
Orbital Branching

James Ostrowski1, Jeff Linderoth1, Fabrizio Rossi2, and Stefano Smriglio2

1 Department of Industrial and Systems Engineering, Lehigh University,
200 W. Packer Ave., Bethlehem, PA 18015, USA

{jao204,jtl3}@lehigh.edu
2 Dipartimento di Informatica, Università di L’Aquila, Via Vetoio I-67010 Coppito

(AQ), Italy
{rossi,smriglio}@di.univaq.it

Abstract. We introduceorbital branching, an effective branchingmethod
for integer programs containing a great deal of symmetry. The method is
based on computing groups of variables that are equivalent with respect to
the symmetry remaining in the problem after branching, including sym-
metry which is not present at the root node. These groups of equivalent
variables, called orbits, are used to create a valid partitioning of the fea-
sible region which significantly reduces the effects of symmetry while still
allowing a flexible branching rule. We also show how to exploit the sym-
metries present in the problem to fix variables throughout the branch-and-
bound tree. Orbital branching can easily be incorporated into standard IP
software. Through an empirical study on a test suite of symmetric inte-
ger programs, the question as to the most effective orbit on which to base
the branching decision is investigated. The resulting method is shown to
be quite competitive with a similar method known as isomorphism prun-
ing and significantly better than a state-of-the-art commercial solver on
symmetric integer programs.

1 Introduction

In this work, we focus on packing and covering integer programs (IP)s of the
form

max
x∈{0,1}n

{eT x | Ax ≤ e} and (PIP)

min
x∈{0,1}n

{eT x | Ax ≥ e} , (CIP)

where A ∈ {0, 1}m×n, and e is a vector of ones of conformal size. Our particular
focus is on cases when (CIP) or (PIP) is highly-symmetric, a concept we formalize
as follows. Let Πn be the set of all permutations of In = {1, . . . , n}. Given a
permutation π ∈ Πn and a permutation σ ∈ Πm, let A(π, σ) be the matrix
obtained by permuting the columns of A by π and the rows of A by σ, i.e.
A(π, σ) = PσAPπ , where Pσ and Pπ are permutation matrices. The symmetry
group G of the matrix A is the set of permutations

G(A) def= {π ∈ Πn | ∃σ ∈ Πm such that A(π, σ) = A} .

M. Fischetti and D.P. Williamson (Eds.): IPCO 2007, LNCS 4513, pp. 104–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Orbital Branching 105

So, for any π ∈ G(A), if x̂ is feasible for (CIP) or (PIP) (or the LP relaxations
of (CIP) or (PIP)), then if the permutation π is applied to the coordinates of x̂,
the resulting solution, which we denote as π(x̂), is also feasible. Moreover, the
solutions x̂ and π(x̂) have equal objective value.

This equivalence of solutions induced by symmetry is a major factor that might
confound thebranch-and-boundprocess.For example, suppose x̂is a (non-integral)
solution to an LP relaxation of PIP or CIP, with 0 < x̂j < 1, and the decision
is made to branch down on variable xj by fixing xj = 0. If ∃π ∈ G(A) such that
[π(x̂)]j = 0, thenπ(x̂) is a feasible solution for this child node, and eT x̂ = eT (π(x̂)),
so the relaxation value for the child node will not change. If the cardinality of G(A)
is large, then there are many permutations through which the parent solution of
the relaxation can be preserved in this manner, resulting in many branches that do
not change the bound on the parent node. Symmetry has long been recognized as
a curse for solving integer programs, and auxiliary (often extended) formulations
are often sought that reduce the amount of symmetry in an IP formulation [1,2,3].
In addition, there is a body of research on valid inequalities that can help exclude
symmetric feasible solutions [4,5,6]. Kaibel and Pfetsch [7] formalize many of these
arguments by defining and studying the properties of a polyhedron known as an
orbitope, the convex hull of lexicographically maximal solutions with respect to a
symmetry group. Kaibel et al. [8] then use the properties of orbitopes to remove
symmetry in partitioning problems.

A different idea, isomorphism pruning, introduced by Margot [9,10] in the con-
text of IP and dating back to Bazaraa and Kirca [11], examines the symmetry
group of the problem in order to prune isomorphic subproblems of the enumera-
tion tree. The branching method introduced in this work, orbital branching, also
uses the symmetry group of the problem. However, instead of examining this group
to ensure that an isomorphic node will never be evaluated, the group is used to
guide the branching decision. At the cost of potentially evaluating isomorphic sub-
problems, orbital branching allows for considerably more flexibility in the choice of
branching entity than isomorphism pruning. Furthermore, orbital branching can
be easily incorporated within a standard MIP solver and even exploit problem
symmetry that may only be locally present at a nodal subproblem.

The remainder of the paper is divided into five sections. In Sect. 2 we give some
mathematical preliminaries. Orbital branching is introduced and formalized in
Sect. 3, and a mechanism to fix additional variables based on symmetry con-
siderations called orbital fixing is described there. A more complete comparison
to isomorphism pruning is also presented in Sect. 3. Implementation details are
provided in Sect. 4, and computational results are presented in Sect. 5. Conclu-
sions about the impact of orbital branching and future research directions are
given in Sect. 6.

2 Preliminaries

Orbital branching is based on elementary concepts from algebra that we recall in
this section to make the presentation self-contained. Some definitions are made

106 J. Ostrowski et al.

in terms of an arbitrary permutation group Γ , but for concreteness, the reader
may consider the group Γ to be the symmetry group of the matrix G(A).

For a set S ⊆ In, the orbit of S under the action of Γ is the set of all subsets
of In to which S can be sent by permutations in Γ , i.e.,

orb(S, Γ) def= {S′ ⊆ In | ∃π ∈ Γ such that S′ = π(S)} .

In the orbital branching we are concerned with the orbits of sets of cardinality
one, corresponding to decision variables xj in PIP or CIP. By definition, if j ∈
orb({k}, Γ), then k ∈ orb({j}, Γ), i.e. the variable xj and xk share the same
orbit. Therefore, the union of the orbits

O(Γ) def=
n⋃

j=1

orb({j}, Γ)

forms a partition of In = {1, 2, . . . , n}, which we refer to as the orbital partition
of Γ , or simply the orbits of Γ . The orbits encode which variables are “equivalent”
with respect to the symmetry Γ .

The stabilizer of a set S ⊆ In in Γ is the set of permutations in Γ that send
S to itself.

stab(S, Γ) = {π ∈ Γ | π(S) = S} .

The stabilizer of S is a subgroup of Γ .
We characterize a node a = (F a

1 , F a
0) of the branch-and-bound enumeration

tree by the indices of variables fixed to one F a
1 and fixed to zero F a

0 at node a.
The set of free variables at node a is denoted by Na = In \ F a

0 \ F a
1 . At node a,

the set of feasible solutions to (CIP) or (PIP) is denoted by F(a), and the value
of an optimal solution for the subtree rooted at node a is denoted as z∗(a).

3 Orbital Branching

In this section we introduce orbital branching, an intuitive way to exploit the
orbits of the symmetry group G(A) when making branching decisions. The clas-
sical 0-1 branching variable dichotomy does not take advantage of the problem
information encoded in the symmetry group. To take advantage of this infor-
mation in orbital branching, instead of branching on individual variables, orbits
of variables are used to create the branching dichotomy. Informally, suppose
that at the current subproblem there is an orbit of cardinality k in the orbital
partitioning. In orbital branching, the current subproblem is divided into k + 1
subproblems: the first k subproblems are obtained by fixing to one in turn each
variable in the orbit while the (k + 1)st subproblem is obtained by fixing all
variables in the orbit to zero. For any pair of variables xi and xj in the same
orbit, the subproblem created when xi is fixed to one is essentially equivalent
to the subproblem created when xj is fixed to one. Therefore, we can keep in

Orbital Branching 107

the subproblem list only one representative subproblem, pruning the (k − 1)
equivalent subproblems. This is formalized below.

Let A(F a
1 , F a

0) be the matrix obtained by removing from the constraint matrix
A all columns in F a

0 ∪ F a
1 and either all rows intersecting columns in F a

1 (CIP
case) or all columns nonorthogonal to columns in F a

1 (PIP case). Note that if
x ∈ F(a) and x is feasible with respect to the matrix A, then x is feasible with
respect to the matrix A(F a

1 , F a
0).

Let O = {i1, i2, . . . , i|O|} ⊆ Na be an orbit of the symmetry group G(A(F a
1 ,

F a
0)). Given a subproblem a, the disjunction

xi1 = 1 ∨ xi2 = 1 ∨ . . . xiO = 1 ∨
∑

i∈O

xi = 0 (1)

induces a feasible division of the search space. In what follows, we show that for
any two variables xj , xk ∈ O, the two children a(j) and a(k) of a, obtained by
fixing respectively xj and xk to 1 have the same optimal solution value. As a
consequence, disjunction (1) can be replaced by the binary disjunction

xh = 1 ∨
∑

i∈O

xi = 0 , (2)

where h is a variable in O. Formally, we have Theorem 1.

Theorem 1. Let O be an orbit in the orbital partitioning O(G(A(F a
1 , F a

0))),
and let j, k be two variable indices in O. If a(j) = (F a

1 ∪ {j}, F a
0) and a(k) =

(F a
1 ∪ {k}, F a

0) are the child nodes created when branching on variables xj and
xk, then z∗(a(j)) = z∗(a(k)).

Proof. Let x∗ be an optimal solution of a(j) with value z∗(a(j)). Obviously
x∗ is also feasible for a. Since j and k are in the same orbit O, there exists a
permutation π ∈ G(A(F a

1 , F a
0)) such that π(j) = k. By definition, π(x∗) is a

feasible solution of a with value z∗(a(j)) such that xk = 1. Therefore, π(x∗) is
feasible for a(k), and z∗(a(k)) = z∗(a(j)). 	

The basic orbital branching method is formalized in Algorithm 1.

Algorithm 1. Orbital Branching
Input: Subproblem a = (F a

1 , F a
0), non-integral solution x̂.

Output: Two child subproblems b and c.

Step 1. Compute orbital partition O(G(A(F a
1 , F a

0))) = {O1, O2, . . . , Op}.
Step 2. Select orbit Oj∗ , j∗ ∈ {1, 2, . . . , p}.
Step 3. Choose arbitrary k ∈ Oj∗ . Return subproblems b = (F a

1 ∪ {k}, F a
0) and

c = (F a
1 , F a

0 ∪ Oj∗).

The consequence of Theorem 1 is that the search space is limited, but orbital
branching has also the relevant effect of reducing the likelihood of encountering

108 J. Ostrowski et al.

symmetric solutions. Namely, no solutions in the left and right child nodes of
the current node will be symmetric with respect to the local symmetry. This is
formalized in Theorem 2.

Theorem 2. Let b and c be any two subproblems in the enumeration tree. Let a
be the first common ancestor of b and c. For any x ∈ F(b) and π ∈ G(A(F a

0 , F a
1)),

π(x) does not belong F(c).

Proof. Suppose not, i.e., that there ∃x ∈ F(b) and a permutation π ∈ G(A(F a
0 ,

F a
1)) such that π(x) ∈ F(c). Let Oi ∈ O(G(A(F a

1 , F a
0))) be the orbit chosen to

branch on at subproblem a. W.l.o.g. we can assume xk = 1 for some k ∈ Oi.
We have that xk = [π(x)]π(k) = 1, but π(k) ∈ Oi. Therefore, by the orbital
branching dichotomy, π(k) ∈ F c

0 , so π(x) �∈ F(c). 	

Note that by using the matrix A(F a

1 , F a
0), orbital branching attempts to use sym-

metry found at all nodes in the enumeration tree, not just the symmetry found
at the root node. This makes it possible to prune nodes whose corresponding
solutions are not symmetric in the original IP.

3.1 Orbital Fixing

In orbital branching, all variables fixed to zero and one are removed from the
constraint matrix at every node in the enumeration tree. As Theorem 2 demon-
strates, using orbital branching in this way ensures that any two nodes are not
equivalent with respect to the symmetry found at their first common ancestor.
It is possible however, for two child subproblems to be equivalent with respect
to a symmetry group found elsewhere in the tree. In order to combat this type
of symmetry we perform orbital fixing, which works as follows.

Consider the symmetry group G(A(F a
1 , ∅)) at node a. If there exists an orbit

O in the orbital partition O(G(A(F a
1 , ∅))) that contains variables such that O ∩

F a
0 �= ∅ and O ∩ Na �= ∅, then all variables in O can be fixed to zero. In the

following theorem, we show that such variable setting (orbital fixing) excludes
feasible solutions only if there exists a feasible solution of the same objective
value to the left of the current node in the branch and bound tree. (We assume
that the enumeration tree is oriented so that the branch with an additional
variable fixed at one is the left branch).

To aid in our development,we introduce the concept of a focus node. For
x ∈ F(a), we call node b(a, x) a focus node of a with respect to x if ∃y ∈ F(b)
such that eT x = eT y and b is found to the left of a in the tree.

Theorem 3. Let {O1, O2, . . . Oq} be an orbital partitioning of G(A(F a
1 , ∅)) at

node a, and let the set

S
def= {j ∈ Na | ∃k ∈ F a

0 and j, k ∈ O� for some � ∈ {1, 2, . . . q}}

be the set of free variables that share an orbit with a variable fixed to zero at a.
If x ∈ F(a) with xi = 1 for some i ∈ S, then there exists a focus node for a with
respect to x.

Orbital Branching 109

Proof. Suppose that a is the first node in any enumeration tree where S is non-
empty. Then, there exist j ∈ F a

0 and i ∈ S such that i ∈ orb({j}, G(A(F a
1 , ∅))),

i.e., there exists a π ∈ G(A(F a
1 , ∅)) with π(i) = j. W.l.o.g., suppose that j is

any of the first such variables fixed to zero on the path from the root node to
a and let c be the subproblem in which such a fixing occurs. Let ρ(c) be the
parent node of c. By our choice of j as the first fixed variable, for all i ∈ F a

0 , we
have xπ(i) = 0. Then, there exists x ∈ F(a) with xi = 1 such that π(x) is not
feasible in a (since it does not satisfy the bounds) but it is feasible in ρ(c) and
has the same objective value of x. Since j was fixed by orbital branching then
the left child of ρ(c) has xh = 1 for some h ∈ orb({j}, G(A(F ρ(c)

1 , F
ρ(c)
0))). Let

π′ ∈ G(A(F ρ(c)
1 , F

ρ(c)
0)) have π′(j) = h. Then π′(π(x)) is feasible in the left node

with the same objective value of x. The left child node of ρ(c) is then the focus
node of a with respect to x.

If a is not a first node in the enumeration tree one can apply the same argu-
ment to the first ancestor b of a such that S �= ∅. The focus node of c = (b, x) is
then a focus node of (a, x).

	

An immediate consequence of Theorem 3 is that for all i ∈ F a

0 and for all
j ∈ orb({i}, G(A(F a

1 , ∅))) one can set xj = 0. We update orbital branching to
include orbital fixing in Algorithm 2.

Algorithm 2. Orbital Branching with Orbital Fixing
Input: Subproblem a = (F a

1 , F a
0) (with free variables Na = In \ F a

1 \ F a
0), frac-

tional solution x̂.
Output: Two child nodes b and c.

Step 1. Compute orbital partition O(G(A(F a
1 , ∅))) = {Ô1, Ô2, . . . , Ôq}. Let S

def=
{j ∈ Na | ∃k ∈ F a

0 and (j ∩ k) ∈ Ô� for some � ∈ {1, 2, . . . q}}.
Step 2. Compute orbital partition O(G(A(F a

1 , F a
0))) = {O1, O2, . . . , Op}.

Step 3. Select orbit Oj∗ , j∗ ∈ {1, 2, . . . , p}.
Step 4. Choose arbitrary k ∈ Oj∗ . Return child subproblems b = (F a

1 ∪{k}, F a
0 ∪S)

and c = (F a
1 , F a

0 ∪ Oj∗ ∪ S).

In orbital fixing, the set S of additional variables set to zero is a function of
F a

0 . Variables may appear in F a
0 due to a branching decision or due to traditional

methods for variable fixing in integer programming, e.g. reduced cost fixing or
implication-based fixing. Orbital fixing, then, gives a way to enhance traditional
variable-fixing methods by including the symmetry present at a node of the
branch and bound tree.

3.2 Comparison to Isomorphism Pruning

The fundamental idea behind isomorphism pruning is that for each node a =
(F a

1 , F a
0), the orbits orb(F a

1 , G(A)) of the “equivalent” sets of variables to F a
1 are

110 J. Ostrowski et al.

computed. If there is a node b = (F b
1 , F b

0) elsewhere in the enumeration tree such
that F b

1 ∈ orb(F a
1 , G(A)), then the node a need not be evaluated—the node a is

pruned by isomorphism. A very distinct and powerful advantage of this method
is that no nodes whose sets of fixed variables are isomorphic will be evaluated.
One disadvantage of this method is that computing orb(F a

1 , G(A)) can require
computational effort on the order of O(n|F a

1 |!). A more significant disadvantage
of isomorphism pruning is that orb(F a

1 , G(A)) may contain many equivalent sub-
sets to F a

1 , and the entire enumeration tree must be compared against this list to
ensure that a is not isomorphic to any other node b. In a series of papers, Margot
offers a way around this second disadvantage [9,10]. The key idea introduced is
to declare one unique representative among the members of orb(F a

1 , G(A)), and
if F a

1 is not the unique representative, then the node a may safely be pruned.
The advantage of this extension is that it is trivial to check whether or not node
a may be pruned once the orbits orb(F a

1 , G(A)) are computed. The disadvantage
of the method is ensuring that the unique representative occurs somewhere in the
branch and bound tree requires a relatively inflexible branching rule. Namely, all
child nodes at a fixed depth must be created by branching on the same variable.

Orbital branching does not suffer from this inflexibility. By not focusing on
pruning all isomorphic nodes, but rather eliminating the symmetry through
branching, orbital branching offers a great deal more flexibility in the choice
of branching entity. Another advantage of orbital branching is that by using the
symmetry group G(A(F a

1 , F a
0)), symmetry introduced as a result of the branching

process is also exploited.
Both methods allow for the use of traditional integer programming methodolo-

gies such as cutting planes and fixing variables based on considerations such as
reduced costs and implications derived from preprocessing. In isomorphism prun-
ing, for a variable fixing to be valid, it must be that all non-isomorphic optimal
solutions are in agreement with the fixing. Orbital branching does not suffer from
this limitation. A powerful idea in both methods is to combine the variable fixing
with symmetry considerations in order to fix many additional variables. This idea
is called orbit setting in [10] and orbital fixing in this work (see Sect. 3.1).

4 Implementation

The orbital branching method has been implemented using the user application
functions of MINTO v3.1 [12]. The branching dichotomy of Algorithm 1 or 2
is implemented in the appl divide() method, and reduced cost fixing is im-
plemented in appl bounds(). The entire implementation, including code for all
the branching rules subsequently introduced in Sect. 4.2 consists of slightly over
1000 lines of code. All advanced IP features of MINTO were used, including
clique inequalities, which can be useful for instances of (PIP).

4.1 Computing G(·)

Computation of the symmetry groups required for orbital branching and orbital
fixing is done by computing the automorphism group of a related graph. Recall

Orbital Branching 111

that the automorphism group Aut(G(V, E)) of a graph G = (V, E), is the set of
permutations of V that leave the incidence matrix of G unchanged, i.e.

Aut(G(V, E)) = {π ∈ Π |V | | (i, j) ∈ E ⇔ (π(i), π(j)) ∈ E} .

The matrix A whose symmetry group is to be computed is transformed into a
bipartite graph G(A) = (N, M, E) where vertex set N = {1, 2, . . . , n} represents
the variables, and vertex set M = {1, 2, . . . , m} represents the constraints. The
edge (i, j) ∈ E if and only if aij = 1. Under this construction, feasible solutions
to (PIP) are subsets of the vertices S ⊆ N such that each vertex i ∈ M is
adjacent to at most one vertex j ∈ S. In this case, we say that S packs M .
Feasible solutions to (CIP) correspond to subsets of vertices S ⊆ N such that
each vertex i ∈ M is adjacent to at least one vertex j ∈ S, or S covers M . Since
applying members of the automorphism group preserves the incidence structure
of a graph, if S packs (covers) M , and π ∈ stab(M, Aut(G(A))), then there exists
a σ ∈ Πm such that σ(M) = M and π(S) packs (covers) σ(M). This implies that
if π ∈ stab(M, Aut(G(A))), then the restriction of π to N must be an element of
G(A), i.e. using the graph G(A), one can find elements of symmetry group G(A).
In particular, we compute the orbital partition of the stabilizer of the constraint
vertices M in the automorphism group of G(A), i.e.

O(stab(M, Aut(G(A)))) = {O1, O2, . . . , Op} .

The orbits O1, O2, . . . , Op in the orbital partition are such that if i ∈ M and
j ∈ N , then i and j are not in the same orbit. We can then refer to these orbits
as variable orbits and constraint orbits. In orbital branching, we are concerned
only with the variable orbits.

There are several softwarepackages that can compute the automorphismgroups
required to perform orbital branching. The program nauty [13], by McKay, has
been shown to be quite effective [14], and we use nauty in our orbital branching
implementation.

The complexity of computing the automorphism group of a graph is not
known to be polynomial time. However, nauty was able to compute the symme-
try groups of our problems very quickly, generally faster than solving an LP at
a given node. One explanation for this phenomenon is that the running time of
nauty’s backtracking algorithm is correlated to the size of the symmetry group
being computed. For example, computing the automorphism group of the clique
on 2000 nodes takes 85 seconds, while graphs of comparable size with little or no
symmetry require fractions of a second. The orbital branching procedure quickly
reduces the symmetry group of the child subproblems, so explicitly recomputing
the group by calling nauty is computational very feasible. In the table of results
presented in the Appendix, we state explicitly the time required in computing
automorphism groups by nauty.

4.2 Branching Rules

The orbital branching rule introduced in Sect. 3 leaves significant freedom in
choosing the orbit on which to base the partitioning. In this section, we discuss

112 J. Ostrowski et al.

mechanisms for deciding on which orbit to branch. As input to the branching de-
cision, we are given a fractional solution x̂ and orbits O1, O2, . . . Op (consisting of
all currently free variables) of the orbital partitioning O(G(A(F a

0 , F a
1))) for the

subproblem at node a. Output of the branching decision is an index j∗ of an orbit
on which to base the orbital branching. We tested six different branching rules.
Rule 1: Branch Largest: The first rule chooses to branch on the largest orbit
Oj∗ :

j∗ ∈ arg max
j∈{1,...p}

|Oj | .

Rule 2: Branch Largest LP Solution: The second rule branches on the orbit
Oj∗ whose variables have the largest total solution value in the fractional solution
x̂:

j∗ ∈ arg max
j∈{1,...p}

x̂(Oj) .

Rule 3: Strong Branching: The third rule is a strong branching rule. For each
orbit j, two tentative child nodes are created and their bounds z+

j and z−j are
computed by solving the resulting linear programs. The orbit j∗ for which the
product of the change in linear program bounds is largest is used for branching:

j∗ ∈ arg max
j∈{1,...p}

(|eT x̂ − z+
j |)(|eT x̂ − z−j |) .

Note that if one of the potential child nodes in the strong branching procedure
would be pruned, either by bound or by infeasibility, then the bounds on the
variables may be fixed to their values on the alternate child node. We refer to
this as strong branching fixing, and in the computational results in the Appendix,
we report the number of variables fixed in this manner. As discussed at the end
of Sect. 3.1, variables fixed by strong branching fixing may result in additional
variables being fixed by orbital fixing.

Rule 4: Break Symmetry Left: This rule is similar to strong branching, but
instead of fixing a variable and computing the change in objective value bounds,
we fix a variable and compute the change in the size of the symmetry group.
Specifically, for each orbit j, we compute the size of the symmetry group in
the resulting left branch if orbit j (including variable index ij) was chosen for
branching, and we branch on the orbit that reduces the symmetry by as much
as possible:

j∗ ∈ arg min
j∈{1,...p}

(|G(A(F a
1 ∪ {ij}, F a

0))|) .

Rule 5: Keep Symmetry Left: This branching rule is the same as Rule 4,
except that we branch on the orbit for which the size of the child’s symmetry
group would remain the largest:

j∗ ∈ arg max
j∈{1,...p}

(|G(A(F a
1 ∪ {ij}, F a

0))|) .

Rule 6: Branch Max Product Left: This rule attempts to combine the fact
that we would like to branch on a large orbit at the current level and also keep

Orbital Branching 113

a large orbit at the second level on which to base the branching dichotomy.
For each orbit O1, O2, . . . , Op, the orbits P j

1 , P j
2 , . . . , P j

q of the symmetry group
G(A(F a

1 ∪ {ij}, F a
0)) of the left child node are computed for some variable index

ij ∈ Oj . We then choose to branch on the orbit j∗ for which the product of the
orbit size and the largest orbit of the child subproblem is largest:

j∗ ∈ arg max
j∈{1,...p}

(
|Oj |(max

k∈{1,...q}
|P j

k |)
)

.

5 Computational Experiments

In this section, we give empirical evidence of the effectiveness of orbital branch-
ing, we investigate the impact of choosing the orbit on which branching is based,
and we demonstrate the positive effect of orbital fixing. The computations are
based on the instances whose characteristics are given in Table 1. The instances
beginning with cod are used to compute maximum cardinality binary error cor-
recting codes [15], the instances whose names begin with cov are covering designs
[16], the instance f5 is the “football pool problem” on five matches [17], and the
instances sts are the well-known Steiner-triple systems [18]. The cov formu-
lations have been strengthened with a number of Schöenheim inequalities, as
derived by Margot [19]. All instances, save for f5, are available from Margot’s
web site: http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html.

Table 1. Symmetric Integer Programs

Name Variables
cod83 256
cod93 512
cod105 1024
cov1053 252
cov1054 2252
cov1075 120
cov1076 120
cov954 126

f5 243
sts27 27
sts45 45

The computations were run on ma-
chines with AMD Opteron proces-
sors clocked at 1.8GHz and having
2GB of RAM. The COIN-OR soft-
ware Clp was used to solve the lin-
ear programs at nodes of the branch
and bound tree. All code was com-
piled with the GNU family of compil-
ers using the flags -O3 -m32. For each
instance, the (known) optimal solu-
tion value was set to aid pruning and
reduce the “random” impact of find-
ing a feasible solution in the search.
Nodes were searched in a best-first
fashion. When the size of the maxi-
mum orbit in the orbital partitioning
is less than or equal to two, nearly all
of the symmetry in the problem has
been eliminated by the branching procedure, and there is little use to perform
orbital branching. In this case, we use MINTO’s default branching strategy. The
CPU time was limited in all cases to four hours.

In order to succinctly present the results, we use performance profiles of Dolan
and Moré [20]. A performance profile is a relative measure of the effectiveness of
one solution method in relation to a group of solution methods on a fixed set of

http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html

114 J. Ostrowski et al.

problem instances. A performance profile for a solution method m is essentially
a plot of the probability that the performance of m (measured in this case with
CPU time) on a given instance in the test suite is within a factor of β of the best
method for that instance.

Figure 1 shows the results of an experiment designed to compare the perfor-
mance of the six different orbital branching rules introduced in Sect. 4.2. In this
experiment, both reduced cost fixing and orbital fixing were used. A complete
table showing the number of nodes, CPU time, CPU time computing automor-
phism groups, the number of variables fixed by reduced cost fixing, orbital fixing,
and strong branching fixing, and the deepest tree level at which orbital branching
was performed is shown in the Appendix.

Pr
ob

(w
ith

in
 f

ac
to

r
ß

of
 f

as
te

st
)

ß
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32

break−symmetry−left

keep−symmetry−left

branch−max−product−left

strong−branch

branch−largest−lp

branch−largest

Fig. 1. Performance Profile of Branching Rules

A somewhat surprising result from the results depicted in Fig. 1 is that the
most effective branching method was Rule 5, the method that keeps the sym-
metry group size large on the left branch. (This method gives the “highest”
line in Fig. 1). The second most effective branching rule appears to be the rule
that tries to reduce the group size by as much as possible. While these methods
may not prove to be the most robust on a richer suite of difficult instances, one
conclusion that we feel safe in making from this experiment is that considering
the impact on the symmetry of the child node of the current branching decision
is important. Another important observation is that for specific instances, the
choice of orbit on which to branch can have a huge impact on performance.
For example, for the instance cov1054, branching rules 4 and 5 both reduce the
number of child nodes to 11, while other mechanisms that do not consider the
impact of the branching decision on the symmetry of the child nodes cannot
solve the problem in four hours of computing time.

The second experiment was aimed at measuring the impact of performing
orbital fixing, as introduced in Sect. 3.1. Using branching rule 5, each instance
in Table 1 was run both with and without orbital fixing. Figure 2 shows a
performance profile comparing the results in the two cases. The results shows
that orbital fixing has a significant positive impact.

Orbital Branching 115

Pr
ob

(w
ith

in
 f

ac
to

r
ß

of
 f

as
te

st
)

ß
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

no−orbital−fixing

orbital−fixing

Fig. 2. Performance Profile of Impact of Orbital Fixing

The final comparison we make here is between orbital branching (with keep-
symmetry-left branching), the isomorphism pruning algorithm of Margot, and
the commercial solver CPLEX version 10.1, which has features for symmetry
detection and handling. Table 2 summarizes the results of the comparison. The
results for isomorphism pruning are taken directly from the paper of Margot
using the most sophisticated of his branching rules “BC4” [10]. The paper [10]
does not report results on sts27 or f5. The CPLEX results were obtained on
an Intel Pentium 4 CPU clocked at 2.40GHz. Since the results were obtained on
three different computer architectures and each used a different LP solver for
the child subproblems, the CPU times should be interpreted appropriately.

The results show that the number of subproblems evaluated by orbital
branching is smaller than isomorphism pruning in three cases, and in nearly
all cases, the number of nodes is comparable. For the instance cov1076, which
is not solved by orbital branching, a large majority of the CPU time is spent
computing symmetry groups at each node. In a variant of orbital branching that

Table 2. Comparison of Orbital Branching, Isomorphism Pruning, and CPLEX v10.1

Orbital Branching Isomorphism Pruning CPLEX v10.1
Instance Time Nodes Time Nodes Time Nodes
cod83 2 25 19 33 391 32077
cod93 176 539 651 103 fail 488136
cod105 306 11 2000 15 1245 1584
cov1053 50 745 35 111 937 99145
cov1054 2 11 130 108 fail 239266
cov1075 292 377 118 169 141 10278
cov1076 fail 13707 3634 5121 fail 1179890
cov954 22 401 24 126 9 1514

f5 66 935 - - 1150 54018
sts27 1 71 - - 0 1647
sts45 3302 24317 31 513 24 51078

116 J. Ostrowski et al.

Table 3. Performance of Orbital Branching Rules on Symmetric IPs

Nauty # Fixed # Fixed # Fixed Deepest
Instance Branching Rule Time Nodes Time by RCF by OF by SBF Orbital Level
cod105 Break Symmetry 305.68 11 22.88 0 1020 0 4
cod105 Keep Symmetry 306.47 11 22.92 0 1020 0 4
cod105 Branch Largest LP Solution 283.54 7 11.87 0 0 0 2
cod105 Branch Largest 283.96 9 18.01 0 0 0 3
cod105 Max Product Orbit Size 302.97 9 17.41 0 920 0 3
cod105 Strong Branch 407.14 7 11.85 0 1024 1532 2
cod83 Break Symmetry 2.35 25 1.09 44 910 0 7
cod83 Keep Symmetry 2.38 25 1.10 44 910 0 7
cod83 Branch Largest LP Solution 8.81 93 2.76 209 534 0 6
cod83 Branch Largest 10.03 113 3.41 183 806 0 14
cod83 Max Product Orbit Size 9.39 115 4.59 109 634 0 11
cod83 Strong Branch 9.44 23 0.97 27 878 394 6
cod93 Break Symmetry 175.47 529 75.15 3382 3616 0 17
cod93 Keep Symmetry 175.58 529 75.31 3382 3616 0 17
cod93 Branch Largest LP Solution 3268.89 12089 1326.26 181790 3756 0 29
cod93 Branch Largest 2385.80 8989 920.90 142351 4986 0 49
cod93 Max Product Orbit Size 587.06 2213 215.68 28035 1160 0 29
cod93 Strong Branch 2333.22 161 19.76 380 2406 13746 14

cov1053 Break Symmetry 50.28 745 27.51 0 836 0 33
cov1053 Keep Symmetry 50.31 745 27.54 0 836 0 33
cov1053 Branch Largest LP Solution 1841.41 23593 990.12 0 5170 0 71
cov1053 Branch Largest 148.37 2051 70.73 0 1504 0 36
cov1053 Max Product Orbit Size 192.18 2659 91.72 0 1646 0 68
cov1053 Strong Branch 1998.55 1455 53.96 0 5484 34208 54
cov1054 Break Symmetry 1.77 11 0.85 0 186 0 4
cov1054 Keep Symmetry 1.76 11 0.85 0 186 0 4
cov1054 Branch Largest LP Solution 14400 54448 7600.80 0 814 0 35
cov1054 Branch Largest 14400 54403 7533.80 0 1452 0 49
cov1054 Max Product Orbit Size 14400 52782 7532.77 0 1410 0 38
cov1054 Strong Branch 14400 621 87.76 0 204 4928 32
cov1075 Break Symmetry 14400 9387 13752.11 37121 0 0 2
cov1075 Keep Symmetry 291.85 377 268.45 379 926 0 15
cov1075 Branch Largest LP Solution 906.48 739 861.57 1632 716 0 23
cov1075 Branch Largest 268.49 267 248.45 793 1008 0 13
cov1075 Max Product Orbit Size 395.11 431 366.24 1060 1066 0 21
cov1075 Strong Branch 223.53 67 60.71 106 128 1838 10
cov1076 Break Symmetry 14400 8381 13853.35 2 0 0 3
cov1076 Keep Symmetry 14400 13707 13818.47 11271 1564 0 26
cov1076 Branch Largest LP Solution 14400 6481 13992.74 10 116 0 14
cov1076 Branch Largest 14400 6622 13988.71 0 176 0 13
cov1076 Max Product Orbit Size 14400 6893 13967.86 71 580 0 14
cov1076 Strong Branch 14400 1581 3255.74 5 164 58 23
cov954 Break Symmetry 21.72 401 14.81 570 1308 0 14
cov954 Keep Symmetry 21.70 401 14.83 570 1308 0 14
cov954 Branch Largest LP Solution 11.30 175 7.03 498 48 0 5
cov954 Branch Largest 15.69 265 10.51 671 212 0 12
cov954 Max Product Orbit Size 14.20 229 9.25 602 212 0 11
cov954 Strong Branch 17.55 45 1.74 50 100 1084 8

f5 Break Symmetry 65.86 935 23.25 2930 2938 0 17
f5 Keep Symmetry 65.84 935 23.26 2930 2938 0 17
f5 Branch Largest LP Solution 91.32 1431 28.95 7395 272 0 8
f5 Branch Largest 100.66 1685 30.75 7078 434 0 11
f5 Max Product Orbit Size 102.54 1691 30.96 7230 430 0 13
f5 Strong Branch 671.51 123 2.59 187 760 8586 15

sts27 Break Symmetry 0.84 71 0.71 0 8 0 10
sts27 Keep Symmetry 0.83 71 0.71 0 8 0 10
sts27 Branch Largest LP Solution 2.33 115 2.12 3 86 0 14
sts27 Branch Largest 0.97 73 0.83 1 28 0 13
sts27 Max Product Orbit Size 2.88 399 2.42 1 888 0 11
sts27 Strong Branch 1.63 75 1.15 2 76 0 14
sts45 Break Symmetry 3302.70 24317 3230.12 12 0 0 4
sts45 Keep Symmetry 3301.81 24317 3229.88 12 0 0 4
sts45 Branch Largest LP Solution 4727.29 36583 4618.66 25 0 0 2
sts45 Branch Largest 4389.80 33675 4289.45 36 0 0 2
sts45 Max Product Orbit Size 4390.39 33675 4289.79 36 0 0 2
sts45 Strong Branch 1214.04 7517 884.79 2 144 45128 21

uses a symmetry group that is smaller but much more efficient to compute (and
which space prohibits us from describing in detail here), cov1076 can be solved
in 679 seconds and 14465 nodes. Since in any optimal solution to the Steiner
triple systems, more than 2/3 of the variables will be set to 1, orbital branching
would be much more efficient if all variables were complemented, or equivalently
if the orbital branching dichotomy (2) was replaced by its complement. Margot
[10] also makes a similar observation, and his results are based on using the
complemented instances, which may account for the large gap in performance

Orbital Branching 117

of the two methods on sts45. We are currently instrumenting our code to deal
with instances for which the number of ones in an optimal solution is larger than
1/2. Orbital branching proves to be faster than CPLEX in six cases, while in all
cases the number of evaluated nodes is remarkably smaller.

6 Conclusion

In this work, we presented a simple way to capture and exploit the symmetry of an
integer program when branching. We showed through a suite of experiments that
the new method, orbital branching, outperforms state-of-the-art solvers when a
high degree of symmetry is present. In terms of reducing the size of the search tree,
orbital branching seems to be of comparable quality to the isomorphism pruning
method of Margot [10]. Further, we feel that the simplicity and flexibility of orbital
branching make it an attractive candidate for further study. Continuing research
includes techniques for further reducing the number of isomorphic nodes that are
evaluated and on developing branching mechanisms that combine the child bound
improvement and change in symmetry in a meaningful way.

Acknowledgments

The authors would like to thank Kurt Anstreicher and François Margot for
inspiring and insightful comments on this work. In particular, the name orbital
branching was suggested by Kurt. Author Linderoth would like to acknowledge
support from the US National Science Foundation (NSF) under grant DMI-
0522796, by the US Department of Energy under grant DE-FG02-05ER25694,
and by IBM, through the faculty partnership program. Author Ostrowski is
supported by the NSF through the IGERT Grant DGE-9972780.

References

1. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.:
Branch and Price: Column generation for solving huge integer programs. Opera-
tions Research 46 (1998) 316–329

2. Holm, S., Sørensen, M.: The optimal graph partitioning problem: Solution method
based on reducing symmetric nature and combinatorial cuts. OR Spectrum 15
(1993) 1–8

3. Méndez-Dı́az, I., Zabala, P.: A branch-and-cut algorithm for graph coloring. Dis-
crete Applied Mathematics 154(5) (2006) 826–847

4. Macambira, E.M., Maculan, N., de Souza, C.C.: Reducing symmetry of the SONET
ring assignment problem using hierarchical inequalities. Technical Report ES-
636/04, Programa de Engenharia de Sistemas e Computação, Universidade Federal
do Rio de Janeiro (2004)

5. Rothberg, E.: Using cuts to remove symmetry. Presented at the 17th International
Symposium on Mathematical Programming

6. Sherali, H.D., Smith, J.C.: Improving zero-one model representations via symmetry
considerations. Management Science 47(10) (2001) 1396–1407

118 J. Ostrowski et al.

7. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathemathical Pro-
gramming (2007) To appear.

8. Kaibel, V., Peinhardt, M., Pfetsch, M.: Orbitopal fixing. In: IPCO 2007: The
Twelfth Conference on Integer Programming and Combinatorial Optimization,
Springer (2007) To appear.

9. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Program-
ming 94 (2002) 71–90

10. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming,
Series B 98 (2003) 3–21

11. Bazaraa, M.S., Kirca, O.: A branch-and-bound heuristic for solving the quadratic
assignment problem. Naval Research Logistics Quarterly 30 (1983) 287–304

12. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C.: MINTO, a Mixed IN-
Teger Optimizer. Operations Research Letters 15 (1994) 47–58

13. McKay, B.D.: Nauty User’s Guide (Version 1.5). Australian National University,
Canberra. (2002)

14. Foggia, P., Sansone, C., Vento, M.: A preformance comparison of five algorithms
for graph isomorphism. Proc. 3rd IAPR-TC15 Workshop Graph-Based Represen-
tations in Pattern Recognition (2001) 188–199

15. Litsyn, S.: An updated table of the best binary codes known. In Pless, V.S.,
Huffman, W.C., eds.: Handbook of Coding Theory. Volume 1. Elsevier, Amsterdam
(1998) 463–498

16. Mills, W.H., Mullin, R.C.: Coverings and packings. In: Contemporary Design
Theory: A Collection of Surveys. Wiley (1992) 371–399

17. Hamalainen, H., Honkala, I., Litsyn, S., Österg̊ard, P.: Football pools—A game for
mathematicians. American Mathematical Monthly 102 (1995) 579–588

18. Fulkerson, D.R., Nemhauser, G.L., Trotter, L.E.: Two computationally difficult
set covering problems that arise in computing the 1-width of incidence matrices of
Steiner triples. Mathematical Programming Study 2 (1973) 72–81

19. Margot, F.: Small covering designs by branch-and-cut. Mathematical Programming
94 (2003) 207–220

20. Dolan, E., Moré, J.: Benchmarking optimization software with performance pro-
files. Mathematical Programming 91 (2002) 201–213

	Introduction
	Preliminaries
	Orbital Branching
	Orbital Fixing
	Comparison to Isomorphism Pruning

	Implementation
	Computing $\cG(\cdot)$
	Branching Rules

	Computational Experiments
	Conclusion

