
Branching in the Dual Decomposition Method
for Stochastic Integer Programs⋆

Zhichao Ma1

and Jeff Linderoth1,2

1 Department of Industrial and Systems Engineering
2 Wisconsin Institute of Discovery
{zma59,linderoth}@wisc.edu

Abstract. Stochastic mixed-integer programs are hard to solve directly.
Instances with more than a modest number of scenarios cannot be solved
by passing their deterministic equivalent (extensive form) to a mixed-
integer programming solver. By employing Dual Decomposition, which
relaxes the nonanticipativity constraints in a Lagrangian fashion, the
problem can be divided into smaller, independent subproblems. Then,
there is a search over the space of Lagrange multipliers to make the
lower bound obtained from the relaxation as large as possible. However,
even if the optimal solution of the Dual Decomposition is found, there is
no guarantee of solving the original problem—the nonconvexity induced
by integrality can result in a gap between the optimal solution and the
lower bound provided by the Lagrangian Dual. To close this gap, we must
enforce consensus among the variables that violate the nonanticipativity
constraints by branching. Usually there are many variables that do not
agree, and thus many choices for the branching entity.
In this work, we study branching for the Dual Decomposition method in
stochastic integer programming. We translate and implement traditional
methods from mixed integer programming to this context, including max
fractionality, pseudocosts, and strong branching. We also present a hy-
brid method, that uses the Lagrangian weighted deviation as a selection
filter for strong branching. We present an empirical study comparing the
performance of all methods on a variety of instances. We find that the
new hybrid method typically outperforms other methods.

Keywords: Stochastic Integer Programming · Branching Methods · Dual
Decomposition

1 Introduction

We study Lagrangian dual decomposition methods for solving the following two-
stage stochastic mixed integer program:

ϕSMIP = min
x,y

{
c⊤x+

∑
s∈S

psq
s⊤ys : (x, ys) ∈ Ks, s ∈ S

}
, (SMIP)

⋆ Work supported by the U.S. Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research (ASCR) under Contract No. DE-AC02-0

2 Ma and Linderoth

where Ks := {(x, ys) : W sys = hs − T sx, x ∈ X, ys ∈ Y }, and X and Y
are mixed-integer sets defined by linear inequalities and integrality restrictions
on the variables x and y, respectively. The elements (qs, hs, T s,W s) := ξs are
typically samples of a random vector ξ, occurring with probability ps. In (SMIP)
the decisions x are made before ξ is observed, and the objective is to optimize
the cost of x plus the expected cost of recourse decisions ys that are made after
observing sample ξs corresponding to scenario s ∈ S.

To form the Lagrangian dual, we introduce copies of the first-stage decision
variables for every scenario along with a “master copy” z, yielding an equivalent
formulation of (SMIP):

ϕSMIP = min
x,y,z

{∑
s∈S

ps(c
⊤xs + qs⊤ys) : (xs, ys) ∈ Ks, xs = z, s ∈ S

}
. (1)

The constraints xs = z, s ∈ S, enforce nonanticipativity, that is, the same
first-stage decisions must be made for all scenarios. Introducing multiplier vec-
tors λ1, λ2, . . . , λ|S| for the nonanticipativity constraints (NAC), we obtain the
Lagrangian dual function for (1):

L(λ) := min
x,y,z

{∑
s∈S

ps(c
⊤xs + qs⊤ys + λs⊤(xs − z)) : (xs, ys) ∈ Ks, s ∈ S

}
. (2)

For any choice of the vectors of multipliers λ := (λ1, λ2, . . . , λ|S|), The La-
grangian function L(λ) provides a lower bound on ϕSMIP. Moreover, evaluation
of the function L(λ) decomposes by scenario and thus can be implemented in a
distributed manner. After its introduction by Carøe and Schultz [8], many au-
thors have successfully applied the Lagrangian dual decomposition technique to
obtain high-quality solutions to (SMIP) [3, 16, 15, 21, 26].

However, even if the optimal choice of multipliers λ∗ yielding the largest
lower bound L(λ∗) is found, the lack of convexity of the sets Ks can result in an
optimality gap: L(λ∗) − ϕSMIP > 0. To close the gap, the (relaxed) nonantici-
pativity constraints must be enforced. After evaluating L(λ), there are typically
many variables whose values do not agree, and thus a branching decision must be
made to decide on which variable(s) to enforce consensus first. In this paper, we
study branching methods that enforce consensus among the first-stage variables
in the Lagrangian split-variable formulation (1).

Branching methods have been well-studied for mixed integer programming
(MIP) [1, 2, 6, 20, 7, 23, 12], and we will draw inspiration and intuition from MIP
branching methods. A common (yet ineffective) method for branching in MIP
is most infeasible branching, which chooses the variable whose fractional part is
closest to 0.5 [1]. Another simple branching method in MIP is selecting the frac-
tional variable the largest objective function coefficient [24]. More complex MIP
branching methods estimate or compute the improvement in objective function
value after branching, as in pseudocost branching [11], strong branching [5], and
reliability branching [1].

The choice of branching entity can have a huge impact on the size of the
enumeration tree in MIP [1, 10, 20], so it is surprising that besides the recent

Branching in Dual Decomposition for SMIP 3

work [17] we are unaware of any work that has investigated techniques for making
branching decisions in the context of dual decomposition for stochastic programs.

The remainder of the paper is organized into 3 sections. In Section 2, we
gives some details of our implementation of the dual decomposition method.
Section 3 describes five different methods for selecting the branching variable in
the dual decomposition method. In Section 4, we present computational results
comparing the empirical performance of the branching methods.

2 Dual Bounds

2.1 Computing a Lagrangian Bound

The Lagrangian dual is to find the λ that maximizes L(λ) defined in (2). Note
that since z is unrestricted, the function L(λ) is bounded below only when∑

s∈S λs = 0. When this requirement holds, the z variables vanish from (2), and
the evaluation of L(λ) becomes separable over the different scenarios. We can
write

L(λ) =
∑
s∈S

psLs(λ
s), (3)

where

Ls(λ
s) := min

x,y
{c⊤x+ qs⊤y + λs⊤x : (x, y) ∈ Ks} for all s ∈ S, (4)

and the Lagrangian dual can be written

ϕLD := max
λ

{
L(λ) :

∑
s∈S

λs = 0
}
. (LD)

The functions Ls(λ
s) are piecewise-concave functions of λs for each s ∈ S, so

L(λ) is a piecewise-concave function of L(λ). Many methods exist for solving this
non-differential concave maximization problem, such as the classical subgradient
method [27], cutting-plane methods [14], column-generation methods (applied to
the dual) [22], level methods [18], and bundle methods [16] to name but a few.

In our implementation, we used a simple (asychronous) subgradient method
designed for SMIP to find every improving values of L(λ) [19]. Given values of
multipliers at the kth iteration of the algorithm λk := (λk,1, λk,2, . . . λk,s), eval-
uating the Lagrangian function L(λk) requires solving the optimization prob-
lem (4) for each s ∈ S. We assume for simplicity that each optimization problem
has an optimal solution xk,s for each s ∈ S. Using these optimal solution values,
the values of λk are updated according to

λk+1,s = λk,s + ak(xk,s −
|S|∑
s′=1

psx
k,s′), (5)

where ak is the well-known Polyak stepsize [25]

ak =
L∗ − L(λk)∑|S|

s=1 ∥xk,s −
∑|S|

s′=1 psx
k,s′∥2

,

4 Ma and Linderoth

and ϕLD is the optimal Lagrangian function value. In practice, an upper bound
on the optimal function value is used in place of the unknown ϕLD.

We could have used a more sophisticated method for optimizing (LD), but
our focus is on evaluating the empirical performance of branching methods and
their ability to improve the dual bound obtained at a node of the branch and
bound tree, so this simple multiplier-update rule should suffice. Moreover, in
practice, the problem (LD) is not solved to optimality. Rather, multipliers are
updated for perhaps a fixed number of iterations. To save computational effort
and improve empirical performance, we often do a modest number of subgradient
iterations at each node of the branch and bound tree.

2.2 Branching in Dual Decomposition

As stated in the introduction, the nonconvexity of the sets Ks can result in
a gap between the optimal value ϕLD of the Lagrangian dual and the optimal
solution value ϕSMIP. If there is a gap, there will be at least one variable xi that

violates the NAC. That is, the values of x1
i , ..., x

|S|
i in the optimal solutions to

the scenario subproblems are not all equal. We can attempt to enforce consensus
by partitioning the domain at a branching point. In this work, similar to [8], we
use the average value x̄i as the branching point

x̄i :=

|S|∑
s=1

psx
s
i . (6)

In [17], Kim and Dandurand consider a different branch-point selection and
provide finite termination guarantees. We also implemented different branch
point selection mechanisms, but they did not significantly alter the performance
of the branching methods compared to the simple midpoint scheme.

At node N of the branch and bound tree, we define the scenario subproblem
s as Ks,N , and our branching dichotomy will create two new branching nodes
L and R. If variable xi is required to take on integer values, then the feasible
regions of the children are

Ks,L := Ks,N ∩ {(x, y) ∈ Rn1 × Rn2 : xi ≤ ⌊x̄i⌋} ∀s ∈ S (7)

Ks,R := Ks,N ∩ {(x, y) ∈ Rn1 × Rn2 : xi ≥ ⌈x̄i⌉} ∀s ∈ S. (8)

If xi is a continuous variable that violates the NAC, the feasible regions of the
children are

Ks,L := Ks,N ∩ {(x, y) ∈ Rn1 × Rn2 : xi ≤ x̄i − ϵ} ∀s ∈ S (9)

Ks,R := Ks,N ∩ {(x, y) ∈ Rn1 × Rn2 : xi ≥ x̄i + ϵ} ∀s ∈ S, (10)

for some small feasibility tolerance ϵ > 0.
It’s important to note that for some of the scenario subproblems, the solution

of its relaxation xs
i will not violate the new branching constraint xi ≤ x̄i or

xi ≥ x̄i. In our implementation, we reuse the solution for those scenarios when
evaluating the Lagrangian at the node.

Branching in Dual Decomposition for SMIP 5

3 Branching Methods

If there are multiple variables that violate the NAC at a node, then we must select
one on which to branch. Good branching variables are those that significantly
improve the lower bounds of their child nodes. In this section, we briefly review
branching methods from MIP and explain their adaption and implementation
in the context of dual decomposition for solving (SMIP).

For instances in which both continuous and integer variables violate NAC
at a node, we use a branching priority to branch on all integer variables first.
That is, if there are integer variables violating the NAC, continuous variables
violating the NAC are not candidates for branching. Because the branching
constraints (7) and (8) allow for rounding of the new bound, these are some-
what stronger branches, and our preliminary computational experiments clearly
demonstrated that setting this branching priority improved computational per-
formance.

3.1 Most Infeasible = Max Dispersion

The most-fractional branching rule in MIP selects the branching variable whose
value most violates the (relaxed) integrality conditions. Similarly, the Max Dis-

persion branching rule in DD selects the branching variable whose values x1
i , x

2
i , . . . x

|S|
i

most violate the (relaxed) NAC. Here, we define most as having the largest vari-
ance, so the Max Dispersion branching rules selects the index i∗MD with

i∗MD ∈ argmax
i∈{1,...,n1}

∑
s∈S

(xs
i − x̄i)

2. (11)

3.2 Lagrangian-Weighted Max Deviation

It is well-known in MIP that the most-fractional branching rule is empirical ter-
rible, essentially no-better than selecting a random variable on which to branch
[1]. The rule completely ignores the objective function when making a decision.
Intuitively, changing the bounds for variables with large objective function coef-
ficients should have more impact on the optimal solution value than for variables
with small coefficients. In the Lagrangian (3), the objective function coefficient
for variable xi depends both on ci and the λs

i for each scenario s ∈ S. The
Lagrangian-Weighted Max Deviation branching method selects the branching
variable i∗LWMD with

i∗LWMD ∈ argmax
i∈{1,...,n1}

∑
s∈S

ps(ci + λs
i)

2(xs
i − x̄i)

2. (12)

We use the square of the objective function coefficients in order to to match the
(squared) units of deviation from the mean.

6 Ma and Linderoth

3.3 Strong Branching

Strong branching is an important component of most variable selection rules
used in commercial MIP solvers. Strong branching works by explicitly calculat-
ing bounds of potential child nodes and selecting the branching variable that
leads to the largest bound improvement in the children. It is straightforward
to adopt this methodology for branching in the DD method. If ℓN is the lower
bound obtained at node N of the branch and bound tree, and IN ⊂ [n1] are the
indices of variables that do not satisfy the NAC, then for each i ∈ IN , the two
branching nodes (from (7) and (8) or from (9) and (10)) are created, and a fixed
number s of subgradient iterations are done for these tentative branches. Note
that in the context of the DD method, doing one subgradient iteration requires
solving an integer program for every scenario, so iterations requires significant
computational effort.

We denote ℓLi and ℓRi as the largest lower bound in each of these nodes during
the subgradient iterations and define the bound improvement parameters

∆ℓLi = ℓLi − ℓN (13)

∆ℓRi = ℓRi − ℓ. (14)

The Strong Branching variable selection rule branches on the variable index i∗SB

with

i∗SB = argmax
i∈{1,...,n1}

score(∆ℓLi , ∆ℓRi), (15)

where

score(a, b) = (1− µ)min{a, b}+ µmax{a, b} (16)

is a score function designed to combine the bound improvement measure of
both child nodes recommended by [1, 20]. We used a value of µ = 0.1 in our
implementation.

During strong branching on variable xi, we can potentially add bounds to the
node based on the observed lower bound value. Specifically, if the observed lower
bound is larger than the value of a known upper bound, we can fix the bounds
to those on the sibling branch. If both sibling branches have lower bounds larger
than a known upper bound, the node can be fathomed.

3.4 Pseudocost and Reliability Branching

Pseudocosts are values that attempt to estimate the per-unit change on dual
bound obtained when branching on a specific variable. Specifically, we associate
with each variable i ∈ [n1] two quantities ΨL

i and ΨR
i that are estimates of

the rate of change of the dual bound if we reduce variable xi’s upper bound or

increase variable xi’s lower bound, respectively. Given solutions x1
i , x

2
i , . . . x

|S|
i

Branching in Dual Decomposition for SMIP 7

at a node, with branching point x̄i, we can compute the weighted total bound
changes for both child potential child nodes as

FL
i :=

∑
s∈S

ps max{xs
i − x̄i, 0}

FR
i :=

∑
s∈S

ps max{x̄i − xs
i , 0}.

The Pseudocost Branching variable selection method selects the variable index
with the largest score

i∗PSEUDO ∈ argmax
i∈{1,...,n1}

score(ΨL
i F

L
i , ΨR

i FR
i). (17)

It remains to define exactly how the pseudocost values ΨL
i and ΨR

i are computed.
After branching on variable xi and observing the change in bound of each child
node, we obtain information useful for estimating pseudocosts. Specifically, after
branching, observing dual bound changes on the left and right branches of ∆ℓLi
and ∆ℓRi , we can compute an implied pseudocost as

ΨL
i =

∑
s∈S:xs

i>x̄

ps∆ℓLi /(x
s
i − x̄) (18)

ΨR
i =

∑
s∈S:xs

i<x̄

ps∆ℓRi /(x̄− xs
i) (19)

Then, we can use the average observed value of the implied pseudocosts for
variable xi as its pseudocosts. An important factor not yet considered is how the
pseudocost values are initialized.

Reliability branching is an implementation of pseudocost branching that does
a careful initialization of the pseudocost values for each variable [1]. Specifically,
the pseudocosts ΨL

i and ΨR
i for variable xi are considered unreliable if variable

xi has not been branched on at least ηrel times. When considering branching
on a variable, if the variable is unreliable, its bound changes are computed via
strong branching as described in Section 3.3 equations (13) and (14), and these
values are used when making the branching decision. If we define U ⊂ [n1] as the
set of unreliable variables and [n1] \ U as the set of reliable variables, then the
Reliability Branching variable selection method choose the variable with index
i∗REL, where

i∗REL ∈ arg max
i∈U,j∈[n1]\U

{score(∆ℓLi , ∆ℓRi), score(Ψ
L
j F

L
j , ΨR

j FR
j)}. (20)

Moreover, the bound changes computed via strong-branching give rise to an
implied pseudocost (18) which can be averaged into the current pseudocost es-
timates ΨL

i and ΨR
i thus making variable xi somewhat more “reliable.”

3.5 Filter Branching Method

Computational results with strong branching demonstrate that it is the most
effective method at reducing the number of nodes of a branch and bound tree,

8 Ma and Linderoth

but computing the estimates (13) and (14) requires significant computational
effort. A final proposed branching method “filters” the branching candidates by
selecting the top K variables when ranked according to the weighted Lagrangian
metric in (12), and performs then takes strong branching on these K candidate
variables. Finally, we branch on the candidate variable with the highest score
from strong branching.

4 Computational Results

4.1 Implementation Details

The DD method was implemented in C++ using SUTIL [9] to read and manip-
ulate the stochastic programming instances, Cplex for solving the MIP scenario
subproblems, and the runtime framework MW [13] for managing the algorithm
coordination between master problem and subproblems. MW is designed to help
implement master-worker-type parallel algorithms running in a dynamic, hetero-
geneous, distributed computing environment. For the computations comparing
DD branching rules, MW was used in its synchronous mode, so all computations
were run on a single machine for each instance.

Computational experiments were run on a cluster of shared computing re-
sources at the UW-Madison Center for High Throughput Computing managed
by the HTCondor scheduling framework [28]. To ensure a consistent comparison
of computational results run on different machines at different times, we use the
number of mixed integer programs solved as the primary measure of the units of
work, and we limit all methods to an upper limit of 6000|S| MIPs solved. Our
experiments are designed to compare how well different branching rules improve
the Lagrangian lower bound. To reduce variability introduced by the branch and
bound process, we set the upper-bound cutoff to the value of the best-known
solution to each problem instance.

Other parameters of the algorithm were set as follows:

– The subgradient method was initialized with first iterate λ = 0 and run for
at most 500 iterations at the root node.

– At each child node, the subgradient method was initialized with the λ that
had largest Lagrangian value from its parent and run for at most either 1 or
5 iterations.

– The nodes of the branch and bound tree were processed in best-bound order
(smallest active node lower bound first).

– A feasibility tolerance of ϵ = 10−6 was used when branching on continuous
variables in (9) and (10).

– We use s = 1 subgradient iterations to estimate the lower bound improve-
ments ℓLi and ℓRi in strong branching. (Section 3.3)

– We use ηrel = 2 to define whether or not a variable’s pseudocost is reliable.
(Section 3.4)

– In the filter branching method of Section 3.5, we consider at most K = 5
candidates for strong branching.

Branching in Dual Decomposition for SMIP 9

4.2 Problem Instances

Computational experiments comparing the different branching methods were
run on five families of problem instances. The sizes and dcap instance fam-
ilies are from SIPLIB [4], and three other instances (sssslp, facility and
facility-binary) are new instance families we generated. Each member of the
instance family may have a different number of scenarios, resulting in 31 in-
stances in our benchmark set. Table 1 shows characteristics of all instances.

Table 1: Detailed characteristics of problem instances

First Stage Second Stage
Name Scenario Var Int Bin Row Var Int Bin Row

sizes 3,5,10 75 0 10 37 75 0 10 37
dcap233 200,300,500 12 6 0 6 27 27 0 15
dcap243 200,300,500 12 6 0 6 36 36 0 18
dcap332 200,300,500 12 6 0 6 24 24 0 12
f3 h6 c3 10,20,50 36 36 0 37 66 57 9 54
f5 h5 c5 10,20,50 50 50 0 51 155 130 25 90
f5 h7 c10 10,50 105 105 0 106 410 360 50 180

f5 h8 c10 binary 10,20,50 240 0 240 120 410 0 0 135
f10 h15 c20 binary 10,20 900 0 900 450 3020 0 0 480

sssslp 10 20 10,20,50 10 0 10 0 420 220 200 260
sssslp 15 30 10,20,50 15 0 15 0 930 480 450 540

4.3 Comparison of Branching Methods

We ran our implementation of the DD algorithm on each of the 31 instances
using each of the five branching methods described in Section 3. There were 15
of the 31 instances solved to optimality by at least one of the branching methods
and 16 unsolved by any of the methods within the work limit of 6000|S| MIPs.
It is notable that none of the instances in the sizes or dcap family were solved
to optimality within the work limit, and these are the instance families in our
test suite that have continuous first-stage decision variables. We use different
metrics for comparing the methods for the different sets of instances. For solved
instances, we use the number of MIPs solved, and for unsolved instances, we
use the final remaining optimality gap. Recall that for all instances, we set the
upper bound value to the best-known solution value, so we are really comparing
the lower bound achieved. We ran the experiment with limits of both 1 and 5
subgradient iterations at each child node.

Figure 1 shows performance profiles summarizing the results of all experi-
ments. The left figure show results for the solved instances, using either 1 or
5 subgradient iterations per child node, and the right figures show results for
unsolved instances, again using 1 or 5 subgradient iterations per node.

10 Ma and Linderoth

Fig. 1: Performance Profile of solved and unsolved problems instances with 1 and
5 iterations in child nodes

For solved instances, the strong branching method or the filtered strong
branching method was most effective at reducing the total number of MIPs
solved in order to prove optimality. For unsolved instances, max-weighted La-
grangian and the filter strong branching method are the most effective.

The pseudocost-based method of reliability branching and surprisingly poor
performance, especially for the unsolved instances. Understanding why this is the
case and adapting pseudocost-based methods for dual-decomposition remains an
area of future research.

5 Conclusion

We empirically compared five different branching rules for closing the optimality
gap in a Lagrangian dual decomposition method for solving two stage stochas-
tic mixed integer programs. The results indicate that judicious use of strong-
branching methodology in this context can outperform other branching rules
considered. Continuing work includes examination of the empirical tradeoff be-
tween applying subgradient iterations to improve the dual bound at each node
or using subgradient iterations to select a good branching candidate.

Branching in Dual Decomposition for SMIP 11

References

1. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Re-
search Letters 33, 42–54 (2004)

2. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.J., Hooker,
J.N. (eds.) Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems. pp. 309–311. Springer Berlin Heidelberg
(2009)

3. Ahmed, S.: A scenario decomposition algorithm for 0-1 stochastic programs. Op-
erations Research Letters 41, 565–569 (2013)

4. Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., Sen,
S.: SIPLIB: a stochastic integer programming test problem library (2015),
https://www2.isye.gatech.edu/ sahmed/siplib

5. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem. Princeton University Press, Princeton, NJ (2006)

6. Berthold, T., Salvagnin, D.: Cloud branching. In: Gomes, C., Sellmann, M. (eds.)
Integration of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems. pp. 28–43. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2013)

7. Breu, R., Burdet, C.A.: Branch and bound experiments in zero-one programming.
Mathematical Programming 2, 1–50 (1974)

8. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming.
Operations Research Letters 24, 37–45 (1999)

9. Czyzyk, J., Linderoth, J., Shen, J.: Sutil: A utility library for handling stochastic
programs (2005), https://coral.ise.lehigh.edu/ sutil/index.html

10. Forrest, J.J.H., Hirst, J.P.H., Tomlin, J.A.: Practical solution of large scale mixed
integer programming problems with UMPIRE. Management Science 20, 736–773
(1974)

11. Gauthier, J.M., Ribière, G.: Experiments in mixed-integer linear programming
using pseudo-costs. Mathematical Programming 12(1), 26–47 (1977)

12. Glankwamdee, W., Linderoth, J.T.: Lookahead branching for mixed integer pro-
gramming. In: Proceedings of the Twelfth INFORMS Computing Society Meeting.
pp. 130–150 (2011)

13. Goux, J.P., Kulkarni, S., Linderoth, J., Yoder, M.: An enabling framework for
master-worker applications on the computational grid. In: Proceedings the Ninth
International Symposium on High-Performance Distributed Computing. pp. 43–50
(2000)

14. Kelley, J.E.: The cutting plane method for solving convex programs. Journal of
SIAM 8(4), 703–712 (1960)

15. Kim, K., Petra, C.G., Zavala, V.M.: An asynchronous bundle-trust-region method
for dual decomposition of stochastic mixed-integer programming. SIAM Journal
on Optimization 29(1), 318–342 (2019)

16. Kim, K., Zavala, V.M.: Algorithmic innovations and software for the dual de-
composition method applied to stochastic mixed-integer programs. Mathematical
Programming Computation 10(2), 225–266 (2018)

17. Kim, K., Dandurand, B.: Scalable branching on dual decomposition of stochastic
mixed-integer programming problems. Mathematical Programming Computation
14, 1–41 (2022)

18. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods.
Mathematical Programming 69, 111–147 (1995)

12 Ma and Linderoth

19. Lim, C.H., Linderoth, J.T., Luedtke, J.R., Wright, S.J.: Parallelizing subgradient
methods for the lagrangian dual in stochastic mixed-integer programming. IN-
FORMS Journal on Optimization 3(1), 1–22 (2021)

20. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies
in mixed integer programming. INFORMS Journal on Computing 11, 173–187
(1999)

21. Lubin, M., Martin, K., Petra, C.G., Sandikci, B.: On parallelizing dual decompo-
sition in stochastic integer programming. Operations Research Letters 41(3), 252
– 258 (2013)

22. Lulli, G., Sen, S.: A branch-and-price algorithm for multistage stochastic integer
programming with application to stochastic batch-sizing problems. Management
Science 50(6), 786–796 (2004)

23. Mitra, G.: Investigation of some branch and bound strategies for the solution of
mixed integer linear programs. Mathematical Programming 4, 155–170 (1973)

24. Padberg, M.W., Rinaldi, G.: A branch and cut algorithm for the solution of large
scale traveling salesman problems. SIAM Review 33, 60–100 (1991)

25. Polyak, B.: Introduction to Optimization. Optimization Software (1987)
26. Ryan, K., Rajan, D., Ahmed, S.: Scenario decomposition for 0-1 stochastic pro-

grams: Improvements and asynchronous implementation. In: Proceedings of the
Parallel and Distributed Processing Symposium Workshops. pp. 722–629. IEEE
(2016)

27. Shor, N.: Minimization methods for non-differentiable functions. Springer-Verlag
(1985)

28. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The
Condor experience. Concurrency and Computation: Practice and Experience
(2005)

