1,1]), then (x, y) ∈ {−1, 1}2n.
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Proof For any (c, d) ∈ R2n, we show that the linear program

max
(x,y)∈RMC(X[−1,1])

cx+ dy (4)

has an optimal solution (x∗, y∗) ∈ {−1, 1}2n, which establishes the claim.
For z ∈ [−1, 1] and t ∈ N = {1, . . . , n}, define

ft(z) = max
xt,...,xn
yt,...,yn

n∑
i=t

cixi +

n∑
i=t

diyi

s.t. (yi, xi, yi+1) ∈ MC[−1,1]2 , i = t, . . . , n− 1,

yt = z, xn ∈ [−1, 1].

Then ft(z) satisfies the following recursive relationship for t = 1, . . . , n− 1:

ft(z) = dtz + max
(xt,yt+1)

{
ctxt + ft+1(yt+1)

∣∣ (z, xt, yt+1) ∈ MC[−1,1]2 .
}

(5)

We show by induction that ft(z) is convex for all t. First, fn(z) = dnz + |cn|. Now assume
ft+1(z) is convex. It follows that the maximum in the expression for ft(z) given in (5) is
attained at an extreme point of the the polyhedron Q(z), given by the set of (xt, yt+1) ∈
[−1, 1]2 that satisfy

−xt − yt+1 ≤ 1 + z, xt + yt+1 ≤ 1 + z,

−xt + yt+1 ≤ 1− z, xt − yt+1 ≤ 1− z.

It is easy to check that for any z ∈ [−1, 1] the extreme points of Q(z) are
{(−1,−z), (1, z), (−z,−1), (z, 1)}. Therefore,

ft(z) = dtz +max
{
ct + ft+1(z),−ct + ft+1(−z),−ctz + ft+1(−1), ctz + ft+1(1)

}
.

Each of the functions taken in the max is a convex function of z, showing that ft(z) is
convex.

Finally, observe that (4) is equivalent to maxy1∈[−1,1] f1(y1). As f1(y1) is convex,
there exists a solution to this with y∗1 ∈ {−1, 1}. Proceeding inductively, assume there
is an optimal solution to (5) with (x∗i , y

∗
i+1) ∈ {−1, 1}2 for i = 1, . . . , t − 1. For

t, recall that for any fixed z, (5) has an extreme point optimal solution among the set
(xt, yt+1) ∈ {(−1,−z), (1, z), (−z,−1), (z, 1)}. Thus, using z = y∗t ∈ {−1, 1} (from the
induction hypothesis) shows there exists x∗t ∈ {−1, 1} and y∗t+1 ∈ {−1, 1} optimal for (5).

ut

Theorem 3 Let f(x) =
∏n

i=1 xi. The recursive McCormick relaxation describes the convex
hull of f over [−1,1], i.e., Proj(x,y1)

(
RMC(X[−1,1])

)
= conv(X[−1,1]).

Proof We only need to prove Proj(x,y1)

(
RMC(X[−1,1])

)
⊆ conv(X[−1,1]). By Theorem

2, if (x, y) is an extreme point of RMC(X[−1,1]) then (x, y) ∈ {−1, 1}2n. For each t, it is
easily checked that if (yt, xt, yt+1) ∈ MC[−1,1]2 , xt, yt ∈ {−1, 1}, then yt = xtyt+1, and
therefore y1 =

∏n
i=1 xi. Thus, (x, y1) ∈ X[−1,1]. This is sufficient to prove the result, since

this shows that every point in Proj
(
RMC(X[−1,1])

)
can be written as a convex combination

of points in X[−1,1]. ut

Using arguments identical to those in the proof of Corollary 1 yields the following gen-
eralization.

Corollary 2 Let u ∈ Rn
+. Then Proj(x,y1)

(
RMC(X[−u,u])

)
= conv(X[−u,u]).
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2.3 Worst-case examples

We have seen that when either ` = 0 or ` = −u, the recursive McCormick relaxation of
f(x) =

∏n
i=1 xi is as good as the convex hull relaxation. We now show that when both of

these conditions are violated, the recursive McCormick relaxation can be arbitrarily worse
than the convex hull. We measure the relative quality of these relaxations by comparing the
distance between the minimum and maximum allowable values for y at a point x. Specifi-
cally, for a given D = [`, u], we define

chgapD[f ](x) = max
{
y | (x, y) ∈ conv(XD)

}︸ ︷︷ ︸
=cavD[f ](x)

−min
{
y | (x, y) ∈ conv(XD)

}︸ ︷︷ ︸
=vexD[f ](x)

rmcgapD[f ](x) = max
{
y | (x, y) ∈ RMC(XD)

}︸ ︷︷ ︸
def
= rmcuD[f ](x)

−min
{
y | (x, y) ∈ RMC(XD)

}︸ ︷︷ ︸
def
= rmclD[f ](x)

.

The relation rmcgapD[f ](x) ≥ chgapD[f ](x) always holds, and by Corollaries 1 and 2
equality holds when either ` = 0 or ` = −u. We present examples that show that rmcgapD[f ](x)

can be arbitrarily larger than chgapD[f ](x).
First, let Du = [1, u]3 for some u > 1 and consider the point x̂ = (u+1

2 , u, 1). The only
way x̂ can be written as a convex combination of vertices of Du is x̂ = 1

2 (1, u, 1)+
1
2 (u, u, 1).

Thus, vexDu
[f ](x̂) = cavDu

[f ](x̂) so chgapDu
[f ](x̂) = 0. Next consider the recursive

McCormick relaxation of f over Du. It is possible to check that rmcuDu
[f ](x̂) = u2 + 1−u

2
and rmclDu

[f ](x̂) = u+ u−1
2 , and therefore

rmcgapDu
[f ](x̂) = rmcuDu

[f ](x̂)− rmclDu
[f ](x̂) = u2 − u > 0.

Since chgapDu
[f ](x̂) = 0, this example shows that, if we let u → ∞, the difference in

relaxation quality between the convex hull and recursive McCormick relaxations can be
arbitrarily large even for fixed n = 3.

Now, let Dn = [−2, 2]n−2×[0, 2]×[−2, 2], and consider the point x̂ = (2, . . . , 2, 0, 0, 2).
Again, the only way x̂ can be written as a convex combination of vertices of Dn is
x̂ = 1

2 (2, . . . , 2,−2, 0, 2) + 1
2 (2, . . . , 2, 2, 0, 2) and hence vexDn

[f ](x̂) = cavDn
[f ](x̂)

so chgapDn
[f ](x̂) = 0. On the other hand, if we consider the recursive McCormick re-

laxation of f over Dn, it can be verified that for n ≥ 3, rmcuDn
[f ](x̂) = 2n and

rmclDn
[f ](x̂) = −2n and hence rmcgapDn

[f ](x̂) = 2n+1. Thus, by letting n → ∞, we
see that even if the bounds ` and u do not grow, the difference in relaxation quality between
the convex hull and recursive McCormick relaxations can be arbitrarily large.

3 General multilinear functions

We now consider general multilinear functions of the form

φ(x) =
∑
t∈T

at
∏
j∈Jt

xj , (6)

defined over x ∈ [`, u], and study concave upper bounding and convex lower bounding
functions of φ over [`, u]. In Section 3.1 we focus on concave envelopes, and study cases
in which the concave envelope of φ can be written as a sum of concave envelopes of the
individual terms. Many of these results follow from results in [6,15], but we review them
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since they are necessary in what follows. Our main results are in Section 3.2, where we
show that for bilinear functions (i.e., |Jt| ≤ 2 ∀t), the gap between the McCormick upper
and lower bounding functions of φ is uniformly within a constant of the gap between the
concave and convex envelopes of φ.

Recall that the concave and convex envelopes of φ have the following representations
[19,22]:

cav[`,u][φ](x) = max
λ

{ 2n∑
k=1

λkφ(x
k)

∣∣∣ 2n∑
k=1

λkx
k = x, λ ∈ ∆2n

}
(7)

vex[`,u][φ](x) = min
λ

{ 2n∑
k=1

λkφ(x
k)

∣∣∣ 2n∑
k=1

λkx
k = x, λ ∈ ∆2n

}
(8)

where xk, k = 1, . . . , 2n are the vertices of [`, u].

3.1 Concave envelope of a sum of multilinear terms

The first result is an almost immediate consequence of [6] and has been explicitly proved in
[15].

Theorem 4 ([15]) Let φ : H → R be as defined in (6), and assume that at > 0 for all
t ∈ T . Also let ft(x) =

∏
j∈Jt

xj for t ∈ T . Then the concave envelope of φ is given by the
sum of concave envelopes of ft:

cavH [φ](x) =
∑
t∈T

at cavH [ft](x) ∀x ∈ H.

The condition at > 0 for all t ∈ T is necessary, even if φ is a bilinear function. Example
2 in Section 3.2.3 provides an example of a bilinear function with a single negative at and
an x ∈ H at which the sum of concave envelopes of the individual bilinear terms is strictly
larger than the concave envelope of the bilinear function.

Theorem 4 can be generalized to the case x ∈ [`, u], provided ` ≥ 0.

Theorem 5 Let `, u ∈ Rn satisfy 0 ≤ ` ≤ u and let φ : [`, u] → R be as defined in (6), and
assume that at > 0 for all t ∈ T . Also let ft(x) =

∏
j∈Jt

xj for t ∈ T . Then the concave
envelope of φ over [`, u] is given by the sum of concave envelopes of ft:

cav[`,u][φ](x) =
∑
t∈T

at cav[`,u][ft](x) ∀x ∈ [`, u].

Proof Define φ′ : H → R by

φ′(x′) = φ
(
Diag(u− `)x′ + `

)
=

∑
t∈T

atft
(
Diag(u− `)x′ + `

)
=

∑
t∈T

at
∑
k∈Kt

a′kf
′
k(x

′)
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where the functions f ′k have the form f ′k(x
′) =

∏
j∈Jk

x′j . Also, a′k ≥ 0 since each is a
product of `j and (uj − `j) terms and `j ≥ 0. Now, let φ′

t(x
′) = ft

(
Diag(u− `)x′ + `

)
=∑

k∈Kt
a′kf

′
k(x

′) for t ∈ T . Applying Theorem 4 twice then yields

cavH [φ′](x′) =
∑
t∈T

at
∑
k∈Kt

a′k cavH [f ′k](x
′) =

∑
t∈T

at cavH [φ′
t](x

′) ∀x′ ∈ H. (9)

Next, because φ′
t(x

′) = ft(Diag(u−`)x′+`) and x ∈ H if and only if (Diag(u−`)x′+`) ∈
[`, u], it is not hard to see that

cavH [φ′
t](x

′) = cav[`,u][ft](Diag(u− `)x′ + `), ∀x′ ∈ H. (10)

Now, let x ∈ [`, u] and let x′ = Diag(u − `)−1(x − `) and y′ = cavH [φ′](x′). Then there
exists λ ∈ ∆2n such that

∑
k λkx̃

k = x′ and
∑

k λkφ
′(x̃k) = y′, where x̃k, k = 1, . . . , 2n

are the vertices of H. Then, observing that xk = Diag(u − `)x̃k + `, for k = 1, . . . , 2n are
the vertices of [`, u] we have

2n∑
k=1

λkx
k =

2n∑
k=1

λk

(
Diag(u− `)x̃k + `

)
= Diag(u− `)x′ + ` = x

and so λ is feasible to the linear program (7) defining cav[`,u][φ]. Also, the objective value
of λ in (7) is

2n∑
k=1

λkφ(x
k) =

2n∑
k=1

λkφ
′(x̃k) = y′ =

∑
t∈T

at cavH [φ′
t](x

′) =
∑
t∈T

at cav[`,u][ft](x)

where the second-to-last equality follows from (9) and the last equality follows from (10).
This proves

cav[`,u][φ](x) ≥
∑
t∈T

ak cav[`,u][ft](x)

and completes the proof as the reverse inequality is immediate. ut

The following example shows that for general multilinear functions, the condition ` ≥ 0

is necessary.

Example 1 Let D = [−1, 1] × [0, 1]3 and φ(x) = f1(x) + f2(x) where f1(x) = x1x2x3
and f2(x) = x2x3x4, and consider the point x̂ = (−1, 1/3, 1/3, 1/3). For this example,
it is easy to verify by solving (7) that cavD[φ](x̂) = 0. In addition, (7) can be used to
find cavD[f1](x̂) = 0 and cavD[f2](x̂) = 1/3, and thus cavD[φ](x̂) < cavD[f1](x̂) +

cavD[f2](x̂).

For bilinear functions, Theorem 4 can be generalized to allow x ∈ [`, u] for any ` ≤ u.
The arguments are fairly standard, but we provide a proof for completeness.

Corollary 3 Let b(x) =
∑

{i,j}∈E aijxixj for x ∈ [`, u], where `, u ∈ Rn and E is a set of
{i, j} pairs, and assume aij > 0 for all {i, j} ∈ E. Then the concave envelope of b is equal
to the termwise McCormick upper bounding function:

cav[`,u][b](x) =
∑

{i,j}∈E

aij min{ujxi + `ixj − `iuj , `jxi + uixj − ui`j} ∀x ∈ [`, u].
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Proof Define b′ : H → R by

b′(x′) = b
(
Diag(u− `)x′ + `

)
=

∑
{i,j}∈E

aij
(
(ui − `i)x

′
i + `i

) ((
uj − `j

)
x′j + `j

)
= f ′(x′) + L(x′),

where f ′(x′) =
∑

{i,j}∈E aij (ui − `i)
(
uj − `j

)
x′ix

′
j is a bilinear function having positive

coefficients, and L(x′) =
∑

{i,j}∈E aij
[
`j(ui − `i)x

′
i + `i(uj − `j)x

′
j + `i`j

]
is an affine

function of x′. Thus,

cavH [b′](x′) = cavH [f ′](x′) + L(x′)

=
∑

{i,j}∈E

aij (ui − `i)
(
uj − `j

)
min{x′i, x

′
j}+ L(x′)

where the first equation follows because L is an affine function, and the second equation
follows from Theorem 4 and from the fact that for f(x1, x2) = x1x2, cav[0,1]2 [f ](x1, x2) =
min{x1, x2}. By a simple scaling argument (x′ ∈ H ⇔ Diag(u− `)x′ + ` ∈ [`, u]) it holds
that

cavH [b′](x′) = cav[`,u][b](Diag(u− `)x′ + `).

Now, let x ∈ [`, u] and let x′ = Diag(u− `)−1(x− `) ∈ H . Then,

cav[`,u][b](x) = cavH [b′](x′)

=
∑

{i,j}∈E

aij (ui − `i)
(
uj − `j

)
min{x′i, x

′
j}+ L(x′)

=
∑

{i,j}∈E

aij min{ujxi + `ixj − `iuj , `jxi + uixj − ui`j}

where the last equation follows because for each {i, j} ∈ E,

(ui − `i)
(
uj − `j

)
min{x′i, x

′
j}+ `j(ui − `i)x

′
i + `i(uj − `j)x

′
j + `i`j

= min{(uj − `j)(xi − `i), (ui − `i)(xj − `j)}+ `j(xi − `i) + `i(xj − `j) + `i`j

= min{ujxi + `ixj − `iuj , `jxi + uixj − ui`j}.

ut

3.2 Approximation results for bilinear functions

In this section, we study the strength of the McCormick relaxation for bilinear functions of
the form:

b(x) =
∑

{i,j}∈E

aijxixj (11)

for x ∈ H, where E is a subset of unordered pairs of distinct indices in N = {1, . . . , n}.
Specifically, the McCormick upper bounding function is

mcuH [b](x) = max
(x,y)∈P

∑
{i,j}∈E

aijyij
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and the McCormick lower bounding function is

mclH [b](x) = min
(x,y)∈P

∑
{i,j}∈E

aijyij

where P = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi + xj − 1, yij ≤ xi, yij ≤ xj , ∀{i, j} ∈ E}
is the polyhedron obtained by using the McCormick inequalities to bound the bilinear terms
xixj .

We are interested in the quality of the McCormick approximation as compared to the
relaxation given by the convex and concave envelopes of b. We therefore define

mcgapH [b](x) = mcuH [b](x)−mclH [b](x), and

chgapH [b](x) = cavH [b](x)− vexH [b](x).

mcgapH [b](x) is a measure of the tightness of the McCormick relaxation of b(x) at each
point x ∈ H = [0, 1]n, and likewise for chgapH [b](x). In this section, we show that under
certain conditions, mcgapH [b](x) is uniformly close to chgapH [b](x).

We begin in Section 3.2.1 by reviewing some existing results and establishing some new
results needed for proving our main theorems. Then, in Section 3.2.2 we give our results for
the case aij > 0 for all {i, j} ∈ E. In Section 3.2.3 we present our (weaker) results for the
general case. Throughout this section we assume x ∈ H. However, all the results can be
generalized to x ∈ [`, u] using arguments similar to those in the proof of Corollary 3.

We first introduce some new notation. For a graph G = (N,E), we let χ(G) be the
coloring number of G. Also, when G is associated with weights we for e ∈ E, we define
w(E′) =

∑
e∈E′ we for any E′ ⊆ E. We also define E+ = {e ∈ E | we > 0}, E− =

E \ E+, and for E′ ⊆ E, w+(E′) =
∑

e∈E+∩E′ we and w−(E′) =
∑

e∈E−∩E′ we. We
let S = {S | S ⊆ N} be the set of all subsets of N . For two sets S1, S2 ⊆ N , δ(S1, S2) =

{e ∈ E | e has one end in S1 and one end in S2}. For any S ∈ S, we let δ(S) = δ(S,N \ S)
and γ(S) = {e ∈ E | e has both ends in S}. Finally, for i ∈ N , we let Si = {S ∈ S | i ∈ S}
be the set of subsets that contain element i.

3.2.1 Preliminaries

We first state two existing results that are required for our analysis.

Theorem 6 ([18]) Let P = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi + xj − 1, yij ≤ xi, yij ≤
xj , ∀{i, j} ∈ E}. The extreme points of P are all {0, 1/2, 1}-valued.

In [18], Theorem 6 is proved for the case that E is the set of edges of a complete graph, but
the theorem is also true when E is any subset of edges.

Theorem 7 ([13]) Consider any graph G = (N,E) having |N | even and weights we for
e ∈ E. There exists a matching M ⊆ E, with

w(M) ≥ w(E)

|N | − 1
.

The following corollary is a slight strengthening of the simple result that there exists a
cut with weight at least half the weight of all edges in the graph (see, e.g., Theorem 5.1 in
[16]). It is a slight improvement on a result in [4]. The slight improvement is important for
our results and can be obtained using arguments from [10] using Theorem 7 in place of the
(weaker) bound on the size of a matching used in [4]. (See also the discussion in [12]).
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Corollary 4 Let G = (N,E) be a graph with |N | even and weights we for e ∈ E. Then
there exist cuts C1, C2 ⊆ E in G having

w(C1) ≥
1

2
w(E) +

∑
e∈E |we|

2(|N | − 1)
, (12)

w(C2) ≤
1

2
w(E)−

∑
e∈E |we|

2(|N | − 1)
. (13)

Proof By applying Theorem 7 using weights w′
e = |we|, there exists a matching M in the

graph (N,E) with
∑

e∈M |we| ≥
∑

e∈E |we|/(|N | − 1). We construct a random cut C̃ to
be defined by the edges between the sets S and N \ S which are generated as follows. For
every edge e = {i, j} ∈ M , if we > 0 we assign i to S and j to N \ S with probability 1/2

and assign j to S and i to N \ S with probability 1/2; if we ≤ 0 we assign i and j to S with
probability 1/2 and assign i and j to N \ S with probability 1/2. Thus, with probability 1,
every positive weight edge in M is in the cut C̃ and every nonpositive weight edge in M is
not in the cut C̃, but every node that was matched by an edge in M has equal probability of
being in S or N \ S. For every node i that was not matched by M , we assign i to S with
probability 1/2 and to N \S with probability 1/2. Thus, any edge e ∈ E \M has probability
1/2 of being in the cut C̃. Therefore, the expected weight of the cut is:

E[w(C̃)] = w+(M) +
1

2

∑
e∈E\M

we = w+(M) +
1

2
(w(E)− w+(M)− w−(M))

=
1

2
w(E) +

1

2
(w+(M)− w−(M))

=
1

2
w(E) +

1

2

∑
e∈M

|we| ≥
1

2
w(E) +

∑
e∈E |we|

2(|N | − 1)
.

This implies there exists a cut C1 that achieves at least the value of the expected weight of
this random cut, proving (12).

Existence of a cut C2 satisfying (13) is established with a nearly identical argument as
for C1, with the exception being that given a matching M with

∑
e∈M |we| ≥

∑
e∈E |we|/(|N |−

1), a random cut C̃ is constructed by placing i and j in the same node set (S or N \ S with
equal probability) if w{i,j} > 0 and by placing i and j in different node sets if w{i,j} ≤ 0.

ut

This result can be strengthened further for graphs that have a small coloring number
when all weights are nonnegative.

Lemma 1 Let G = (N,E) be a graph with χ(G) even, and weights we ≥ 0 for e ∈ E.
Then there exist a cut C in G with

w(C) ≥ 1

2
w(E) +

1

2(χ(G)− 1)
w(E),

Proof Let χ = χ(G) and let S1, . . . , Sχ be a partition of N such that γ(Si) = ∅ for all
i = 1, . . . , k. (I.e., these sets define a coloring of size χ.) Define a complete graph G′ with
vertices N ′ = {1, . . . , χ}, and define w̄ij = w(δ(Si, Sj)) for 1 ≤ i < j ≤ χ as the weights
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on the edges, E′, in G′. By definition, w̄(E′) = w(E). Applying Corollary 4 to the graph
G′, there exists a cut C′ in G′ with

w̄(C′) ≥ 1

2
w̄(E′) +

1

2(χ− 1)
w̄(E′) =

1

2
w(E) +

1

2(χ− 1)
w(E).

Now let C be the set of edges in E defined by C =
⋃

{i,j}∈C′ δ(Si, Sj). Since w(C) =

w̄(C′) and C is a cut in G, this proves the result. ut

Due to Theorem 6, vectors x that are {0, 1/2, 1}-valued play an important role in our
analysis. We therefore determine mcgapH [b](x) and find bounds on cavH [b](x) and vexH [b](x)

for such vectors.

Lemma 2 Let x ∈ Rn be {0, 1/2, 1}-valued and let T1 = {i ∈ N | xi = 1} and Tf = {i ∈
N | xi = 1/2}. Then

mcgapH [b](x) = 1
2

∑
{i,j}∈γ(Tf )

|aij |.

Proof We first derive an expression for mcgapH [b](x) for any x ∈ H:

mcgapH [b](x) =
∑

{i,j}∈E

|aij |
(
min{xi, xj} −max{xi + xj − 1, 0}

)
. (14)

Indeed,

mcgapH [b](x) = mcuH [b](x)−mclH [b](x)

=
∑

{i,j}∈E+

aij min{xi, xj}+
∑

{i,j}∈E−

aij max{xi + xj − 1, 0}

−

 ∑
{i,j}∈E+

aij max{xi + xj − 1, 0}+
∑

{i,j}∈E−

aij min{xi, xj}


=

∑
{i,j}∈E

|aij |(min{xi, xj} −max{xi + xj − 1, 0})

Now, if {i, j} ∈ γ(T1), and hence i, j ∈ T1, then min{xi, xj} = max{xi + xj − 1, 0} = 1.

If {i, j} ∈ δ(T1, Tf ), then min{xi, xj} = max{xi + xj − 1, 0} = 1/2. If {i, j} ∈ γ(Tf ),
then xi = xj = 1/2 and hence min{xi, xj} = 1/2 and max{xi+xj − 1, 0} = 0. Finally, in
all other cases for {i, j}, min{xi, xj} = max{xi + xj − 1, 0} = 0. Thus, the result follows
from (14). ut

Lemma 3 Let x ∈ Rn be {0, 1/2, 1}-valued and let T1 = {i ∈ N | xi = 1} and Tf = {i ∈
N | xi = 1/2}.

(a) If aij ≥ 0 for all {i, j} ∈ E, then

vexH [b](x) ≤ a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

4
a(γ(Tf ))−

1

4(χ(G)− 1)
a(γ(Tf )). (15)
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(b) If the weights aij , {i, j} ∈ E have mixed-sign, then

vexH [b](x) ≤ a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

4
a(γ(Tf ))−

∑
{i,j}∈γ(Tf )

|aij |
4(|N | − 1)

(16)

and

cavH [b](x) ≥ a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

4
a(γ(Tf )) +

∑
{i,j}∈γ(Tf )

|aij |
4(|N | − 1)

. (17)

Proof First, observe that for every vertex xk of H, if we let Sk = {i | xki = 1} then
b(xk) =

∑
{i,j}∈E aijx

k
i x

k
j =

∑
{i,j}∈γ(Sk)

aij = a(γ(Sk)). Thus, we can rewrite the LP
(8) defining vexH [b](x) as follows:

vexH [b](x) = min
λ∈∆2n

∑
S∈S

a(γ(S))λS (18a)

s.t.
∑
S∈Si

λS = xi, i = 1, . . . , n. (18b)

Now, let C = δ(U1, U2) be a maximum weight cut in the subgraph Gf of G induced
by the nodes Tf , where U1 and U2 are the node sets defining the cut (U1 ∪ U2 = Tf and
U1 ∩ U2 = ∅). Let S1 = T1 ∪ U1 and S2 = T1 ∪ U2, and construct a solution to (18) by
letting λS1

= λS2
= 1/2, and λS = 0 otherwise. Clearly, λ ∈ ∆2n . Also, if i ∈ T1 then

i ∈ S1 ∩ S2, so
∑

S∈Si
λS = λS1

+ λS2
= 1 = xi. If i ∈ Tf , then i is in either S1 or S2, so∑

S∈Si
λS = 1/2 = xi. Otherwise, i is in neither S1 nor S2, and hence (18b) is satisfied as

well. Thus, because λ is one feasible solution to (18),

vexH [b](x) ≤ 1

2

(
a(γ(S1)) + a(γ(S2))

)
. (19)

Next, using the definitions of S1 and S2, we observe that for i = 1, 2

a(γ(Si)) = a(γ(Ui)) + a(δ(T1, Ui)) + a(γ(T1)).

Then, observing that a(δ(T1, U1))+a(δ(T1, U2)) = a(δ(T1, Tf )) and a(γ(U1))+a(γ(U2)) =

a(γ(Tf ))− a(δ(U1, U2)) = a(γ(Tf ))− a(C) yields

a(γ(S1)) + a(γ(S2)) = 2a(γ(T1)) + a(δ(T1, Tf )) + a(γ(Tf ))− a(C). (20)

Now, if aij ≥ 0 for all {i, j} ∈ E, then because the coloring number of Gf is no larger than
the coloring number of G, Lemma 1 implies

a(C) ≥ 1

2
a(γ(Tf )) +

1

2(χ(G)− 1)
a(γ(Tf )).

Combining this with (20) and (19) yields part (a). When the weights aij aren’t necessarily
nonnegative, inequality (12) of Lemma 4 yields

a(C) ≥ 1

2
a(γ(Tf )) +

∑
{i,j}∈E |aij |
2(|N | − 1)

,

which, combined with (20) and (19), proves (16) for part (b).
The proof of (17) is similar to that of (16), except that we use inequality (13) in Lemma

4 to obtain a cut C2 such that

a(C2) ≤
1

2
a(γ(Tf ))−

∑
{i,j}∈E |aij |
2(|N | − 1)

.

This cut can then be used to construct a feasible solution to the maximization problem
defining cavH [b](x) with objective value equal to the lower bound in (17). ut
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3.2.2 Bilinear functions with positive weights

In this section, we consider bilinear functions having positive weights: aij > 0 for all
{i, j} ∈ E. We first state the main result.

Theorem 8 Let G = (N,E) have a coloring of size χ, and let b(x) be a bilinear function
of the form (11) with aij > 0 for all {i, j} ∈ E. Then if χ is even,

mcgapH [b](x) ≤
(
2− 2

χ

)
chgapH [b](x) ∀x ∈ H,

and if χ is odd,

mcgapH [b](x) ≤
(
2− 2

χ+ 1

)
chgapH [b](x) ∀x ∈ H.

Note that the theorem implies the result that for bipartite graphs (graphs with coloring of
size two) the McCormick envelopes provide the convex lower and upper envelopes, which
was first proved in [5,9].

Proof We prove the case where χ is even. The case where χ is odd is an immediate conse-
quence since if the coloring number χ(G) of a graph is odd, then it has an even coloring of
size χ(G) + 1. Let K = 2− 2

χ . We need to prove

min
x∈H

(
K chgapH [b](x)−mcgapH [b](x)

)
≥ 0. (21)

Next, because aij > 0 for all {i, j} ∈ E, Theorem 4 applies and hence cavH [b](x) =

mcuH [b](x). Using this, the definitions of chgapH [b] and mcgapH [b], and expanding the
definition of mclH [b](x), the minimization problem in (21) is equivalent to:

min
(x,y)∈P

(
(K − 1) cavH [b](x)−K vexH [b](x) +

∑
{i,j}∈E

aijyij

)
where P = {x ∈ H, y ∈ [0, 1]|E| | yij ≥ xi+xj−1, yij ≤ xi, yij ≤ xj , ∀{i, j} ∈ E} is as
defined in Theorem 6. Then, because cavH [b](x) and − vexH [b](x) are concave functions,
the above problem is a concave minimization problem over a polytope, and hence achieves
its minimum at an extreme point. Theorem 6 then implies that it is sufficient to prove

K chgapH [b](x)−mcgapH [b](x) ≥ 0 (22)

for all {0, 1/2, 1} vectors x.
Therefore, let x be an arbitrary {0, 1/2, 1}-valued vector, and let T1 = {i ∈ N | xi = 1}

and Tf = {i ∈ N | xi = 1/2}. Since aij > 0 for all {i, j} ∈ E, Lemma 2 then implies

mcgapH [b](x) =
1

2

∑
{i,j}∈γ(Tf )

|aij | =
1

2
a(γ(Tf )). (23)

Next, again using Theorem 4,

cavH [b](x) = mcuH [b](x) =
∑

{i,j}∈E

aij min{xi, xj}

= a(γ(T1)) +
1

2
a(δ(T1, Tf )) +

1

2
a(γ(Tf )),
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where the last equality follows because min{xi, xj} = 1 for {i, j} ∈ γ(T1), min{xi, xj} =

1/2 for {i, j} ∈ γ(Tf ) ∪ δ(T1, Tf ), and min{xi, xj} = 0 otherwise. Combining this with
(15) from Lemma 3 and (23) yields

chgapH [b](x) = cavH [b](x)− vexH [b](x) ≥ 1

4

(
1 +

1

χ− 1

)
a(γ(Tf ))

=
χ

2(χ− 1)
mcgapH [b](x).

Rearranging yields

mcgapH [b](x) ≤ 2(χ− 1)

χ
chgapH [b](x) =

(
2− 2

χ− 1

)
chgapH [b](x)

and so indeed (22) holds. ut

3.2.3 General bilinear functions

In this section, we consider bilinear functions that may have both positive and negative
coefficients on the bilinear terms. We first state the main result.

Theorem 9 Let G = (N,E) and let b(x) be a bilinear function of the form (11) over x ∈ H .
Then if |N | is even,

mcgapH [b](x) ≤ (|N | − 1) chgapH [b](x) ∀x ∈ H, (24)

and if |N | is odd,
mcgapH [b](x) ≤ |N | chgapH [b](x) ∀x ∈ H.

Proof As in the proof of Theorem 8, we restrict attention to the case where |N | is even.
First, for xi, xj ∈ [0, 1] observe that

min{xi, xj} −max{xi + xj − 1, 0} = min{xi, xj}+min{1− xi − xj , 0}
= min

{
xi +min{1− xi − xj , 0}, xj +min{1− xi − xj , 0}

}
= min{xi, xj , 1− xi, 1− xj}.

Thus, using this in (14) we can write mcgapH [b](x) as

mcgapH [b](x) =
∑

{i,j}∈E

|aij |min{xi, xj , 1− xi, 1− xj}

= max
(x,z)∈Q

∑
{i,j}∈E

|aij |zij

where Q = {x ∈ H, z ∈ R|E| | zij +xi ≤ 1, zij +xj ≤ 1, zij ≤ xi, zij ≤ xj , ∀{i, j} ∈ E}.
All the constraints of Q are of the form zij − xi ≤ 0 or zij + xi ≤ 1, and hence have the
form of the constraint matrix of a 2-SAT problem. Thus, the results of [11] imply that all
vertices of Q are {0, 1/2, 1}-valued.

Now, we need to prove

min
x∈H

(
(|N | − 1) chgapH [b](x)−mcgapH [b](x)

)
≥ 0.



17

This minimization problem is equivalent to:

min
(x,z)∈Q

(
(|N | − 1) chgapH [b](x)−

∑
{i,j}∈E

|aij |zij
)

Since chgapH [b](x) is a concave function of x, this is a concave minimization problem over
the polyhedron Q, and hence has an extreme point optimal solution. Thus, just as in the
proof of Theorem 8, it is sufficient to show that (24) holds for {0, 1/2, 1}-valued x.

Thus, let x be any {0, 1/2, 1}-valued vector. Using (16) and (17) from Lemma 3 to
bound both vexH [b](x) and cavH [b](x) yields

chgapH [b](x) = cavH [b](x)− vexH [b](x)

≥ 1

4(|N | − 1)

( ∑
{i,j}∈γ(Tf )

|aij |+
∑

{i,j}∈γ(Tf )

|aij |
)

=
1

(|N | − 1)
mcgapH [g](x)

by Lemma 2, completing the proof. ut

The bound in Theorem 9 is significantly weaker than Theorem 8 which provides a
constant approximation guarantee; in this case, the approximation factor is n. In §4 we
present numerical examples that suggest this bound is not tight, and we leave it as an
open question whether there is a constant factor approximation. The following example
shows that even for bipartite graphs, when the weights have mixed signs it is possible that
chgapH [b](x) < mcgapH [b](x), which is in contrast to the case when the weights are all
nonnegative.

Example 2 Consider the bipartite graph with n = 4 nodes and edge set E =

{(1, 3), (1, 4), (2, 3), (2, 4)} with weights a14 = −1 and aij = 1 otherwise, and consider
the point x = (1/2, 1/2, 1/2, 1/2). Then mcgapH [b](x) = (1/2)

∑
{i,j}∈E |aij | = 2.

For cavH [b](x), the optimal value sets λ{1,3} = λ{2,4} = 1/2 and achieves value
(1/2)(a13 + a24) = 1 and for vexH [b](x) the optimal value sets λ{1,4} = λ{2,3} = 1/2 and
achieves the value (1/2)(a14 + a23) = 0. Thus, chgapH [b](x) = 1 < 2 = mcgapH [b](x).
Note also that mcuH [b](x) = 3/2 > 1 = cavH [b](x), showing the necessity of at > 0 in
Theorem 4, even for the case of a bilinear function in which G = (N,E) is bipartite.

Theorem 8 provides a worst-case approximation guarantee for bilinear functions having
nonnegative weights that increases with the coloring number of the graph underlying a bi-
linear function. Since graphs with small coloring number tend to be less dense, this suggests
that the McCormick relaxation gap will generally be closer to the convex hull relaxation gap
for sparser graphs. The next result provides further support for this intuition, regardless of
the signs of the edge weights. Given a graph G = (N,E) and weights aij for {i, j} ∈ E,
for any E′ ⊆ E we denote bE′ as the bilinear function using only the terms in E′:

bE′(x) =
∑

{i,j}∈E′

aijxixj .

Theorem 10 Let E′ ⊆ E. Then, for any x ∈ H ,

mcgapH [bE′ ](x)− chgapH [bE′ ](x) ≤ mcgapH [bE ](x)− chgapH [bE ](x).
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Proof We prove the equivalent inequality:

mcgapH [bE ](x)−mcgapH [bE′ ](x) ≥ chgapH [bE ](x)− chgapH [bE′ ](x). (25)

We prove the result holds for E′ = E \ {k, l} where {k, l} is an arbitrary edge in E, which
implies the result for any E′ ⊆ E by induction.

First suppose akl > 0. Then, mcuH [bE ](x) − mcuH [bE′ ](x) = akl max{xk + xl −
1, 0} and mclH [bE ](x) − mclH [bE′ ](x) = akl min{xk, xl}. Hence, mcgapH [bE ](x) −
mcgapH [bE′ ](x) = akl

(
max{xk + xl − 1, 0} − min{xk, xl}

)
. Similarly, if akl < 0, then

mcgapH [bE ](x) − mcgapH [bE′ ](x) = −akl
(
max{xk + xl − 1, 0} − min{xk, xl}

)
. Thus,

for any akl,

mcgapH [bE ](x)−mcgapH [bE′ ](x) = |akl| (max{xk + xl − 1, 0} −min{xk, xl}) . (26)

Now, suppose again akl > 0 and consider the linear program defining cavH [bE ](x):

cavH [bE ](x) = max
λ∈∆2n

∑
S∈S

a(γE(S))λS (27a)

s.t.
∑
S∈Si

λS = xi, i = 1, . . . , n (27b)

where we have made the dependence on the edge set E explicit: γE(S) = {{i, j} ∈ E | i ∈
S, j ∈ S}. Let λE be an optimal solution to (27). Clearly, λE is also a feasible solution to
the problem (27) when E′ replaces E. Thus,

cavH [bE ](x)− cavH [bE′ ](x) ≤
∑
S∈S

a(γE(S))λES −
∑
S∈S

a(γE
′
(S)

)
λES

=
∑

S∈S:{k,l}∈γE(S)

λES

(
a(γE(S))− a(γE

′
(S))

)
=

∑
S∈Sk∩Sl

aklλ
E
S .

But, (27b) implies
∑

S∈Sk∩Sl
λES ≤ xk and

∑
S∈Sk∩Sl

λES ≤ xl and hence,

cavH [bE ](x)− cavH [bE′ ](x) ≤ akl min{xk, xl}. (28)

Now let λE be an optimal solution to the linear program defining vexH [bE ](x), which
is (27) with max replaced by min. As λE is also feasible to the LP defining vexH [bE′ ](x),
we have, similar to the argument for cavH ,

vexH [bE ](x)− vexH [bE′ ](x) ≥
∑
S∈S

a(γE(S))λES −
∑
S∈S

a(γE
′
(S)

)
λES

=
∑

S∈Sk∩Sl

aklλ
E
S .

Next, (27b) implies

xk + xl =
∑
S∈Sk

λES +
∑
S∈Sl

λES =
∑

S∈Sk∪Sl

λES +
∑

S∈Sk∩Sl

λES ≤ 1 +
∑

S∈Sk∩Sl

λES .
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Since also λES ≥ 0 this implies

vexH [bE ](x)− vexH [bE′ ](x) ≥
∑

S∈Sk∩Sl

aklλ
E
S ≥ akl max{xk + xl − 1, 0}.

Combining this with (28) implies

chgapH [bE ](x)− chgapH [bE′ ](x)

= cavH [bE ](x)− vexH [bE ](x)−
(
cavH [bE′ ](x)− vexH [bE′ ](x)

)
≤ akl (max{xk + xl − 1, 0}+min{xk, xl})
= mcgapH [bE ](x)−mcgapH [bE′ ](x).

The argument for akl < 0 is similar, with the only difference being that the inequality∑
S∈Sk∩Sl

λES ≤ min{xk, xl} is needed to bound vexH [bE ](x) − vexH [bE′ ](x) and the
inequality

∑
S∈Sk∩Sl

λES ≥ max{xk + xl − 1, 0} is needed to bound cavH [bE ](x) −
cavH [bE′ ](x).

ut

4 Numerical experiments

In this section we present some numerical examples that illustrate and complement the the-
ory we presented in the previous sections.

First we look at some experiments related to the approximation results for bilinear func-
tions. We are interested in understanding how tight our results are for both the positive
coefficients case (Theorem 8) and the mixed-sign coefficients case (Theorem 9). Also, in-
spired by Theorem 10, we are interested in the effect the graph density has on the quality of
the McCormick relaxation compared to the convex hull relaxation.

In our first experiment, we fixed the dimension at n = 7 and randomly generated 4000
graphs with varying density. We consider two cases for the coefficients on the bilinear terms
appearing in the corresponding bilinear function: (1) all coefficients are positive one, and
(2) coefficients have mixed-sign, having ‘+1’ with probability 3/4 and ‘-1’ with probability
1/4. For each random graph, we computed the maximum ratio between the McCormick
relaxation gap and the convex hull relaxation gap of the corresponding bilinear function.
Specifically, we calculated: maxx∈H {mcgapH [b](x)/ chgapH [b](x)} . This maximum was
found by calculating mcgapH [b](x) and chgapH [b](x) for all 37 {0, 1/2, 1}-valued points in
H , where the linear programs (7) and (8) were used to calculate chgapH [b](x) for each of
these points.

Table 1 displays the results summarized by coloring number. For each coloring number
from two to seven, we report the average, maximum, and mode of the maximum ratio taken
over all graphs that had that coloring number. For the mode, we also report the percentage
of the graphs that achieved that quantity. These results show that the bound of Theorem 8
is tight for coloring number up to seven. Also, the vast majority of the randomly generated
graphs achieved this worst-case bound. In contrast, when the coefficients have mixed-sign,
the bound of Theorem 9 does not appear tight. The maximum observed ratio was three, in
contrast to the bound of |N | = 7 given by the theorem. In addition, the bound in Theorem
9 does not depend on the coloring number, but these results show that the worst-case ratio
does tend to increase with coloring number.
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Positive Coefficients Mixed-Sign Coefficients
Max Ratio Max Ratio

χ avg max mode(%) avg max mode(%)
2 1.000 1.000 1.000(100) 1.111 2.000 1.000(88.7)
3 1.487 1.500 1.500(94.9) 1.706 2.250 1.500(41.5)
4 1.500 1.500 1.500(100) 1.902 2.500 2.000(63.0)
5 1.667 1.667 1.667(99.8) 2.051 2.600 2.000(41.4)
6 1.667 1.667 1.667(100) 2.205 3.000 2.500(54.1)
7 1.750 1.750 1.750(100) 2.294 3.000 2.500(61.4)

Table 1 Maximum gap ratio for random graphs of size 7, summarized by coloring number.

We also summarized our results by graph density in Table 2. The average, maximum,
and mode of the worst-case ratios is uniformly increasing as the graph density increases.
These results reinforce the intuition provided by Theorem 10 that the difference between the
McCormick relaxation and the convex hull relaxation is more significant for denser graphs.

Positive Coefficients Mixed-Sign Coefficients
Max Ratio Max Ratio

density avg max mode(%) avg max mode(%)
0.0–0.1 0.000 0.000 0.000(100) 0.000 0.000 0.000 (100)
0.1–0.2 1.000 1.000 1.000(100) 1.000 1.000 1.000 (100)
0.2–0.3 1.049 1.500 1.000(90.1) 1.090 2.000 1.000 (83.5)
0.3–0.4 1.365 1.500 1.500(67.6) 1.544 2.000 1.500 (55.3)
0.4–0.5 1.494 1.500 1.500(98.4) 1.758 2.250 2.000 (41.1)
0.5–0.6 1.499 1.667 1.500(99.5) 1.859 2.250 2.000 (57.5)
0.6–0.7 1.507 1.667 1.500(95.8) 1.918 2.500 2.000 (86.2)
0.7–0.8 1.542 1.667 1.500(74.9) 1.970 2.500 2.000 (63.1)
0.8–0.9 1.637 1.667 1.667(81.9) 2.032 3.000 2.000 (51.7)
0.9–1.0 1.717 1.750 1.750(60.1) 2.264 3.000 2.500 (57.5)

Table 2 Maximum gap ratio for random graphs of size 7, summarized by density.

We next consider multilinear functions having terms with more than two variables de-
fined over [`, u]. We conducted some numerical experiments to see how the convex hull
relaxation compares to two weaker relaxations: (1) the recursive McCormick relaxation, ob-
tained by independently applying recursive McCormick to each of the terms, and (2) the
term-by-term relaxation, obtained by using the concave and convex envelopes of each of the
terms. For these computations, we again used the linear programs (7) and (8) to calculate
chgapH [φ](x) for a given point x. The term-by-term relaxation was calculated by using the
formulation of (7) and (8) for each product term independently. Corollary 5 states that if
` ≥ 0 and the coefficients on all terms are positive, the concave upper bounding function
given by the term-by-term relaxation is equal to the concave envelope. We are interested in
seeing how the recursive McCormick and term-by-term relaxations perform more generally.
As an example, we consider the following function:

φ(x) = x1x2x3x4x5 + x1x2x3x4 + x1x3x4x5 + x2x3x5 + x1x3x5 + x4x5 + x1x2,

which has multiple terms of different sizes, all with positive coefficients. We compare the
term-by-term relaxation and recursive McCormick relaxations to the convex hull relaxation
of the function over two different domains: [1, 2]5 and [−1, 2]5. Figure 2, for the [1, 2]5 case,
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Fig. 2 Scatter plots comparing the term-by-term (left) and recursive McCormick (right) relaxation gaps to
the convex hull relaxation gap for the function φ defined over [1, 2]5.
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Fig. 3 Scatter plots comparing the term-by-term (left) and recursive McCormick (right) relaxation gaps to
the convex hull relaxation gap for the function φ defined over [−1, 2]5.

shows scatter plots comparing the term-by-term relaxation gap to the convex hull relaxation
gap (on the left) and the McCormick relaxation gap to the convex hull relaxation gap (on the
right) for 5000 randomly generated points in [1, 2]5. Figure 3 shows the same plots for the
domain [−1, 2]5. In both cases, the term-by-term relaxation appears significantly better than
the recursive McCormick relaxation, since in the latter case the distribution of the points is
shifted significantly away from the ideal case of the line with slope one.

The most interesting of these plots is the term-by-term scatter plot for the case of domain
[1, 2]5 in Figure 2. Recall that when ` ≥ 0, Corollary 5 applies and hence we know the
term-by-term upper relaxation yields the concave envelope. However, we have no theory
suggesting the overall gap should be close to the convex hull gap. Nevertheless, the term-
by-term scatter plot has the same form as the scatter plots in Figure 1 for the bilinear case,
in fact with an even tighter band, suggesting that such a result might hold. In contrast, as we
would expect based on the examples in Section 2.3, the results for the recursive McCormick
relaxation do not suggest any such bound. Furthermore, in Figure 3 with domain [−1, 2]5,
Theorem 5 does not apply, and thus it is not surprising that the term-by-term relaxation does
significantly worse than the convex hull.

To further explore the strength of the term-by-term relaxation when ` ≥ 0 and all coeffi-
cients are positive, we generated 200 random multiterm multilinear functions of dimension
6, and estimated the maximum ratio of term-by-term gap to convex hull gap for each of
these. We estimated this ratio by calculating the ratio at 50000 random points in the do-
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main [0, 1]6 and taking the maximum of these. The largest estimate of the maximum ratio
we found was about 1.21. This experiment, along with images like Figure 2, leads us to the
following conjecture.

Conjecture 1 For multilinear functions with positive coefficients defined over [`, u] with
` ≥ 0, the ratio between the term-by-term gap and the convex hull gap is uniformly bounded
above by a constant.

5 Concluding remarks

We have studied the relationship between the convex hull relaxation of a multilinear func-
tion and the McCormick relaxation, obtained by relaxing individual bilinear terms. For a
single product term of possibly more than two variables, we found a new condition when
these relaxations are equivalent, but found that in general the McCormick relaxation can
be significantly larger than the convex hull relaxation. For bilinear functions, we demon-
strated that the gap between the upper and lower bounding functions from the McCormick
relaxation is always within a constant factor of the gap between the concave and convex
envelopes. Moreover, the maximum relative difference decreases as the coloring number of
the associated graph decreases. These results, along with a result showing that the difference
in these gaps is always smaller for sparser graphs, suggest that the extra benefit from using
a relaxation stronger than the McCormick relaxation is likely to be most beneficial when the
associated graph is dense.

This work leaves some additional theoretical and computational questions open. On the
theoretical side, we believe that the approximation ratio we have provided for general bilin-
ear functions (having both positive and negative coefficients on the terms) is not as tight as
possible. We have also conjectured that using the convex hull of every term in a multilinear
function having positive coefficients on all terms will yield an approximation with a gap
that is within a constant factor of the gap between the concave and convex envelopes. This
would be a generalization of our result for bilinear functions. On the computational side, it
would be interesting to build on the ideas of [2] and use the insights gained from this paper
to devise a relaxation approach for multilinear functions that yields some of the potential
improvement in relaxation quality that the convex hull formulation yields while keeping the
relaxation size manageable.
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