
Flexible Resource Job Scheduling—A Mixed
Integer Programming Approach

Vanessa Ann Beddoe Sawkmie1,2 and Jeff Linderoth1,2

1 Department of Industrial and Systems Engineering
2 Wisconsin Institute of Discovery, University of Wisconsin-Madison

sawkmie@wisc.edu linderoth@wisc.edu

Abstract. This paper studies the minimization of makespan in job
scheduling with variable machine speeds. In this problem, allocation of
a resource to a machine increases its efficiency, thus reducing its pro-
cessing time. We propose both a natural nonlinear disjunctive optimiza-
tion model and a time-indexed mixed-integer optimization model for the
problem. We show how the time-indexed model can be used to provide a
lower bound on the makespan by coarsening the time discretization, and
we show how to transform the coarsened solution into a feasible solution
of high quality via the solution of a linear program. Computational re-
sults are presented on benchmark job-shop scheduling instances and for
a commercial application with a hierarchical, two-level bill-of-materials
work flow.

Keywords: machine scheduling · flexible resource allocation · mixed-
integer programming

1 Introduction

The complexity and increased competition in the production sector has created
the need for industries to optimize their production systems to boost manu-
facturing performance. Scheduling—determining the order in which tasks are
processed on stations—is key to improving manufacturing efficiency. The diffi-
culty of scheduling increases with the complexity of the manufacturing system.
In most scheduling problems, machine performance is a fixed attribute. In this
paper, we allow machine performance to be a decision variable. Specifically, we
consider the case where there are limited resources that can be allocated to the
processing stations to improve the station’s performance [5,13]. The dynamic de-
ployment of flexible resources may be considered a means of controlling the job
processing times, and substantial benefits may be derived from allocating these
resources and scheduling jobs concurrently. Effective utilization of resource flex-
ibility has demonstrated significant improvements in operational performance in
production systems [6,7]

In this paper, we introduce and provide mixed-integer programming (MIP)
formulations for the flexible-resource job scheduling problem (FRJS). The FRJS
is a generalization of the well-known (and difficult) job-shop scheduling problem

2 Sawkmie and Linderoth

[15] to the case where a limited resource may be allocated to the processing
stations to improve their efficiency. Similar flexible-resource scheduling problems
have been previously studied in the literature. The parallel-machine, flexible-
resource scheduling (PMFRS) problem was addressed for single-operation jobs
[1]. The scheduling problem with flexible resources in a flow shop environment—
where each job has a fixed precedence structure—has also been explored [3].

The standard job-shop scheduling problem without resource allocation is NP-
hard even for two machines [4], and the PMFRS problem is NP-hard even for
single task jobs [2]. The FRJS may have a more complicated precedence structure
than PMRFS and thus is also NP-Hard. To our knowledge, FRJS has not yet
been studied in the literature. In this paper, we develop two MIP models for
FRJS—a natural nonlinear disjunctive model, and a time-indexed linear model.

Both models are exact formulations, but using the formulations to obtain
high-quality bounds on the optimal makespan for large-scale instances is ex-
tremely challenging. In this paper, our primary focus is on comparing the effec-
tiveness of the two models at obtaining lower bounds on the makespan. Using
a coarse-grained time-discretization in the time-indexed model, with judicious
rounding of processing times, creates a relaxation that allows us to trade-off the
quality of the lower bound with solution effort. Moreover, a feasible solution,
and hence upper bound on the makespan, to the scheduling problem can be
extracted from the solution of the relaxation by solving a linear program.

The paper proceeds in three remaining sections. Section 2 describes the FRJS
problem in detail and introduces the two MIP formulations we propose. Section 3
gives a comparison of the empirical performance of the two models in solving
difficult FRJS instances, and Section 4 offers a brief conclusion of the work and
avenues for additional exploration.

2 Flexible Resource Job Scheduling

2.1 Problem Description

The Flexible Resource Job Scheduling (FRJS) consists of a set I of stations and
a set J of tasks to be completed on the stations. Each task j ∈ J has a given
station ιj ∈ I on which it must be completed, and Ni ⊂ J is the set of tasks that
must be completed on station i ∈ I. There are no release times of the tasks, i.e.
all tasks are available for scheduling at the beginning of the planning horizon.
The set P consists of ordered task pairs. Tasks must be completed in order, and
the pair of tasks (j, k) ∈ P ⊂ J × J if task j must (immediately) precede task k
in the partial order. Task-scheduling is non-preemptive, i.e. once a task starts,
it must be completed, and each station may only work on one task at a time.

Each task j ∈ J has a nominal processing time pj . We are given an integer
amount H of a resource to distribute between the stations in I. Allocating ad-
ditional resources to a station improves its efficiency and reduces the processing
time of tasks completed on the station. Specifically, the effective processing time
ej of task j (which must be completed on station ιj) is a function of task j’s

MIP for Flexible Resource Job Scheduling 3

nominal processing time pj and the number of resources allocated to task j′s
station. If kιj is the number of resources allocated to station ιj ∈ I, then in [1],
the effective processing time is defined as

ej = [1− α(1− 1

kιj
)]pj , (1)

for some value of α ≥ 0. In this paper, we use α = 1, so the processing speed
on a task increases linearly with the number of resources assigned to the task’s
station. In Sections 2.2 and 2.3, we discuss how to implement more complicated
efficiency functions.

The objective of FRJS is to allocate the resourcesH among the set of stations
I in a way that allows to minimize the latest completion time of a task (the
makespan of the schedule).

2.2 Nonlinear Disjunctive Model for FRJS

Our first MIP model for FRJS is a natural extension of the original disjunctive
formulation for the job-shop scheduling problem given by Manne [10]. The model
uses binary variables to enforce the logical disjunction that for each pair of tasks
(j, k) that must be scheduled on a machine, that either task j finishes before
k begins, or vice verse. The model requires parameters that provide an upper
bound on the total processing time of each station, which we compute as

Mi := β

∑
j∈Ni

pj

|I|
, (2)

for some scaling constant β > 1. We use β = 1.5 in our instances, which is
sufficient to ensure that all tasks can be completed by time Mi. We define the
following decision variables:

xj : The starting time of task j ∈ J

yjk =

{
1, if task j precedes task k

0, otherwise
∀i ∈ I;∀(j, k) ∈ Ni ×Ni : j ̸= k

vi : Number of resources allocated to station i ∈ I

ej : Effective processing time of task j

Cmax : Makespan of schedule.

With these definitions, we can write our first (disjunctive) MIP formulation
for FRJS as the following optimization problem.

4 Sawkmie and Linderoth

min Cmax (3a)

s.t.
∑
i∈I

vi ≤ H, (3b)

ejvιj ≥ pj ∀j ∈ J, (3c)

xk ≥ xj + ej ∀(j, k) ∈ P, (3d)

xj ≥ xk + ek −Miyjk ∀i ∈ I; (j, k) ∈ Ni ×Ni : j ̸= k, (3e)

xk ≥ xj + ej −Mi(1− yjk) ∀i ∈ I; (j, k) ∈ Ni ×Ni : j ̸= k, (3f)

Cmax ≥ xj + ej ∀j ∈ J, (3g)

xj ≥ 0 ∀j ∈ J, (3h)

yjk ∈ {0, 1} ∀i ∈ I; (j, k) ∈ Ni ×Ni : j ̸= k, (3i)

vi ∈ Z ∀i ∈ I (3j)

Constraint (3b) ensures the resources allocated to the stations do not exceed
the amount available. Constraints (3c) ensure that the effective processing time
of a task at a station is at least as large as required by equation (1) with α = 1.
This is a nonlinear constraint, but for the case α = 1, the feasible region can be
defined by a rotated second-order cone constraint and thus handled directly by
most powerful commercial software packages. In the case that α ̸= 1, then, since
vi ∈ Z, the relationship in (1) could be modeled using piecewise-linear variable
modeling techniques [14]. Constraints (3d) enforce the precedence relationships
between tasks. Constraints (3e) and (3f) are the disjunctive constraints which
ensure that no two tasks are scheduled on the same station at the same time.
Constraints (3g) ensure that the makespan is at least as large as the largest
completion time of any task of a job. (In general, we only need to enforce this
constraint for tasks at the end of any chain in the precedence structure). Con-
straints (3h)-(3j) enforce domain bounds on our decision variables. We denote
the optimal solution value to (3) as z∗frjs.

2.3 Time-indexed Model for FRJS

The time-indexed model for FRJS is an extension of the job-shop scheduling
formulation of Kondili et al. [8]. The key difference in the formulation is the
disaggregation of the scheduling variables across the different machine configu-
rations. Each machine i ∈ I has a given set of potential configurations Ki ⊂ Z,
and operating machine i ∈ I in configuration k ∈ Ki requires rik of the total
resource. To match the implementation of the flexible resource constraint in the
nonlinear disjunctive model (3), we set rik = k, ∀i ∈ I, k ∈ Ki. Another key
parameter for the time-indexed model is the number of time periods required
to complete task j if its machine ιj is in configuration k, which we denote as
pjk. We assume pjk ∈ Z+. Finally, for the time-indexed model, we require a
parameter T that is an upper bound on the number of periods in the scheduling
horizon. The parameter T can be computed in a manner similar to (2).

MIP for Flexible Resource Job Scheduling 5

Define the following decision variables:

zik =

{
1, if station i ∈ I is in configuration k ∈ Ki

0, otherwise

xjkt =

{
1, if task j ∈ J in station configuration k ∈ Kιj starts at the beginning of period t

0, otherwise

Then we can write a time-index MILP model for FRJS as the following:

min Cmax (4a)

s.t.
∑
k∈Ki

zik = 1 ∀i ∈ I, (4b)

∑
i∈I

∑
k∈Ki

rikzik ≤ H, (4c)

∑
t∈[T]

∑
k∈Kιj

xjkt = 1 ∀j ∈ J, (4d)

∑
t∈[T]

xjkt ≤ zik ∀i ∈ I, j ∈ Ni, k ∈ Kιj , (4e)

∑
k∈Kιj

∑
t∈[T]

(t+ pjk)xjkt ≤
∑

k∈Kιl

∑
t∈[T]

txlkt∀(j, l) ∈ P, (4f)

∑
k∈Ki

∑
j∈Ni

t∑
s=t−pjk+1

xjks ≤ 1 ∀i ∈ I, t ∈ [T], (4g)

∑
t∈[T]

∑
k∈Ki

(txjkt + pjkzik) ≤ Cmax ∀j ∈ J, (4h)

zik ∈ {0, 1} ∀i ∈ I, k ∈ Ki, (4i)

xjkt ∈ {0, 1} ∀j ∈ J, k ∈ Kιj , t ∈ [T] (4j)

Constraints (4b) ensure that exactly one configuration is chosen for each
station. Constraint (4c) ensures that the total resources allocated to the stations
do not exceed the amount available. Constraints (4d) ensure that each task
starts exactly once. Constraints (4e) ensure that a task can start in a particular
configuration only if that configuration is activated. Constraints (4f) enforce the
precedence relationships between the required tasks. Constraints (4g) ensure that
each station is running at most one task at each time point. Constraints (4h)
define the makespan as the largest completion time of any task. Again, these
constraints need only be written for all tasks that are at the end of a chain in the
partial ordered defined by P . Constraints (4i) and (4j) define the domain bounds
on our decision variables. The MIP model (4) provides an exact formulation of
FRJS, so its optimal solution has value z∗frjs.

The formulation (4) can be extremely large, especially since we assume that
the time periods are discretized to ensure that the parameter pjk ∈ Z. Prelimi-
nary computations demonstrated that the formulation was not competitive with

6 Sawkmie and Linderoth

the nonlinear disjunctive formulation. This is not very surprising. Ku and Beck
performed an extensive empirical computational comparison of MIP formula-
tions for job shop scheduling and concluded that the disjunctive formulation
was in general superior to other formulations [9].

The size of the formulation (4) can be reduced by coarsening the time dis-
cretization. Instead of assuming that each time period t ∈ T has length 1, we can
allow for the time periods to each have length w > 1. This naturally reduces the
number of time periods T ′ in the transformed model T ′ ← ⌈T/w⌉, reducing the
size of the model. Increasing the time period length w also impacts the process-
ing time parameters pjk. Different choices of how to transform pjk yield models
with different properties. For example, rounding down the number of processing
periods, rounding the number of periods to the closest integer, or rounding up
the number of processing periods

pℓjk(w)←
⌊pjk
w

⌋
, pajk(w)←

⌊pjk
w

⌉
, and pujk(w)←

⌈pjk
w

⌉
(5)

yield models whose solution values provide, respectively, a lower bound, an ap-
proximation, and an upper bound on the optimal solution value z∗frjs. In this
paper, we are primarily concerned with the quality of the lower bound we are
able to obtain on z∗frjs, so we confine our computational experiments to those
employing pjk as pℓjk(w) in (4).

2.4 Feasible Solutions from the Coarse-Grained Time-Indexed MIP

Solving (4) with the number of processing periods rounded down or rounded
to the nearest integer, pℓjk(w) or pajk(w), may not yield a feasible solution to
FRJS. Specifically, when implementing the schedule, more than one task may
simultaneously be running on a station. Regardless, the solution of (4) implies
an order for all the tasks processed on station i. With respect to a solution,
define the sets

Si = {(j, k) ∈ Ni ×Ni | j immediately precedes k on station i ∈ I}

as the chain of jobs processed on machine i ∈ I. Then a feasible solution to
FRJS can be obtained by solving the following simple linear program:

min Cmax (6a)

s.t. xl ≥ xj + pl ∀(j, l) ∈ P, (6b)

xl ≥ xj + pj ∀i ∈ I ∀(j, l) ∈ Si, (6c)

Cmax ≥ xj + pj ∀j ∈ J. (6d)

Constraints (6b) ensure that the given precedence constraints between tasks of
the same job are maintained. Constraints (6c) implement the sequence order
implied by the solution to the time-indexed model, and constraint (6d) ensures
that the makespan is properly defined.

MIP for Flexible Resource Job Scheduling 7

Our models are able to accommodate any kind of precedence structure be-
tween tasks. Some examples of different kinds of precedence structures are seen
in Fig 1.

Fig. 1: Different kinds of precedence structures between tasks of jobs

2.5 Surrogate Constraints

In this work, we are primarily interested in the quality of lower bound to the
optimal makespan z∗frjs that can be found by a state-of-the-art commercial MIP
solver in a fixed computing effort. We have found that adding some redundant
constraints based on precedence chains for tasks to the formulation (4) can
typically improve the lower bound found. Let C(P) be a collection of chains
in P , and for each chain C ∈ C(P), let AjC be the set of tasks that follow task
j ∈ C. For each j ∈ J , define mj := mink∈Kιj

pjk as the minimum processing

time for task j. For each task j ∈ J , we can be sure that it must start soon
enough to ensure all of its followers in any chain are completed by the end of
the planning horizon:∑

k∈Kιj

∑
t∈[T]

(t+ pjk)xjkt ≤ T −
∑

ℓ∈AjC

mℓ ∀C ∈ C(P), j ∈ C. (7)

This constraint is redundant to formulation (4), but we have found that the
MIP solver can often use these inequalities to generate valid inequalities that
improve the lower bound. This is particularly true for job-shop problems where
the partial order of preferences P can be completely partitioned into chains, so
|C(P)| is not too large. (see Figure 1).

3 Computational Experiments

3.1 Benchmark Instances

To test the efficiency of the different formulations, computational experiments
were conducted on job-shop benchmark instances la01-la25, ta01-ta10, ft06,
ft10, and ft20 from [12]. For each base job-shop instance, we generate multiple
instances of our FRJS by varying H and Ki. Each base instance had two con-
figuration sets Ki = {1, 2} or Ki = {1, 2, 3} for each machine and two potential
choices of H for each Ki (as per table 2), resulting in four possible distinct FRJS
instances from each base job-shop instance. We use a total of 135 FRJS instances
in our initial testbed.

8 Sawkmie and Linderoth

Benchmark

instances
|I| |J|

ft06 6 36

la01 - la05 5 50

la06 - la10 5 75

la11 - la15, ft20 5 100

la16 - la20, ft10 10 100

la21 - la25 10 150

ta01 - ta10 15 225

Table 1: Size of benchmark
instances

|I| Ki={1,2} Ki={1,2,3}
5 H ={7,9} H = {11,13}
6 H ={9,11} H = {14,16}
10 H ={15,17} H = {23.25}
15 H ={23,25} H = {37,39}

Table 2: Combinations of Ki
and H for instance generation

When comparing the nonlinear disjunctive formu-
lation (3) to the time-indexed model (4), we use vary-
ing time-discretization windows w, and round down
the processing times according to pℓjk(w) in (5), so
the solution of (4) provides a lower bound on z∗frjs.

All models were implemented and run using the
Python-API of Gurobi version 9.5.1. The computa-
tional experiments were run on a cluster of shared
computing resources at the UW-Madison Center for
High Throughput Computing. To ensure a consis-
tent comparison between experimental results, we use
Gurobi’s work unit as the measure of computational
effort. In our experience, we noted that Gurobi work

units provided a consistent estimate of resource usage for an algorithm, even if
run on different machines in the cluster. We allowed for an upper bound of at
most 5400 work units for all computations on benchmark instances. We divide
our analysis into the cases where both the nonlinear disjunctive model (3) and
time-discretized model (4) were able to be solved to optimality within the work
limit and cases where at least one did not solve to optimality.

3.2 Instances Solved by Both Models

A comparison of the computational performance between the set of instances
solved optimally by both the disjunctive model (3), denoted by (O1), and the
time-indexed model (4), denoted by (O2), within the work unit limit is shown
in Fig 2.

Fig. 2: Work units difference (O1 - O2) vs optimal
solution gap percent for O2 when both models are
solved to optimality for w = 2 and w = 5 for bench-
mark instances

The x-axis value plots for each
instance the difference in the work
units required to solve formulation (3)
and model (4). Points to the left of
zero represent instances where formu-
lation (3) took a smaller number of
work units to solve than model (4).
For each of these 20 instances, formu-
lation (3) was solved to optimality, so
it had no optimality gap. The y-axis
represents the relative optimality gap
obtained between the solution of the
time-indexed model 4 (for its corre-
sponding value of w) and the optimal solution value for the instance. Each
instance was solved using the time-indexed model for both w = 2 (in blue) and
w = 5 (in orange). The line connecting each pair of points goes from w = 2 in
the lower left, to w = 5 in the upper right, indicating that the lower bound gets
smaller as we increase w, but the computing effort can often considerably im-
prove. For the instances able to be solved by both models, clearly the nonlinear
disjunctive model (3) has superior performance.

MIP for Flexible Resource Job Scheduling 9

3.3 Instances Not Solved by Both Models

Fig 3 shows a computational comparison between the models on the set of in-
stances not solved by both models. On the x-axis, we plot the optimality gap
percent at the end of the work limit for the disjunctive model (3), and on the
y-axis, we plot the optimality gap percent for time-indexed model (4). For each
instance, regardless of the mechanism used to solve the model, we always com-
pute the optimality gap with respect to the best known solution for the instance.
Thus, this figure is comparing the lower bounds on the makespan found by the
various methods.

Fig. 3: Optimality gap percent of disjunctive model
vs Optimality gap percent of time-indexed model
for w = 2 and w = 5 for benchmark instances

The figure shows that for many of the
instances, the disjunctive model has opti-
mality gap 0 within the work limit, and
the time-indexed model can have a sig-
nificantly worse lower bound for these in-
stances. We also observe comparable nor-
malized solution gaps between the dis-
junctive model and time-indexed model
for almost all instances for w = 2. This
is indicated by the concentration of blue
points along the 45 degree line. When we
change the w parameter to w = 5, we
see that in many instances, the optimality

gap for the time-indexed model decreases considerably, indicated by the orange
points in the lower right end of the graph. This indicates that the time-indexed
model with an appropriate w may outperform the disjunctive model for harder
instances and provide a better lower bound with the same work units limit.

3.4 Impact of Surrogate Constraint on Lower Bound

Fig. 4: Histogram showing distribution of
percentage improvement in lower bound
with addition of constraint 7

To demonstrate the positive impact that the
additional redundant constraints (7) can have
on the time-indexed model (4), we ran a com-
putational experiment on the 38 base job-shop
instances in Table 1, so each station had just
one configuration, using the exact formulation
(w = 1). We ran each of the 38 instances with
and without inequalities (7) for a work limit
of 5400 units and compared the difference in
best lower bounds on z∗frjs obtained. Figure 4
displays the percentage improvement in relative lower bound for the 38 instances.
For 33 of the 38 instances, the lower bound is better if inequalities (7) are added
to the formulation and for some instances the improvement is quite significant.

10 Sawkmie and Linderoth

3.5 Performance on Commercial Data

Our commercial partner provided us with task precedences and processing times
for the construction of three different types of treadmills. The production process
consists of 20 machines and a hierarchical two-level bill-of-materials workflow
with a final assembly task for each treadmill type. We created 135 different
instances of FRJS by varying the number of each type of treadmill to produce,
allowing for different machine configurations Ki = {1, 2} or Ki = {1, 2, 3} for
each i ∈ I and varying amount of total resource H. The resulting instances had
between 112 and 554 tasks. All 135 instances were solved with the disjunctive
formulation (3) and the time-indexed model (4) with time period length w = 3
and w = 5. We used an upper bound of 3600 work units for these instances.

Of the 135 instances, 87 were solved by the disjunctive formulation (3). Sim-
ilar to Figure 2 for the job-shop instances, in Figure 5 we show a comparison
of the computational performance between formulation (3) and (4). Similar to
our benchmark instances, if the disjunctive formulation (3) is able to solve the
instance, it generally does so more effectively than the time-indexed model (4).

In Figure 6 we show a computational comparison on the instances that the
disjunctive formulation was not able to solve. For all these instances, the time-
indexed formulation is significantly better than the disjunctive formulation.

Fig. 5: Work units difference (O1-O2) vs optimal solu-
tion gap percent for O2 when both models are solved
to optimality for w = 3 and w = 5 for real instances

Fig. 6: Optimality gap percent of disjunctive model
vs Optimality gap percent of time-indexed model for
w = 3 and w = 5 for real instances

4 Conclusion

In this paper, we introduced a flexible-resource job scheduling problem and pro-
vided two mixed integer programming formulations for its solution, a natural
nonlinear disjunctive formulation, and a time-indexed formulation. Coarsening
the time-discretization of the time-indexed formulation gives a model than can
produce a lower bound on the makespan. Computational results demonstrated
that for small and medium-sized instances, the disjunctive formulation perfor-
mance was superior. However, for large and difficult instances, the lower bound
provided by the time-indexed formulation was often superior.

MIP for Flexible Resource Job Scheduling 11

There are many avenues for future research that we plan to pursue in an
expanded version of this work. First, space considerations precluded us discussing
the quality of solutions obtained from the time-indexed models using the linear
program (6), and we plan to investigate how to better leverage the solutions
from the coarse-grained relaxation to generate high-quality feasible solutions.
Second, we also plan to explore more complicated and stronger formulations of
the makespan constraint, as done in [11].

References

1. Daniels, R.L., Hoopes, B.J., Mazzola, J.B.: Scheduling parallel manufacturing cells
with resource flexibility. Management Science 42(9), 1260–1276 (1996)

2. Daniels, R.L., Hoopes, B.J., Mazzola, J.B.: An analysis of heuristics for the
parallel-machine flexible-resource scheduling problem. Annals of Operations Re-
search 70(0), 439–472 (1997)

3. Daniels, R.L., Mazzola, J.B., Shi, D.: Flow shop scheduling with partial resource
flexibility. Management Science 50(5), 658–669 (2004)

4. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1(2), 117–129 (1976)

5. Hauder, V.A., Beham, A., Raggl, S., Parragh, S.N., Affenzeller, M.: Resource-
constrained multi-project scheduling with activity and time flexibility. Computers
& Industrial Engineering 150, 106857 (2020)

6. Karabati, S., Kouvelis, P., Yu, G.: The discrete resource allocation problem in flow
lines. Management Science 41(9), 1417–1430 (1995)

7. Kim, S., Nembhard, D.A.: Cross-trained staffing levels with heterogeneous learn-
ing/forgetting. IEEE Transactions on Engineering Management 57(4), 560–574
(2010)

8. Kondili, E.M., Pantelides, C.C., Sargent, R.W.H.: A general algorithm for schedul-
ing batch operations. In: PSE’88: Third International Symposium on Process Sys-
tems Engineering: In Affiliation with CHEMECA 88 (1988)

9. Ku, W.Y., Beck, J.C.: Mixed integer programming models for job shop scheduling:
A computational analysis. Computers & Operations Research 73, 165–173 (2016)

10. Manne, A.S.: On the job-shop scheduling problem. Operations Research 8(2), 219–
223

11. Queyranne, M.: Structure of a simple scheduling polyhedron. Mathematical Pro-
gramming 58(1), 263–285 (1993)

12. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64(2), 278–285 (1993)

13. Tritschler, M., Naber, A., Kolisch, R.: A hybrid metaheuristic for resource-
constrained project scheduling with flexible resource profiles. European Journal
of Operational Research 262(1), 262–273 (2017)

14. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM
Review 57, 3–57 (2015)

15. Xiong, H., Shi, S., Ren, D., Hu, J.: A survey of job shop scheduling problem: The
types and models. Computers & Operations Research 142, 105731 (June 2022)

	Flexible Resource Job Scheduling—A Mixed Integer Programming Approach

