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Abstract

The objective of the Vehicle Routing Problem (VRP) is to construct a minimum cost
set of vehicle routes that visits all customers and satisfies demands without violating the
vehicle capacity constraints. The Stochastic Vehicle Routing Problem (SVRP) results when
one or more elements of the VRP are modeled as random variables. In this paper, we
present a set-partitioning-based modeling framework for the VRP with stochastic demands
(VRPSD). The framework can be adapted easily for routing problems with randomness in
other problem elements, such as random customers and random travel times. We formulate
the VRPSD as a two-stage stochastic program and introduce an extended recourse strategy
in which vehicles are allowed to serve additional customers from failed routes prior to re-
turning to the depot or to serve customers from failed routes on a new route after returning
to the depot. Computational experiments show that route plans generated using the new
recourse function perform quite well, especially for problems with few customers per route,
where cost savings of roughly 5% are possible.
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Introduction

The Vehicle Routing Problem (VRP) is defined by a depot, a set of geographically dispersed
customers with known demands, and a set of vehicles with fixed capacity. The objective is to
find a minimum cost set of vehicle routes that visits all customers and satisfies demands with-
out violating the vehicle capacity constraints. The VRP assumes all elements of the problem are
known and deterministic. The Stochastic Vehicle Routing Problem (SVRP) results when one or
more elements of the VRP are modeled as random variables to better reflect the uncertainty
that exists in practice. In the literature, the set of customers to be visited, the travel times
between customers, and the demands of customers all have been treated as random elements.
While the focus in this paper is on the VRP with stochastic demands (VRPSD), an important
feature of the proposed set-partitioning approach is its flexibility to handle randomness in
other elements with little or no additional effort.

The VRPSD arises in many practical situations. Dror et al. (1985), Psaraftis (1995) and
Chepuri and de Mello (2005) cite the delivery of petroleum products, industrial gases, and
home heating oil. Dessouky et al. (2005) offer the example of delivering supplies to cities un-
der a state of emergency, Yang et al. (2000) cite the delivery of items to hospitals and restau-
rants, Laporte et al. (1989) give the example of collecting money from banks, and Marković
et al. (2005) suggest that VRPSD can be used to model the delivery and pickup of mail, pack-
ages, and recycled material from offices and industrial plants. Bertsimas (1992) also cites as
a practical application a company designing routes during a strategic planning phase before
exact customer demands are known.

As in previous work on the VRPSD (Bertsimas, 1992, Teodorovic and Pavkovic, 1992,
Savelsbergh and Goetschalckx, 1995, Hjorring and Holt, 1999, Laporte et al., 2002), we as-
sume that customer demands are independent and follow known probability distributions.
Our solution method, which works for general joint demand distributions, does not require
the assumption on independent customer demands. However, we assume independence in the
problem instances used in our computational results in order to facilitate a straightforward
comparison to previous results in the literature. A customer’s actual demand becomes known
with certainty only when a vehicle arrives at the customer’s location. As a result, a planned
route may “fail” when the realized demand at a particular customer exceeds the remaining
vehicle capacity (supply). When a route failure occurs, a recourse action, which results in
additional cost, is required to serve any unsatisfied demand.

The VRPSD often is modeled as a two-stage problem. The solution from stage one specifies
a route for each vehicle. The vehicles follow the routes as planned and customer demands
are revealed at each stop. When routes fail, recourse actions are implemented to serve any
remaining customers. The solution from stage two specifies the actual route of each vehicle
taking into account the recourse actions. The VRPSD objective is to construct a set of planned
routes that minimizes the sum of the costs of the planned routes and the expected cost of the
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recourse actions.
Most VRPSD research assumes that when a route fails, the vehicle returns to the depot,

unloads (or replenishes its supply), and then resumes the route as specified in the initial route
plan (Teodorovic and Pavkovic, 1992, Hjorring and Holt, 1999, Laporte et al., 2002). We
refer to this recourse policy as traditional recourse. The main contribution of this paper is
the development of a viable computational approach for the VRPSD under a new and more
realistic recourse strategy. Under the new recourse strategy, two additional options are avail-
able: (1) a vehicle that has completed its original route and has remaining capacity (supply)
may serve customers from failed routes directly, without first returning to the depot and (2)
a vehicle that experiences a route failure may return to the depot and then perform an “extra
trip” that covers unserved customers from failed routes. We refer to this recourse policy as
extended recourse. In this paper, the VRPSD under extended recourse is formulated as a two-
stage stochastic program with integer recourse and modeled as a stochastic extension of the
well-known set-partitioning formulation for the VRP. The set-partitioning approach provides
significant advantages in modeling a variety of practical constraints, such as time windows and
complicated route restrictions. In addition, unlike edge-based formulations, there is no need
to assume that cost is proportional to distance, and nonlinear route costs can be considered.
Scenarios are used to capture randomness, and effective heuristic procedures are developed to
generate routes (columns) for the set-partitioning formulation.

The remainder of the paper is organized as follows. Section 1 reviews the VRPSD literature.
Section 2 provides a formal description of the VRPSD and presents set-partitioning-based for-
mulations of the problem under both traditional and extended recourse. Section 3 describes
the heuristic route generation procedure and assesses the quality and efficiency of the pro-
cedure. Section 4 presents results of the computational experiments comparing the planned
routes generated by the extended recourse model to the planned routes generated by the tra-
ditional recourse model and by a deterministic VRP model. Section 5 concludes the paper and
provides direction for future research.

1 Literature Review

Although Tillman (1969) introduced the first practical example of a VRPSD for designing
routes in a small multiple terminal delivery problem in the late 1960s, the VRPSD has re-
ceived much less attention in the literature than the deterministic VRP. Most of the research
on the VRPSD can be classified either as an a priori optimization approach or as a reoptimiza-
tion approach. The static “here-and-now”, or a priori, approach designs routes before actual
demands become known and the route sequence is not changed during real-time execution.
The dynamic “wait-and-see”, or reoptimization, approach does not plan routes in advance but
instead makes routing decisions one step at a time. Information is updated each time a vehicle
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arrives at a customer and observes demand; the problem is modeled as a Markov decision
process in which a decision is defined as which customer to visit next and whether or not to
return to the depot first. Both the traditional recourse and the proposed extended recourse
strategies apply to a priori optimization approaches, and therefore, we restrict our attention to
the a priori optimization literature. For a review of reoptimization approaches, see Dror et al.
(1989), Dror (1993), Secomandi (2001), Novoa (2005) and Novoa and Storer (2005).

1.1 Types of Recourse

Under an a priori optimization scheme, recourse actions are required whenever a route fail-
ure occurs. In early work on the VRPSD, Stewart et al. (1983) propose two simple models
that incorporate penalties into the objective function to account for route failures. In the first
model, a fixed penalty is assessed for each failed route, while in the second model, a penalty
is assessed for each unit of demand in excess of vehicle capacity. Dror and Trudeau (1986)
consider an expected cost objective function where, after a route failure, all remaining cus-
tomers are served by individual direct deliveries from the depot. Dror et al. (1989) introduce
the traditional recourse strategy in which vehicles return to the depot to unload/replenish ca-
pacity when a customer demand cannot be satisfied and then return to the failure location to
continue the planned route. Teodorovic and Pavkovic (1992) and Savelsbergh and Goetschal-
ckx (1995) simplify this recourse to achieve computational efficiency by assuming at most one
failure per route. Laporte et al. (2002) assume the same recourse as in Dror et al. (1989) and
consider multiple route failures.

Several papers consider proactive recourse strategies that include returns to the depot for
unloading/restocking before a failure occurs. For a single VRPSD, Bertsimas et al. (1995) and
Bianchi et al. (2004) use dynamic programming to construct routes that include proactive
returns to the depot that improve the expected cost of the solutions. Yang et al. (2000) also
use dynamic programming to implement a proactive recourse and design routes for multiple
VRPSD situations. Chepuri and de Mello (2005) employ a penalty-type recourse in which,
upon failure, a route is terminated and a penalty is assessed for lost revenue and/or the cost
of emergency delivery. This recourse is practical when the time frame within which demand
must be met is critical but does not apply to situations in which the vehicle can return to the
depot.

Ak and Erera (2006) remove the assumption of vehicles operating independent a priori
tours and study a paired-vehicle recourse strategy. In this strategy, a priori vehicle routes are
paired to pool the capacity of two vehicles in an attempt to reduce routing costs. One vehicle
in the pair performs a route that serves a large amount of demand. If the vehicle capacity is
exceeded on the route, the second vehicle in the pair, that is performing a route that serves a
lower amount of demand, adds any unserved customers to the end of its route. If the second
vehicle is unable to serve all additional customers on its original route, then the traditional
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recourse strategy is used to serve these customers. The model is solved via tabu search, and
the authors report that the paired-recourse strategy can reduce expected travel cost in the
range of 3% to 25%. Further, the computational times to produce these solutions are modest.
The extended recourse model we propose in Section 2.2 is similar to the approach of Ak and
Erera (2006) in that a strict and static assignment of vehicles to customers is not enforced.

1.2 Solution Approaches

Researchers have developed both heuristic and exact methods for solving the VRPSD. Because
of the difficulty of the problem, a common approach is to adapt VRP heuristics to solve the
stochastic version. Tillman (1969), Stewart et al. (1983), and Dror and Trudeau (1986) pro-
pose different modifications to the savings algorithm of Clarke and Wright (1964). Others
develop two-phase algorithms. Savelsbergh and Goetschalckx (1995) first solve a generalized
assignment problem for the VRP and then use neighborhood search methods that take into
account the stochastic objective function to improve the solution. Yang et al. (2000) develop
algorithms that resemble the route-first-cluster-next and the cluster-first-route-second tech-
niques for VRPs. For a model with proactive restocking, they evaluate insertion and deletion
costs using dynamic programming and obtain a lower bound on the solution cost by solving
the linear programming relaxation of a set-partitioning formulation. Other papers consider
metaheuristics; Teodorovic and Pavkovic (1992) build a simulated annealing-based algorithm,
Gendreau et al. (1996) develop a tabu search heuristic using a proxy for the objective function
in order to efficiently evaluate potential moves, and Bianchi et al. (2004) develop evolutionary,
ant colony, and iterated local search algorithms for solving the single VRPSD case.

Both chance-constrained programs (CCP) and stochastic programs with recourse (SPR) can
be used to explicitly model the stochastic aspect of the VRPSD. Stewart et al. (1983) describe a
CCP model to identify a set of vehicle routes of minimum distance subject to the constraint that
the probability of failure of any route is less than an allowable limit. They ignore the cost of
recourse actions and solve the model by transforming it into an equivalent deterministic VRP,
which then can be solved using standard solution techniques for the VRP. Laporte et al. (1989)
develop a branch and bound algorithm to solve exactly both a CCP model and a bounded
penalty model.

SPR models for the VRPSD are the most computationally challenging to solve. Most of the
SPR models in the literature consider the VRPSD as a two-stage problem and all employ the
traditional recourse policy of Dror et al. (1989). Although traditional recourse simplifies the
model to some extent, it overestimates the recourse cost, particularly in the case of multiple
vehicles. Using the integer L-shaped method proposed by Laporte and Louveaux (1993, 1998),
Gendreau et al. (1995) were the first to optimally solve a VRP with stochastic customers and
demands. Hjorring and Holt (1999) optimally solve a single VRPSD using the integer L-shaped
method; to reduce CPU time, they introduce a tight lower bound and a general optimality
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cut. To optimally solve a multiple VRPSD, Laporte et al. (2002) incorporate new inequalities
into the integer L-shaped method and are able to solve instances with up to 4 vehicles and 25
customers. As Dror et al. (1989) recognized, the VRPSD involves more than two stages, since
every time a vehicle visits a customer and learns the demand, new decisions can be taken. Dror
(1993) presents, but does not attempt to solve, a multistage stochastic integer programming
model for the VRPSD. To our knowledge, ours is the first work to propose a set-partitioning-
based model for VRPSD.

2 Set-Partitioning-Based Models for Stochastic Vehicle Routing

A fleet of k identical vehicles with fixed capacity Q depart from a single depot to perform only
deliveries (or equivalently only pick-ups) at different customer locations. Node 0 represents
the depot and I = {1, 2, ..., n} represents the set of customer locations. Associated with each
customer location i, i = 1, 2, ..., n, is a random variable Di, which represents knowledge about
customer i’s demand at the time the routes are planned. These customer demand distributions
are assumed known, but actual demand di for a particular customer i is revealed only when
the vehicle arrives at customer i’s location. No customer’s demand ever exceeds the vehicle
capacity and customer demands need not be assumed independent.

As a result of random demands, a planned vehicle route will fail at a particular customer
location whenever the cumulative demand on the route exceeds the vehicle capacity. Further-
more, a planned route may be stopped before a route failure occurs (i.e., a proactive stop) if
the probability of satisfying the next customer’s demand is less than a given threshold param-
eter. When a route fails or is stopped proactively, a set of recourse actions is implemented to
satisfy any remaining customer demands. The objective of the VRPSD is to construct a set of at
most k planned vehicle routes of minimum expected cost, where the expected cost is the sum
of the expected distance of the planned routes and the expected additional cost of the recourse
actions.

2.1 Formulation of VRPSD with Traditional Recourse

In this section, we present a new formulation of the VRPSD with traditional recourse. Under
the traditional recourse policy, when a route fails, the vehicle returns to the depot to un-
load/replenish and then returns to the location of the failure to continue the planned route.
The objective of the problem is to construct a set of planned routes of minimum expected cost.

The new formulation presented here is a stochastic extension of a set-partitioning model
for the VRP, which was originally proposed by Cullen et al. (1981) and Desrosiers et al. (1984).
In the VRP model, a decision variable is associated with each feasible route. Each route is a
column in the model and the objective is to select a set of columns of minimum total cost such
that each row (i.e., customer) is covered by exactly one column.
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To formulate the stochastic extension, let R be the set of routes. Each route r ∈ R visits a
set of customers Ar ⊆ I, and each vehicle must visit all of the customers on its route. The cost
of route r, denoted cr, is the sum of two components: the cost of the route assuming no failure
occurs and a cost Qr that accounts for the extra distance traveled to and from the depot as a
result of route failures. Because each vehicle follows its originally planned route, computing
the expected cost Qr associated with returns to the depot is a straight-forward calculation and
can be done a priori for each route. We note, however, that unlike the deterministic VRP, the
cost of the route depends on the orientation of the route. Table 1 lists the definition of sets,
parameters, and variables used in the set-partitioning model under the traditional recourse
strategy. The model (SP-TR) and the computation of Qr follow the table.

Table 1: Definition of Entities in Set-Partitioning Model under a Traditional Recourse Strategy

Sets
R Set of routes.
I Set of customers.

Parameters
cr The exact expected cost of route r ∈ R.
air 1 if customer i ∈ I is on route r ∈ R, 0 otherwise.
k Number of trucks.

Variables
xr 1 if route r ∈ R is selected, 0 otherwise.

minimize ∑
r∈R

crxr (SP-TR)

subject to ∑
r∈R

airxr = 1 ∀i ∈ I (1)∑
r∈R

xr ≤ k (2)

xr ∈ {0, 1} ∀r ∈ R (3)

The objective function seeks to minimize the total expected routing cost. Constraints (1)
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ensure that each customer is served by exactly one route. Constraint (2) limits the number
of selected routes to at most the number of vehicles. Constraints (3) are standard binary
restrictions on the decision variables.

The expected cost of a route cr includes a cost Qr that accounts for the extra distance trav-
eled to and from the depot due to the route failures. This cost Qr depends on the orientation
of the route. To compute Qr for a route r, without loss of generality, let r→

def= (0, 1, 2, ..., sr, 0)
be a route and orientation (zero represents the depot, one represents the first customer in
the sequence, and so on). Recall from the problem description that di represents the actual
demand at customer i and Q represents the vehicle capacity. Let disti,j represent the distance
between customers i and j. Equation (4) defines the exact expected cost of the additional trips
to the depot for route r→ under the specified orientation and can be used for both continuous
and discrete demand distributions:

Qr→
def= 2

sr∑
j=1

∞∑
l=1

P

(
j−1∑
u=1

du < lQ <

j∑
u=1

du

)
dist0,j +

+
sr∑

j=1

∞∑
l=1

P

(
j−1∑
u=1

du = lQ

)
(dist0,j−1 + dist0,j − distj−1,j). (4)

Dror et al. (1989), Teodorovic and Pavkovic (1992), and Laporte et al. (2002) derive equa-
tions similar to (4) assuming continuous demand distributions. The main difference between
a continuous and discrete distribution is that, with a continuous demand distribution, the prob-
ability of a vehicle becoming empty at the same instant as a service completion is zero; with a
discrete demand distribution, the simultaneous events are possible. In equation (4), the first
probability term corresponds to having the lth failure at customer j and the second probability
term corresponds to having the lth failure simultaneously with the service completion at cus-
tomer j − 1. Since no single customer demand exceeds the vehicle capacity, the upper limit of
the summation over l can be replaced by j. Equation 5 is a compact form for equation 4:

Qr→
def= 2

sr∑
j=1

j∑
l=1

(F j−1(lQ− 1)− F j(lQ))dist0,j +

+
sr∑

j=1

j∑
l=1

P (
j−1∑
u=1

du = lQ)(dist0,j−1 + dist0,j − distj−1,j), (5)

where F j(lQ) def= P
(∑j

u=1 du ≤ lQ
)

. Applying equation 5 to the reverse route r←
def= (0, sr, sr−1, . . . , 1, 0),

we can obtain the expected costQr← . Then, the expected cost of route r isQr = min(Qr→ ,Qr←).

2.2 Formulation of VRPSD with Extended Recourse

In this section, we extend the set-partitioning formulation presented in section 2.1 to accom-
modate the extended recourse policy. The extended recourse strategy assumes a full service

8



policy whereby, once a vehicle arrives at a customer location, the customer’s demand is re-
vealed before service starts and the customer will not accept a partial delivery. Under the ex-
tended recourse policy, two new recourse actions are allowed when a route fails or is stopped
proactively. First, a vehicle that has completed its original route may serve customers from
failed routes directly, without first returning to the depot; we call this action a completion.
Second, a vehicle that experiences a route failure may return to the depot and then serve
customers from one or more failed routes on a new route; we call this action an extra trip.

The VRPSD with extended recourse is formulated as a two-stage problem, which is a sim-
plification of the situation in practice. In stage one, each vehicle follows its planned route until
either it finishes serving the last customer, it fails at a customer, or it is stopped proactively.
Then, we assume that all of the remaining uncertainty is revealed, and stage two begins with
the implementation of a set of recourse actions that seeks to minimize the additional cost of
serving the remaining customers. Although a multi-stage model would more accurately reflect
the real situation, there are situations for which the two-stage approach reflects practice. For
example, consider an application in which customers are served daily on regular, fixed routes.
Suppose that demand is fully realized at the beginning of the day but regularity in service is
favored over the potential savings achieved by re-optimizing the routes on a daily basis. Ap-
plying the two-stage model to this situation can produce a solution that balances regularity
and cost savings, since the stage-two reoptimization procedure is postponed until after the
planned routes have been followed to the fullest extent and have either served all customers
or failed. In addition to providing a reasonable approximation to what happens in practice,
the new model allows us to investigate whether using the extra capacity available on some
vehicles can reduce the overall expected cost. That is, we seek to determine if modeling more
realistic recourse actions than simply returning to the depot can result in planned routes that
are more robust to failures.

To formulate the VRPSD with extended recourse, we again consider a set R of routes. The
set partitioning approach allows for the possibility of including routes that are infeasible in
expectation (that is, if all demands equal their expected values, the total demand over the
route exceeds vehicle capacity). For the extended recourse model, allowing infeasible routes
is problematic. First, in the motivating case where a set of “regular routes” that are followed
over multiple days is desired, it makes little practical sense to allow infeasible routes. Second,
the extended recourse model assumes that all uncertainty is revealed at the end of phase
one. In order to minimize the impact of this somewhat unrealistic assumption, we explicitly
force all routes to be feasible in expectation in this model. By mandating feasible routes,
the number of unserved customers at the end of phase one will be small, thus the impact of
revealing all uncertainty will be minimized. For the SP-TR model based on traditional recourse,
allowing routes that are infeasible in expectation does not cause problems as it does in the set
partitioning with extended recourse (SP-ER) case. In traditional recourse, the original route
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is always followed and thus implicitly sticks to the assumption that demand is revealed only
upon arrival at the customer. Allowing infeasible routes may (or may not) be advantageous
in this case since the final result may be lower total expected cost. For this reason we do
allow infeasible routes when comparing the quality of the solution produced by SP-TR model
to previous work (Section 4.1).

Let Ar ⊆ I be the planned set of customers to be visited on route r. To incorporate demand
uncertainty, the model is augmented with a set S of scenarios where each scenario represents
a realization of the random demands. For each planned route r ∈ R and scenario s ∈ S, there
is a set of customers Trs ⊆ Ar that is served during stage one. The model is further augmented
with completions and extra trips. A completion is associated with a route r and a scenario s; it
is an additional column in the model that represents additional customers that could be served
after a vehicle completes route r given the realization of demands in scenario s. In the model,
each pair (r,s) of route r ∈ R and scenario s ∈ S may have a set of completions Crs, and each
completion c ∈ Crs visits a set of customers Wc ⊆ I. An extra trip is an additional column in
the model that represents a new route that a vehicle could serve after it returns to the depot
to unload/replenish given the realization of demands in scenario s. In the model, Es is the set
of extra trips associated with scenario s.

Table 2 lists the definition of sets, parameters, and variables used in the two-stage stochastic
integer model with the new extended recourse strategy. The model (SP-ER) follows the table.
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Table 2: Definition of Entities in Set-Partitioning Model under the Extended Recourse Strategy

Sets
R Set of routes.
S Set of scenarios.
Es Set of extra trips in scenario s ∈ S.
I Set of customers.
Crs Set of completions for route r in scenario s.
Cs Set of completions for scenario s ∈ S. (Cs = ∪r∈RCrs)

Parameters
air 1 if customer i ∈ I is on planned route r ∈ R, 0 otherwise.
tirs 1 if customer i ∈ I is served on route r ∈ R in scenario s ∈ S, 0 otherwise.
wics 1 if customer i ∈ I is served by completion c ∈ Cs in scenario s ∈ S, 0 other-

wise.
vies 1 if customer i ∈ I is served by extra trip e ∈ Es in scenario s ∈ S, 0 otherwise.
cr The expected cost of planned route r ∈ R.
dcs Cost of completion c ∈ Cs in scenario s ∈ S.
fes Cost of extra trip e ∈ Es in scenario s ∈ S.
ps Probability of scenario s ∈ S.
k Number of trucks.

Variables
xr 1 if planned route r ∈ R is selected, 0 otherwise.
ycs 1 if completion c ∈ Cs is used in scenario s ∈ S, 0 otherwise.
zes 1 if extra trip e ∈ Es is used in scenario s ∈ S, 0 otherwise.
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minimize ∑
r∈R

crxr +
∑
s∈S

ps

(∑
c∈Cs

dcsycs +
∑
e∈Es

feszes

)
(SP-ER)

subject to ∑
r∈R

airxr = 1 ∀i ∈ I (6)∑
r∈R

tirsxr +
∑
c∈Cs

wicsycs +
∑
e∈Es

vieszes = 1 ∀i ∈ I,∀s ∈ S (7)

xr −
∑

c∈Crs

ycs ≥ 0 ∀r ∈ R,∀s ∈ S (8)

∑
r∈R

xr ≤ k (9)∑
e∈Es

zes ≤ k ∀s ∈ S (10)

xr ∈ {0, 1} ∀r ∈ R (11)

ycs ∈ {0, 1} ∀s ∈ S,∀c ∈ Cs (12)

zes ∈ {0, 1} ∀s ∈ S,∀e ∈ Es (13)

The objective function seeks to minimize the expected cost of the planned routes plus the
expected cost of the completions and extra trips. Constraints 6 ensure that each customer
is on a planned route. Constraints 7 require each customer to be served in each scenario.
Constraints 8 limit a selected route to doing at most one completion. Constraint 9 limits the
number of selected routes to at most the number of vehicles. Constraints 10 limit the number
of extra trips in each scenario to at most the number of vehicles. Constraints 11, 12 and 13 are
standard binary restrictions on the decision variables.

In the model (SP-ER), the cost cr of route r ∈ R is the expected cost of the route with
respect to the set of defined demand scenarios. That is, to calculate the expected cost of a
route, we sum over all of the scenarios the product of the cost of the route to the point of
completion or failure and the probability of the scenario. Since the model involves only two
stages, we assume that the routes are planned at time zero and all of the uncertainty is revealed
at the end of stage one, which is the point when all vehicles have completed serving the last
customer or have failed. As a result, we only need to consider feasible completions and extra
trips associated with the scenarios and we can easily compute their associated cost. To compute
the cost dcs of a completion c associated with a route in scenario s, recall that a vehicle with
remaining capacity/supply can serve additional customers directly prior to returning to the
depot. The cost of such a completion is the cost of starting from the last customer on the
planned route, serving a set of customers and then returning to the depot minus the cost of
traveling from the last customer on the planned route to the depot. Subtracting the cost of this
last leg of the planned route is necessary since it is included in the cost of the planned route.
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Since extra trips start from the depot, the cost fes of an extra trip e associated with scenario
s is simply the cost of starting at the depot, serving a set of customers and returning to the
depot.

One of the advantages of the set-partitioning-based model is that it can be adapted to model
vehicle routing problems with other types of randomness. For example, to include random
travel times in the model, the set of customers actually served in a scenario is determined by a
realization of random demands and random travel times. To model the case in which “call-in”
customers appear randomly in the instance, we modify the constraints 7 to be active over the
set Is of active customers in scenario s.

3 Route Generation

The main disadvantage of the set-partitioning-based models for the VRPSD is that they contain
an exponential number of route variables (xr) and, in the extended recourse model, an expo-
nential number of constraints 8. For instances of practical size, enumerating all of the feasible
routes and solving the resulting integer program is unlikely to be computationally tractable.
Instead, only a subset of the feasible routes is included in the model. The possibility of implic-
itly considering all routes via column generation is an avenue of future research. The objective
of the route generation procedure is to generate a set of routes that is rich enough to produce
good solutions yet small enough for the integer program to be solved in reasonable time. In
this section, we describe briefly how the routes are generated, and we illustrate empirically
that good solutions are achieved using the routes we generate. For complete details of the
route generation procedure, see Novoa (2005).

3.1 Generating the Planned Routes

For a given instance, the route generation procedure generates a set R of routes that is com-
prised of three subsets of routes:

• all routes containing a single customer

• a selected set of routes containing between s and s customers

• a small number of routes containing between two and s− 1 customers

The parameters s and s are functions of the demand distribution. Let d̄i denote the mean de-
mand for customer i and let dmini (dmaxi) denote the minimum (maximum) possible demand
value for customer i. Then, values for these parameters are

s =
⌊

1
2

(
nQ∑
i∈I d̄i

+
nQ∑

i∈I dmaxi

)⌋
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and
s =

⌊
1
2

(
nQ∑
i∈I d̄i

+
nQ∑

i∈I dmini

)⌋
.

The s (s) value is the average of two average values: the average number of customers on a
route when all customers demand the mean value and the average number of customers on a
route when all customers demand the maximum (minimum) possible demand value. The total
number of routes in the second and third subsets are input parameters to the route generation
procedure. Within each subset, the total number of routes is distributed evenly across the
different route sizes.

The construction heuristic to generate routes containing between s and s customers in-
corporates ideas from the ant colony algorithms described in Dorigo and Gambardella (1997)
and Gagné et al. (2001). Each route begins with a randomly selected customer. Subsequent
customers are selected based on a desirability value that incorporates the distance between the
current customer i and a candidate customer l, the frequency with which arc (i, l) has appeared
in routes with the same number of customers and a random component to add diversity. Each
route generated by the construction heuristic is tested for further improvement by performing
a two-arc interchange heuristic. Furthermore, any route identical to a previously generated
one is discarded.

3.2 Generating Completions and Extra Trips

For the extended recourse model, completions and extra trips must be generated for each route
and demand scenario. While the cost savings associated with the extended recourse policy
are likely to increase with the complexity of the completions and extra trips, we first focus on
relatively simple extended recourse actions. For each scenario s and each route r, the set Crs of
completions consists of all possible single-customer completions. That is, we calculate the final
position of the vehicle at the end of phase one and its remaining capacity. If, given its current
capacity, the vehicle can serve an unserved customer whose demand is now known, then a
completion column is created and included in the set Crs. In our experiments, Crs includes all
feasible single customer completions. For the set Es of extra trips associated with a scenario
s, two alternatives were considered. In the first alternative, all routes including between one
and sextra customers were generated, where sextra, an input parameter to the route generation
procedure, is set nearly equal to the estimated maximum number of unserved customers in
an instance. For each set of customers, the optimal route sequence was computed, and only
feasible routes for the scenario were included in the model. In the second alternative, the set
of extra trips for a scenario is identical to the original set of planned routes, except that any
infeasible column with respect to demand is removed. Clearly, there is a trade-off between the
computational time to generate the extra trips and the degradation in the solution quality.
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3.3 Performance of the Route Generation Heuristic

In this section, we present the results of computational experiments for the deterministic VRP,
which are intended to demonstrate that the route generation procedure produces a good set
of routes. For instances of the deterministic VRP, we compare the solution produced by our
set-partitioning model to the solution produced by the SYMPHONY branch-and-cut implemen-
tation for solving deterministic VRP’s as described in Ralphs et al. (2003). For the comparison,
a modified version of the traditional recourse model (SP-TR) is used; the cost cr is the dis-
tance of the route, not the expected distance, and the constraint 2 on the number of vehicles
is removed.

The test instances consist of two sets of 60 randomly generated problems. Each set of 60
instances results from considering six problem sizes (n = {5, 8, 20, 30, 40, 60}), two vehicle
capacities (see Table 3), and five randomized replicates (r1, r2, .., r5), which are generated by
changing the random seeds used to select customer demand distributions and locations. The
customer locations are generated uniformly in the unit square and the depot location is fixed
at (0, 0). The demand for each customer is generated by first choosing a distribution from
Table 4 at random and then randomly generating the demand observation from the chosen
distribution. The second set of 60 instances is distinguished from the first set primarily by
increased variance of customer demand.

Table 3: Vehicle Capacity Levels Studied

Set 1 Set 2
n Q1 Q2 Q1 Q2

5 9 5 9 9
8 14 9 13 10

20 91 58 60 45
30 137 87 90 68
40 183 116 120 90
60 274 175 180 135

Table 4: Demand Distributions

Instances in Set 1 Instances in Set 2

n Demand Distribution Variance Demand Distribution Variance

5,8 U[1,3] U[2,4] U[3,5] 0.33 U[1,7] U[2,8] U[3,9] 3.00
20,30,40,60 U[1,5] U[6,10] U[11,15] 1.33 U[1,7] U[6,12] U[11,17] 3.00
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The objective function value of the set-partitioning solution was compared to the optimal
solution found by SYMPHONY for 106 of the 120 instances and to the best integer solution
found by SYMPHONY for the remaining 14 instances. Overall, the average percent increase
in cost of the set-partitioning solutions over the SYMPHONY solutions was 2.9% for instances
in set 1 and 2.3% for instances in set 2. For instances with 30 customers or less, the heuristic
performed very well, with the average percent increase in cost of 1.2% for set 1 and 0.8%
for set 2. For instances with more than 30 customers, the heuristic provided acceptably good
solutions, with an average cost increase of 6.5% for set 1 and 5.4% for set 2. Based on the
results of these experiments, we concluded that the heuristic route generation procedure pro-
vides a rich enough set of routes for the VRPSD. Note that any further improvements to the
route generation scheme will increase the effectiveness of our set-partitioning-based approach
to solving the VRPSD.

4 Numerical Results

In this section, two numerical studies quantify the effectiveness of a set-partitioning approach
to the VRPSD. In the first study, we show that the set-partitioning model (SP-TR) for the VRPSD
under the traditional recourse strategy allows us to quickly and easily obtain solutions of bet-
ter quality than those appearing in the open literature. In the second study, we quantify the
gains in solution quality that can be expected by allowing more complex recourse actions, such
as those in the extended recourse strategy, than by simply returning to the depot. Computa-
tional experiments in Section 4.1 were run on an Intel Pentium IV CPU, running at 2.4GHz,
and equipped with 512MB of RAM. Computational experiments in Section 4.2 were run on a
Beowulf cluster with Intel Pentium III processors running at 1.1GHz and equipped with 512MB
of RAM.

4.1 Set-Partitioning Models for Traditional Recourse

In the first study, we compare the solutions obtained by the SP-TR model to solutions reported
in the literature by Stewart et al. (1983), Dror and Trudeau (1986), and Savelsbergh and
Goetschalckx (1995) for a modified version of the 75-customer VRP problem from Christofides
and Eilon (1969). This instance is the only one used by all of the authors. The instance
was originally a deterministic VRP, and it first appeared in its stochastic version in Dror and
Trudeau (1986).

Two independent route generation experiments were done. Their solutions, denoted S1
and S2, from solving the SP-TR model are compared to the solutions obtained by Stewart and
Golden (“St-Go”), Dror and Trudeau (“Dr-Tr”), and Savelsbergh and Goetschalckx (“Sa-Go”).
In the first experiment, a set of 17,789 routes is included and the resulting minimum cost
feasible solution is one with 10 routes. In the second experiment, a set of 27,714 routes is in-
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cluded and the resulting minimum cost feasible solution is one with 9 routes. Note that routes
infeasible in expectation were allowed. Typical route sizes ranged from 5 to 13 customers.
Table 5 reports the number of vehicles in the solution (k), the expected filling coefficient
f

def=
Pn

i=1 E[di]
kQ , the total route distance without accounting for stochastic demand, and the ex-

pected cost. The value of f is the ratio of expected demand to total vehicle capacity. Values of
f close to one imply that there is a relatively high probability of route failure. Table 5 also in-
cludes the mean (µ) and variance (σ2) of the demand and the probability of failure (P (d > Q))
for the fullest and emptiest route in each solution. From the table, we can see that both S1
and S2 have lower expected costs than the previously reported solutions. The Savelsbergh
and Goetschalckx (1995) solution, however, is the most appropriate benchmark, since it uses
a traditional recourse policy assuming at most one failure per route. Tables 6 and 7 present
the detailed route sequence for solutions S1 and S2. Comparing S2 to the Savelsbergh and
Goetschalckx solution, it has two routes, instead of one, with expected demand larger than the
vehicle capacity, which results in a high probability of failure. However, the directions of the
routes are such that failures occur near the depot and their cost impact is low. On the other
hand, disregarding any possible fixed cost for the routes, S1 has lower expected cost and lower
probabilities of route failure than Savelsbergh and Goetschalckx (1995) and Dror and Trudeau
(1986) solutions.

Due to differences in computing technology, it is not possible to compare solution times
across the various methods. However, the computational times to generate the routes and
solve the SP-TR instances are quite reasonable. For the solutions S1 and S2, Table 8 shows the
number of unique routes generated, the CPU time to generate the routes and the CPU time to
solve the model with CPLEX v9.1. The time to generate the routes also includes the time to
generate the input data file for AMPL. Table 8 also reports the number of simplex iterations
and branch and bound nodes (B&B Nodes) required.

Table 5: Our Route Generation Procedure vs. Previous Results

Fullest route Emptiest route
Author k f Distance E[cost] µ σ2 P (d > Q) µ σ2 P (d > Q)

St-Go 11 0.78 1016.34 1019.98 145 99.95 0.067 30 3.38 0.000
Dr-Tr 10 0.85 856.16 884.91 166 167.31 0.679 53 5.63 0.000
SP-TR S1 10 0.85 841.45 851.55 147 48.07 0.031 118 77.73 0.000
Sa-Go 9 0.95 805.42 855.55 164 145.75 0.629 139 97.11 0.016
SP-TR S2 9 0.95 819.92 853.67 199 59.12 1.000 135 155.98 0.023

The results of this experiment suggest that the set-partitioning-based model with the route
generation heuristic is able to generate solutions for the VRPSD under traditional recourse that
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Table 6: Our Solution S1 for the Eilon 75 Customer Problem

Route Mean Variance P (d > Q) Distance E[cost] Route Sequence

1 130 204.41 0.0179 74.38 74.89 0, 30, 74, 21, 61, 28, 2
2 118 77.73 0.0000 86.91 86.91 0, 58, 10, 31, 9, 39, 72
3 147 48.07 0.0304 47.41 47.84 0, 4, 67, 26, 12, 40, 17
4 144 140.72 0.0887 77.23 79.81 0, 38, 65, 66, 11, 53, 7
5 142 70.51 0.0160 81.30 81.62 0, 35, 14, 59, 19, 8, 46, 34
6 120 48.37 0.0000 80.34 80.34 0, 45, 29, 15, 57, 54, 13, 27, 52
7 134 111.07 0.0068 109.81 110.10 0, 62, 22, 64, 42, 43, 41, 56, 23
8 142 112.06 0.0445 65.58 65.84 0, 51, 16, 63, 1, 73, 33, 6, 68, 75
9 144 145.45 0.0923 115.16 118.80 0, 3, 44, 32, 50, 25,

55, 18, 24, 49
10 143 105.81 0.0492 103.33 105.40 0, 5, 37, 20, 70, 60,

71, 69, 36, 47, 48
Total 1364 1064.20 841.45 851.55

Table 7: Our Solution S2 for the Eilon 75 Customer Problem

Route Mean Variance P (d > Q) Distance E[cost] Route Sequence

1 141 108.42 0.0340 100.07 101.40 0, 38, 65, 66, 11, 59, 35
2 148 204.72 0.2008 79.22 85.01 0, 30, 74, 21, 61, 28, 62, 2
3 140 58.80 0.0046 84.31 84.36 0, 26, 58, 10, 31, 72, 12, 40
4 135 155.98 0.0227 95.55 96.36 0, 73, 22, 64, 42, 41, 43, 1, 33
5 146 130.78 0.1104 99.36 103.90 0, 44, 32, 50, 18, 55, 25, 9, 39
6 175 106.18 0.9273 64.27 75.50 0, 67, 7, 53, 14, 19, 8, 46, 34
7 137 134.38 0.0236 96.36 96.74 0, 17, 3, 24, 49, 56, 23, 63, 16, 51
8 143 105.81 0.0492 103.33 105.40 0, 5, 37, 20, 70, 60, 71,

69, 36, 47, 48
9 199 59.12 1.0000 97.45 105.00 0, 52, 27, 13, 54, 57, 15,

29, 45, 4, 75, 68,6
Total 1364 1064.19 819.92 853.67
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Table 8: No. of Routes, Running Times, and No. of Iterations in S1 and S2

CPU seconds
Routes Create Solve MIP Simplex B&B

k Generated Routes Model Total Iterations Nodes

S1 10 17789 22.52 180.81 203.33 11280 920
S2 9 27714 54.39 771.29 825.68 36576 2883

are competitive with those in the literature. Given that the computational times necessary to
generate a diverse set of routes and solve the corresponding integer programming model are
reasonable, it indicates that the approach is quite promising for the VRPSD.

4.2 Set-Partitioning Models for Extended Recourse

In the second study, we seek to quantify the benefits of modeling more realistic recourse ac-
tions than simply returning to the depot when there is a failure. To do so, we compare the
implementation cost of the route plans generated by three models:

1. the stochastic set-partitioning-based model with extended recourse (SP-ER),

2. the stochastic set-partitioning-based model with traditional recourse (SP-TR),

3. a deterministic VRP model that employs the expected customer demands.

The implementation cost of a route plan estimates the actual cost of the recourse actions that
would be used in practice. In practice, dispatchers employ various strategies for covering
failed routes after a failure occurs or if it appears likely that a failure will occur. In this study,
we assume that dispatchers rely on optimization to determine a “best” course of action when
routes fail. Therefore, to emulate dispatcher behavior, we solve a deterministic optimization
model, called the restoration model, to select the best set of completions and extra trips for
a given set of unserved customers, their realized demands, and the locations and remaining
capacities of the vehicles. The restoration model SP-RM(x,s) is parameterized by a set of
planned routes x and a demand scenario s. The actual cost of planned route r under demand
scenario s is denoted as cr(s). After all the planned routes have been followed until they fail
or reach the last customer, the vehicles have some remaining capacity and a set of customers
remains unserved. The objective of the restoration model is to select a minimum cost set of
completions and extra trips that satisfies the demands of the unserved customers and returns
the vehicles to the depot. Table 9 lists the definition of sets, parameters, and variables for the
restoration model SP-RM(x, s) and is followed by the model.
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Table 9: Definition of Entities in the Restoration Model

Sets
E Set of extra trips.

U(x, s) Set of unserved customers on route set x in scenario s.
R(x) Set of vehicle routes taken by route plan x.
Cl Set of completions for route l, l ∈ R(x).

C Total set of completions. C
def= ∪l∈R(x)Cl

Parameters
wic 1 if customer i ∈ U(x, s) is covered by completion c ∈ C, 0 otherwise.
vie 1 if customer i ∈ U(x, s) is covered on extra trip e ∈ E, 0 otherwise.
dc Cost of completion c ∈ C.
fe Cost of extra route e ∈ E.
k Number of trucks.

Variables
yc 1 if completion c ∈ C is selected, 0 otherwise.
ze 1 if extra trip e ∈ E is selected, 0 otherwise
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z∗SP-RM(x, s) def= min
∑
c∈C

dcyc +
∑
e∈E

feze (SP-RM(x, s))

subject to ∑
c∈C

wicyc +
∑
e∈E

vieze = 1 ∀i ∈ U(x, s) (14)∑
c∈Cl

yc = 1 ∀l ∈ R(x) (15)

∑
e∈E

ze ≤ k (16)

yc ∈ {0, 1} ∀c ∈ C (17)

ze ∈ {0, 1} ∀e ∈ E (18)

The objective function seeks to minimize the cost of the selected completions and extra
trips. Constraints 14 require all unserved customers to be covered. Constraints 15 require
each vehicle to do exactly one completion. To guarantee that all vehicles finish at the depot,
we include as a possible completion a column that sends the vehicle directly to the depot.
Constraint 16 limits the number of extra trips to at most the number of vehicles available.
Constraints 17 and 18 are standard binary restrictions on the decision variables. The restora-
tion model used to generate a plan to recover from disruptions explicitly uses completions
and extra trips to emulate how we imagine intelligent dispatchers would actually behave. Of
course, this may bias the results of the experiment in favor of a method that can account for
such intelligent recourse in the initial planning stage. However, a fundamental goal of our
research is to show that it is indeed possible to produces routes amenable to more intelligent
and realistic recourse. One goal of our testing is aimed at verifying that this hypothesis is true
and at quantifying the advantage that results.

To estimate the cost of a route plan x̂ generated by one of the models, we use the following
procedure. First, we randomly generate 1000 demand scenarios s1, s2, . . . , s1000. For each
scenario sj , j = 1, . . . , 1000, the routes in x̂ are followed until they are complete, fail, or
are stopped. This yields a first stage cost of cr(sj)T x̂ and provides the necessary input to a
restoration model SP-RM(x̂, sj). This input includes the location and remaining capacity of
each vehicle and the demands of customers not yet served. Next, SP-RM(x̂, sj) is solved, and
the estimated cost of the route plan x̂ under demand scenario sj is calculated as

cr(sj)T x̂ + z∗SP-RM(x̂, sj).

For a route plan x̂, the actual implementation cost is then estimated as the average value over
the scenarios,

α̂(x̂) = 0.001
1000∑
j=1

(
cr(sj)T x̂ + z∗SP-RM(x̂, sj)

)
. (19)
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The simulation procedure was run on a random subset of the 120 instances from test sets 1
and 2 described in Section 3.3. Recall that the instances in test set 2 tend to contain fewer cus-
tomers on feasible routes and thus are more amenable to set-partitioning-based approaches.
For each problem instance i in the reduced test sets I, the three models VRP, SP-TR and SP-ER
were solved, resulting in three sets of planned routes, denoted xi

VRP, xi
SP-TR, and xi

SP-ER, re-
spectively. In creating the set-partitioning-based models SP-TR and SP-ER, 3000 routes and 30
demand scenarios were used for instances from test set 1, while 6000 routes and 60 scenar-
ios were used for instances from test set 2. These instances and sizes were chosen such that
all instances could be solved within a time limit of eight hours for the test set 1 instances or
16 hours for the test set 2 instances. In all cases, only columns feasible in expectation were
included, as discussed previously.

The simulation procedure for estimating implementation cost requires significant compu-
tation since 1000 restoration models must be solved for each route plan. Thus, if all three
methods generate the exact same route plan, i.e. xi

VRP = xi
SP-TR = xi

SP-ER, there is no need
to estimate the implementation cost for instance i since it will be the same for each plan. Of
the 63 instances in our reduced test set 1, 23 resulted in different route plans for each of the
three methods. Of the 19 instances in the reduced test set 2, 13 resulted in different route
plans. Our computational results are based solely on these instances and should be interpreted
accordingly.

The results of the simulation experiment are nicely summarized using performance profiles,
introduced by Dolan and Moré (2002). To that end, we let α̂(xi

m) be the actual implementation
cost (19) for route plan xi

m generated by “method” m on instance i, where the method m is
one of VRP, SP-ER, or SP-TR. A performance profile is a measure of the relative quality of each
of these methods. The ratio

χmi
def=

α̂(xi
m)

min{α̂(xi
VRP), α̂(xi

SP-TR), α̂(xi
SP-ER)}

is the factor by which method m is worse than the best method for solving instance i. The
quantity

ρm(τ) = |{i ∈ I | χmi ≤ τ}| /|I|

is the fraction of instances for which the route plan produced by method m ∈ { VRP, SP-
ER, or SP-TR} was within a factor of τ of the best of the three. The performance profile for
routing method m is a graph of ρm(τ). In general, the higher the graph of a solver, the
better the relative performance. Figure 1 shows a performance profile of the three routing
methods on the instances from test set 1, and Figure 2 shows a performance profile of the
three routing methods on the instances from test set 2. In both cases, the routes produced
by solving the model SP-ER seem to be of the highest quality when considering the actual
cost of implementing the routes. For instances in the first set, SP-ER produced the lowest
estimated cost for 15 of the 23 instances, SP-TR produced the lowest for 7 of 23 cases, and the
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deterministic VRP produced the lowest for 4 of 23 cases. (There were three ties). For instances
in the second set, SP-ER produced the lowest estimated cost for 12 of the 13 instances, SP-
TR produced the lowest for none of the 13, and the deterministic VRP produced the lowest
for 1 of the 13. Table 10 compares the average percent difference in actual routing cost
α̂(·) for the different route plans over the test sets of instances. An analysis of variance of
the estimated actual routing costs shown in Table 10 reveals that the differences are highly
statistically significant.
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Figure 1: Performance Profile of Route Plan Actual Costs, Test Set #1

Table 10: Average Relative % Change in Cost

Test Set #1 Test Set #2

% xSP-ER vs. xVRP -3.06% -2.19%
% xSP-ER vs. xSP-TR -0.33% -4.94%
% xSP-TR vs. xVRP -2.73% 2.74%

For the models SP-TR and SP-ER, Table 11 reports the average time in seconds required to
generate the candidate routes, and Table 12 reports the average time in seconds required for
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Figure 2: Performance Profile of Route Plan Actual Costs, Test Set #2
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CPLEX v9.1 to solve instances of the models on a Intel Pentium III CPU, running at 1133MHz.
For the extended recourse model, the time to generate candidate routes is negligible com-
pared to the time required to solve an instance. However, since the a priori route plan can
be computed several hours ahead of route execution, the solution time may not be a signif-
icant disadvantage for SP-ER. Further, the model SP-ER has significant structure that can be
exploited by a specialized decomposition algorithm.

Table 11: Avg. Time (CPU Seconds) to Generate Columns and Parameters for the SP Models

Test Set 1 Test Set 2

n SP-ER SP-TR SP-ER SP-TR

5 0.13 0.06 N/A N/A
8 0.28 0.10 0.26 0.17
20 4.98 0.70 1.26 0.36
30 19.03 2.02 4.59 0.47
40 38.07 4.32 9.34 0.64

Table 12: Avg. Time (CPU Seconds) to Solve the SP Models

Test Set 1 Test Set 2

n xSP-ER xSP-TR xSP-ER xSP-TR

5 0.15 0.06 N/A N/A
8 3.27 0.06 1.66 0.01
20 10827.79 0.40 239.05 0.01
30 8096.82 1.61 16154.06 0.01
40 5569.34 1.56 32631.01 0.01

4.3 Sample Average Approximation

In most practical problems involving uncertainty, the total number of scenarios (|S|) is far too
large to consider using them all. The SVRP is no exception, and for reasons of tractability, the
model SP-ER contains a very small subset of the scenarios. In this section, we quantify the im-
pact of considering only a limited number of scenarios by computing statistically valid bounds
on the optimal objective function value of the model SP-ER for two of our test instances. A
number of other authors also have suggested recently that using a limited number of scenarios
via a sample average or sample-path approach can be an extremely effective technique for solv-
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ing two-stage stochastic problems with a discrete structure (Shapiro and Homem-de-Mello,
2000, Kleywegt et al., 2001, Verweij et al., 2003, Linderoth et al., 2006).

In the sample-average method for solving SP-ER, instead of including all scenarios S, a
random subset S′ ⊂ S with |S′| = N is used. The optimal solution value of SP-ER is denoted as
z∗SP-ER, and the optimal solution value of its sampled approximation, using a random sample
size of N , is denoted as z∗SP-ER(N). The value z∗SP-ER(N) is a random variable, as it depends
on the random subset S′. However, it is well-known (e.g., Mak et al. (1999)) that the expected
value of the random variable z∗SP-ER(N) provides a biased estimate of z∗SP-ER, i.e.:

E[z∗SP-ER(N)] ≤ z∗SP-ER.

In order to estimate E[z∗SP-ER(N)], M independent samples S′1, S
′
2, . . . S

′
|M |, each of size N , are

taken. For each sample S′j , the approximating problem SP-ER is solved to obtain an optimal
objective value `j . The average value of the `j provides an unbiased estimate of E[z∗SP-ER(N)]
and thus a statistical lower bound on the true optimal objective value z∗SP-ER. Using the values
`j , a confidence interval on the estimate of E[z∗SP-ER(N)] also can be constructed as in Mak
et al. (1999).

A statistical upper bound on z∗SP-ER can be obtained by estimating the actual routing cost for
any fixed, feasible set of routes x̂. Computing the routing cost for the solution x̂ is equivalent
to solving the problem SP-ER with the additional constraint x = x̂, so the routing cost α(x̂) can
be computed by solving the restoration model SP-RM for each scenario, namely

α(x̂) =
∑
r∈R

crx̂r +
∑
s∈S

psz
∗
SP-RM(x̂, s). (20)

In Equation (20), α(x̂) is the actual cost of implementing routes x̂ and z∗SP-RM(x̂, s) is the
optimal solution value of the restoration model SP-RM(x̂, s). The value α(x̂) provides an upper
bound on z∗SP-ER, but |S| is too large to consider computing α(x̂) exactly; instead, the upper
bound is estimated by considering only a random subset of the scenarios T ⊂ S. The value
α(x̂) is then estimated as

α̂(x̂) =
∑
r∈R

crx̂r +
∑
s∈T

|T |−1z∗SP-RM(x̂, s).

For each of the M solutions x∗1, x
∗
2, . . . x

∗
|M | to the sampled approximations used in obtaining

a lower bound, the value α̂(x̂∗j ), j = 1, . . . , |M |, is computed. The average value of the α̂(x̂∗j )
provides a statistical upper bound on z∗SP-ER. Further, a confidence interval on the upper bound
can be computed as in Freimer et al. (2005).

Table 13 shows the statistical lower and upper bounds for z∗SP-ER for two randomly selected
instances from our test set. To obtain these estimates, sample average instances of size N = 60
scenarios were used, and either M = 29 or M = 16 total sample average instances were
solved. In computing the upper bounds, samples of size |T | = 501 were used to compute
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α̂(x̂∗j ) for each solution x∗j . The bounds in Table 13 indicate that the routes obtained from the
model SP-ER are of very high quality, even when using an extremely small number of samples
(N = 60). The solution values are within 2% of the true optimal solution.

Table 13: Bounds on the Optimal Solution Value z∗SP-ER

Instance Name N M Lower Bound 95% C.I Upper Bound 95% C.I

set1-20r3-16 60 29 16.16 (16.0541, 16.2659) 16.4879 (16.4871, 16.4885)
set2-30r4-18 60 16 30.40 (30.3208, 30.4792) 30.8874 (30.8868, 30.8880)

5 Conclusions and Future Research

The main contributions of this paper are the development of set-partitioning-based models for
the VRPSD and the development of a computational approach for solving the VRPSD under a
new and more realistic recourse strategy. The set-partitioning-based models can be adapted
easily for routing problems with randomness in other problem elements, such as random cus-
tomers and random travel times. The main disadvantage of the set-partitioning-based mod-
els is the need to explicitly generate a large set of routes to obtain good solutions. For the
VRPSD models studied here, we describe an effective heuristic method for generating routes
and demonstrate empirically that the heuristic produces competitive solutions. For the VRPSD
under a traditional recourse strategy in which, upon failure, the vehicle returns to the depot,
unloads/replenishes and then returns to the point of failure, we compared the results of our
approach to those previously published in the literature. For the Christofides and Eilon (1969)
75-customer instance, our model required just 3.4 and 13.76 minutes to produce two solutions
with lower expected costs, 0.4% and 0.22%, than the best published results (Savelsbergh and
Goetschalckx, 1995).

To better represent the range of options available to dispatchers when they are designing
recovery routes, we introduce the extended recourse strategy; the extended recourse strategy
allows a vehicle to serve additional customers at the end of its route before returning to the
depot, called a completion, or to serve customers on a new route after returning to the depot,
called an extra trip. A stochastic extension of the set-partitioning model allows us to easily
model this new recourse strategy. We use a simulation procedure to quantify the benefits of
modeling these more realistic recourse actions. An auxiliary optimization problem is solved to
determine the “actual” recourse actions that would be implemented. Computational tests show
that if vehicles have small capacities (i.e., about 1-3 customers per route), the new recourse
policy performs close to 5% better than the traditional one as a result of the few unsatisfied
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customers per route being served by completions. We expect that this new recourse strategy
also will provide lower cost solutions in cases where there is a significant fixed cost each time
a vehicle goes to the depot and then resumes its route. If the vehicles have larger capacities
and hence a large number of unsatisfied customers per route, the new recourse policy does not
significantly outperform the traditional strategy. However, in either case, the stochastic model
produces up to 3.06% lower cost solutions than those produced by a deterministic model in
which it is assumed that the demand is equal to the mean.

For the size of the problems studied in this paper, the route generation heuristic provided
good solutions and instances of the model can be solved relatively quickly. As the size of
the problems grows, however, the large set of columns required to obtain good solutions will
make the explicit approach computationally intractable. A topic for future research is to in-
vestigate column generation and branch-and-price approaches for solving the set-partitioning-
based models proposed here. Another area to investigate is exploiting the decomposable struc-
ture of the set-partitioning-based model for the extended recourse, which would allow us to
solve the recourse problem independently and in parallel for each scenario. A final topic is to
investigate the quality of the routes if the integrality restrictions on the recourse variables are
removed.
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