
Congestion Analysis for
Global Routing via Integer Programming

Hamid Shojaei, Azadeh Davoodi, and Jeffrey T. Linderoth∗

Department of Electrical and Computer Engineering
∗Department of Industrial and Systems Engineering

University of Wisconsin at Madison, USA
Email: {shojaei, adavoodi, linderoth}@wisc.edu

Abstract— This work presents a fast and flexible framework for
congestion analysis at the global routing stage. It captures various factors
that contribute to congestion in modern designs. The framework is a
practical realization of a proposed parameterized integer programming
formulation. The formulation minimizes overflow inside a set of regions
covering the layout which is defined by an input resolution parameter.
A resolution lower than the global routing grid-graph creates regions
that are larger in size than the global-cells. The maximum resolution
case simplifies the formulation to minimizing the total overflow which
has been traditionally used as a metric to evaluate routability. A novel
contribution of this work is to demonstrate that for a small analysis time
budget, regional minimization of overflow with a lower resolution allows
a more accurate identification of the routing congestion hotspot locations,
compared to minimizing the total overflow. It allows generating a more
accurate congestion heatmap. The other contributions include several
new ideas for a practical realization of the formulation for industry-
sized benchmark instances some of which are also improvements to
existing global routing procedures. This work also describes coalesCgrip,
a simpler variation of our framework which was used to evaluate the
ISPD 2011 contest.

I. INTRODUCTION

The high volume and complexity of cells and interconnect struc-
tures in modern designs are causing serious challenges to routabil-
ity. Rapid congestion analysis (i.e., identification of the congestion
hotspots on the layout) is becoming crucial to fix the routability
problem at the early stages of the design, for example during
placement [7] and in conjunction with global routing [8], [10]. In
modern designs, several new factors contribute to routing congestion
including significantly-different wire size and spacing among the
metal layers, sizes of inter-layer vias, various forms of routing
blockages (e.g., reserved for power-grid, clock network, or IP blocks
in an SoC), local congestion due to pin density and wiring inside
a global-cell, and virtual pins located at the higher metal layers.
However, none of the past estimation techniques such as [2], [11],
[14], [15] capture these new sources of congestion comprehensively.

Many of the above factors can be accurately modeled with a
flexible model of global routing in which the routing grid-graph has
varying edge capacities, and the net terminals are mapped to any
vertex in the (3-dimensional) grid-graph. The reader is referred to
[12] that explains the importance of considering these factors for
congestion analysis in modern designs and the work [13] that explains
modeling of some of these factors in the recently-released industrial
benchmark instances of the ISPD 2011 contest [1].

Using this new model allows for more accurate routability con-
sideration by utilizing a flexible and fast global routing model for
congestion analysis. However, the majority of the existing academic
global routers are not designed to effectively and comprehensively
handle this model. For example, just considering the layer assignment
step, the internal procedures of [3], [4], [5], [9], [18] all require the net
terminals to be on the first metal layer. Moreover, the majority of the

existing academic global routers are too slow for congestion analysis
and the analysis is typically required to take only a fraction of a
typical global routing runtime. For example, the routing framework of
[17] allows capturing some or all the new congestion factors, however
it has a relatively high execution runtime.

Furthermore, the goal of a congestion analysis tool is to quickly
identify and rank the congestion hotspots on the layout. This is be-
cause accurate prediction of the hotspot locations allows a routability-
driven placer to effectively spread the cells outside the congested
regions [8], [10]. The procedure, when applied iteratively, allows
creating shorter routes to fix routability, which may translate into
less buffer usage and improvement in timing and power. However,
the accuracy of predicting the congestion hotspots, especially within
a small time-budget is limited if it is done based on traditional
minimization of total routing overflow which also results in creating
long routes when detouring the nets outside the congested regions.

In this work, a fast framework is presented which aims to ac-
curately predict the congestion hotspots. The framework utilizes the
flexible model of global routing that captures many necessary modern
design features. For each net, the user can also specify the degree
to which it is routed in a scenic manner by restricting the route
to lie within a specified factor of its bounding box. This feature is
employed in the framework to allow identifying the hotspots that are
most suitable to be removed by displacing the cells using a placer, as
opposed to creating long detoured routes using a global router. In this
work, the reference for “actual” congestion is the one obtained from
the same framework but with a significantly longer runtime budget.

To accurately identify and rank the congested regions of the layout
in a small time-budget, this work proposes minimizing overflow
inside the regions on the layout specified by an input resolution
parameter. In the maximum resolution case, the regions are simply
the edges of the global routing grid-graph. Lowering the resolution
creates regions which can be much larger in size than those defined by
the global routing grid-graph. Region-based minimization of overflow
with a lower resolution is not equivalent to working with a coarsened
model for global routing and overflow is always defined with respect
to the (actual) global routing grid granularity, regardless of the size
of the regions. A novel contribution of this work is to show that for
a small analysis time-budget, region-based minimization of overflow
with lower resolution provides a more accurate identification and
ranking of congestion hotspots compared to minimizing the total
overflow.

The framework relies on a proposed Integer Programming (IP)
formulation which, in addition to modeling the overflow of individual
edges on the global routing grid, contains new variables to model the
total overflow and maximum overflow for each region induced by
the resolution parameter. For the highest resolution, the formulation
simplifies to the one in [16] to minimize the total overflow.

(a) 770x1114--15min: TOF=380K (b) 10x10--15min: TOF=380K (c) 770x1114--60min: TOF=353K

Fig. 1. Different routing congestion heatmaps corresponding to the same placement of benchmark instance superblue2, obtained from the tool Ripple
for (a) minimizing the total overflow on the global routing grid in 15 minutes, (b) regional minimization of overflow on a coarser grid in 15 minutes, and (c)
minimizing the total overflow on the global routing grid in 60 minutes (reference case).

Since solving the IP formulation to optimality is impractical
for realistically-sized problem instances, this work also proposes
several new ideas for a practical implementation of the framework to
obtain a high quality approximate solution to the formulation. The
approximation relies on a method which is referred to as “reduced
linear programming” for shrinking the original IP formulation without
seriously degrading its solution quality, as well as a novel way to
integrate the solution of the formulation with the traditional rip-up
and reroute procedures used by many global routing frameworks.
Furthermore, this work speeds up the conventional rip-up and reroute
global routing procedures by performing multiple rip-ups and a
single, simultaneous rerouting of “equivalent” nets. It also provides a
congestion-aware layer assignment procedure to account for varying
wire size, spacing, blockages, and pins at different metal layers.

In the computational experiments, we verify the claim of more
accurate identification of congestion hotspots for lower resolutions
within a small time-budget. In addition we also evaluate the solution
quality obtainable by our framework when minimizing the total
overflow. For the latter case, comparison is made with coalesCgrip, a
simpler variation of our framework which was used as the reference
router to judge the ISPD 2011 contest on routability-driven placement
and is also discussed in this work.

In summary this work makes the following contributions:

• An IP formulation of the congestion analysis problem that aims
to quickly find the locations of the congestion hotspots by using
a user-specified resolution parameter;

• Several methods to achieve a practical realization of the IP for
a small time-budget, including: 1) an approximation method
to shrink the IP formulation and a novel way to integrate its
solution with a standard rip-up and reroute procedure; 2) a mul-
tiple rip-up, single reroute procedure which provides speedup
improvements; and 3) a layer assignment procedure to handle
varying wire size, spacing, blockage and pin locations.

In the remainder of this work, we start with a motivational example in
Section II before presenting our formulation and congestion analysis
framework in Sections III and IV, respectively. We briefly discuss
coalesCgrip in Section V and present simulation results in Section
VI, followed by conclusions in Section VII.

II. MOTIVATIONAL EXAMPLE

Consider Figure 1 which shows three different congestion
heatmaps of the superblue2 benchmark instance [13]. This is
corresponding to the (same) placement instance generated by the tool
Ripple which was obtained from the ISPD 2011 contest web site [1].
Each 2D projected heatmap reflects the aggregated edge utilizations
of different metal layers at each point. It is obtained by modifying the
script provided on the contest web site. Any utilization less than 70%
is shown in dark blue. In the remaining regions, the lighter colors
correspond to a lower utilization. All the heatmaps are created by our
proposed router, running in different configurations. The difference is
only due to the used runtime budget and resolution parameter in the
optimization. In all the cases, the router is required to route each net
within 110% of its original bounding box. This strategy allows a more
accurate identification of the congested regions that are most useful
to be fixed by a routability-driven placer [10] because otherwise they
may never get fixed or may require creating long detours. The total
overflow (TOF) of each heatmap is also reported.

The reference is heatmap (c) which is generated by running the
router for 60 minutes (after which the heatmap doesn’t change dras-
tically) and minimizing the total overflow. Heatmap (a) is obtained
by running the router to minimize the total overflow but for a
shorter runtime budget of 15 minutes. Heatmap (a) has mismatch
with heatmap (c) in many cases in the figure, including the circled
areas. This is partially because when the objective is minimizing the
total overflow, there is not sufficient time to reduce the overflow in all
the locations. The router prioritizes different regions based on its rip-
up and re-route procedure in order to obtain the maximum reduction
in the total overflow and may not have the chance to optimize some
regions. However, this is not an indication of difficulty of routability
since the same router could fix those regions in a longer runtime.

Heatmap (b) is generated by running the router for 15 minutes
when generating the regions using a 10x10 grid. It matches better with
heatmap (c). Due to more accurate matching of heatmap (b) with the
reference one, it is more useful to a routability-driven placer which
displaces cells based on the locations and ranking of the congested
hotspots for a 15 minutes time budget. This is despite similar overflow
values in heatmaps (a) and (b).

III. PROBLEM FORMULATION

The example presented in Section II suggests that a congestion
analysis tool cannot focus solely on minimizing total overflow. Our
analysis tool breaks the routing area into regions and uses an integer
programming model that considers total overflow and maximum
overflow found within each region.

A. Region Definition

Most components of our congestion analysis tool operate on a 2D-
projection of the global routing instance, whose resultant grid-graph is
G = (V,E). For notational purposes, each vertex v = (vx, vy) ∈ V
has coordinates vx ∈ {1, . . . XG} and vy ∈ {1, . . . YG}. Regions
are contiguous, rectangular areas of the grid graph whose non-
overlapping edge sets partition the edge set E. The regions form a set
R, and the number of regions is controlled by two input resolution
parameters rx and ry . The parameters rx and ry specify the length
and height of each rectangle, respectively, so that the number of
regions is |R| = rx × ry . Edges on the boundary of two regions
are assigned to the region whose position is closest to the left and
bottom of G. (Except for the edges on the top and right corners of
the grid, which will be mapped to their closest regions).

B. Integer Programming Formulation

The regions R defined by resolution parameters rx and ry are
used in an integer programming formulation for congestion analy-
sis. The formulation is given a set of (multi-terminal) nets N =
{T1, T2, . . . , TN} (with Ti ⊂ V) and edge capacities ce ∀e ∈ E.
Denote by Ti the set of all possible candidate routes, or feasible
Steiner Trees, for net Ti. The user can restrict how scenic each
net Ti is routed by providing a scaling parameter ηi, and t ∈ Ti

only if all edges of t are contained in an ηi-scaled bounding box
of the terminals of Ti. The parameter ate = 1 if tree t contains
edge e ∈ E, and ate = 0 otherwise. Let R be the set of regions
created by resolution parameters rx and ry , and for region r ∈ R,
let E(r) ⊆ E is the set of edges that belong to r. Our congestion
analysis model will be able to minimize the maximum total-overflow
inside any region, or minimize the sum of the maximum-overflows
of all the regions. (Note, this is not equivalent to global routing on
a coarser grid-graph because overflow is always defined with respect
to the (actual) global routing grid-graph.) Define the binary decision
variable xit that is equal to 1 if and only if net Ti is routed with tree
t ∈ Ti. An integer program for congestion analysis can be written
as:

min
x,o,s,τ

(1− κ)
∑
r∈R

sr + κτ (IP-CA)

∑
t∈Ti

xit = 1 ∀i ∈ N∑N
i=1

∑
t∈Ti

atexit ≤ ce + oe ∀e ∈ E∑
e∈E(r) oe ≤ τ ∀r ∈ R

sr ≥ oe ∀r ∈ R, ∀e ∈ E(r)

xit = {0, 1} ∀i = 1, . . . , N, ∀t ∈ Ti

oe ≥ 0 ∀e ∈ E

τ ≥ 0

sr ≥ 0 ∀r ∈ R.

The first set of inequalities enforce selection of exactly one route for
net i from the set of its candidate routes Ti. In the second set of
inequalities, oe is an integer variable that measures the overflow of
the normalized capacity ce on edge e. (The normalized edge capacity
ce is the maximum number of routing tracks that can pass e without
causing overflow. Defining the value of ce to account for factors that

cause congestion will be explained in the next section.) The third
set of inequalities defines a variable τ that takes on the value of the
maximum total-overflow in any region. The fourth set of inequalities
defines variables sr for each region r ∈ R to be the maximum
individual overflow of any edge e ∈ E(r). The objective function is
a convex combination of the maximum total overflow variable τ and
the sum of the individual maximum-overflow variables sr .

For the special case of maximum resolution (|R| = |E|), the
variable sr is simply the overflow of each edge, and τ is the maximum
overflow of all the edges. In this case, by setting κ = 0, a formulation
similar to that of GRIP [16] is obtained that minimizes the total
overflow. For κ = 1 the maximum overflow is minimized. The
user has the option to decide the tradeoff between minimizing a
combination of these overflow-based metrics, as well as setting the
resolution parameters rx and ry that control the granularity of the
maximum overflow calculations. To obtain the heatmaps in Figure 1,
the value κ = 0 was used in all cases. The heatmaps (a) and (b) are
generated at maximum resolution |R| = |E|. Consequently, these
two cases simplify to minimizing the total overflow. For heatmaps
(c), the parameters rx = ry = 10 were used. Please note, in the
remainder of this work we assume κ = 0.

The formulation (IP-CA) is a general formulation that may take
an arbitrary (and possibly overlapping) definition of the regions R.
However, in our implementation, the size of each region is equivalent
and the regions are non-overlapping. In this case, to minimize the
objective expression, the solver naturally spends a smaller effort to
obtain a low sr for a region r that is not a hotspot and spends a
higher effort in minimizing sr in the difficult regions.

IV. CONGESTION ANALYSIS FRAMEWORK

Solving the formulation (IP-CA) to optimality is impractical for
realistic instances within the time budget allowed for analysis. At-
tempts to accurately solve similar-sized formulations either require a
significant runtime (e.g., many days in GRIP [16]) or a large number
of parallel CPUs (e.g., a few hundred in PGRIP [17]). In this section,
we present a practical implementation of (IP-CA) suitable for running
in a tight runtime budget.

A. Overview

Our congestion analysis tool relies on two key components. The
first component drives the algorithm, starting with a 2D-projection
of the routing instance and the creation of an initial 2D-solution. A
rip-up and reroute procedure is iteratively applied until a no-overflow
solution is found, or a time limit is reached, or the improvement in
overflow is less than 5% in 3 consecutive iteration. A congestion-
aware layer assignment procedure is performed in the last step. The
second key component of our tool, used in both the initialization and
rip-up and reroute steps, is the use of a reduced-size version of the
IP formulation (IP-CA).

Rip-up and reroute is a ubiquitous strategy employed by many
other routing tools [3], [4], [5], [9], [18]. This work suggests a
new net ordering procedure and methods that improve the speed
during rip-up and reroute. Our layer assignment also accounts for
irregular capacity adjustments caused by varying wire size, spacing
and routing blockages, and net-terminal locations at the higher metal
layers. The integration of approximate integer programming with rip-
up and reroute to obtain significant improvement in solution quality
in a tight time-budget is a unique contribution of our framework.

Figure 2 gives a graphical overview of the key components of our
framework. To create a 2D-projected grid-graph, for each edge in
the 3D grid-graph, we first compute a normalized capacity which is

2D projection

Initial solution (INIT)

(evokes RLP)

Rip-up and re-route (RRR)

(evokes RLP)

Congestion-aware Layer

Assignment

no-OF or

time-limit?
No

Yes

Overview of our framework RLP: Reduced-sized

Linear Programming for

the (IP-CA) formulation

Budget regions

Select edges per region

Select nets & candidate

routes per region

Adjust edge capacities

Output a route per net

Solve as linear program

(CLA)

Fig. 2. Congestion analysis framework

defined as the maximum number of routing tracks that can pass from
it (i.e., ce in (IP-CA)). This is done by dividing the routing capacity
of the tile boundary corresponding to the edge by the summation of
the wire size and spacing for that layer. For the definition of routing
capacity please refer to [1]. In the 2D projection, the ce of each edge
e is the summation of the normalized capacities of the corresponding
edges in the 3D graph over different metal layers. Similarly, in this
section, the reference to overflow on an edge after 2D projection is
the number of routing tracks exceeding the normalized edge capacity.

Next, an initial solution is generated. The initialization uses our
procedure for Reduced-sized Linear Programming (RLP) that can
quickly generate useful estimates of the utilizations of the edges
in the 2D grid-graph. Next, rip-up and reroute (RRR) is iteratively
performed that again requires the use of the RLP procedure. RRR
is iterated until a solution with 0 overflow is found, or the analysis
time limit is reached, or if the overflow improvement in 3 consecutive
iterations remains less than 5%. (All these stopping criteria are
adjustable by the user and these values are set by default.) The final
step of our algorithm is congestion-aware layer assignment (CLA).

B. RLP: Reduced-sized Linear Programming

Reduced-size linear programming (RLP) works by creating a
smaller-sized formulation of (IP-CA) that contains only a subset of
critical edges D ⊂ E and critical nets M ⊂ N . For each critical
net Ti ∈ M a small subset of its candidate routes Si ⊆ Ti are used.
The formulation (IP-CA) is then restricted to the critical edges D,
critical nets M, and reduced candidate routes Si, ∀Ti ∈ M. The
number of regions defined by the resolution parameters is unchanged
in RLP. The normalized edge capacities are also adjusted to account
for the impact of the remaining non-critical nets.

The output of the RLP step is a selected route for each critical
net and a measure for relative utilization of the critical edges which
will be used to setup their edge weights during RRR, and is defined
based on the dual variable values of the reduced-sized linear program.
Specifically, we use the optimal dual variables π∗

e associated with the
second set of constraints

N∑
i=1

∑
t∈Ti

atexit ≤ ce + oe ∀e ∈ E.

The important insight is that the duality theory of linear programming
states that π∗

e is the rate of change of the optimal objective value of
the linear programming relaxation of (IP-CA) with respect to a unit
change in edge capacity ce. Thus, the value π∗

e encodes significant

edge-specific information about the importance of edge e with respect
to the congestion-oriented objective of (IP-CA). This is exactly the
information that is utilized in the rip-up and reroute procedures.

To obtain a practical analysis tool that worked with a runtime-
budget of a few minutes, each instance of RLP needed to be solved
in a matter of seconds. Computational experience suggested that the
solver can generate a solution in a few seconds when |D| = 5000,
|M| = 1000, and |Si| ≤ 10 ∀i ∈ N to form the reduced (IP-CA)
formulation. Interestingly, this observation is true regardless of the
benchmark instance.

When creating the reduced (IP-CA) formulation, we are provided
an input route for each net Ti. This route is obtained from maze
routing in the INIT step or from the solution of the previous iteration
in RRR. The input route for each net is used to identify the critical
edges D. The critical edges are used to identify the critical nets M.

Figure 2 illustrates the steps in one call to the RLP procedure.
For a given resolution that results in |R| = rx × ry regions, we
start by allocating the |D| = 5000 edge budget to different regions.
The number of edges kr in region r is proportional to the total
overflow sr inside a region, as computed from the input solution.
An important feature of this assignment is that edges with a higher
estimated overflow will be represented with more variables in the
reduced formulation. Note that

∑
r∈R kr = 5000.

To select the specific edges for each region r, we select the kr
edges with the highest estimated overflow in the region. The critical
edge set D is the union of all selected edges. The next step of RLP
is to compute the critical nets M. For each net Ti ∈ N , if its input
route contains a critical edge e ∈ D, then Ti is a candidate to become
a critical net. Note that the input route for a net may contain multiple
edges e ∈ D. Each candidate critical net is sorted according to the
total overflow induced by its input route. The |M| = 1000 with the
highest overflows form the set of critical nets. Candidate routes Si for
each critical net are either selected using pattern/maze routing or by
selecting one of its candidate routes, identified in previous iterations
of rip-up and reroute. To keep the number of candidate routes small,
for each net, we utilize at most |Si| = 10 candidate routes taken
from the latest RRR iterations. Details are given subsequently in
Sections IV-C and IV-D. Besides from the critical nets, the same
procedure is followed to maintain a list of candidate routes for each
non-critical net as it may become critical in future RRR iterations.

Before solving the reduced formulation, the normalized edge
capacities are adjusted. All nets not identified as critical are fixed to
use their input routes, and the normalized edge capacities are reduced
by subtracting the number of fixed nets passing from each edge.

The reduced formulation is solved as a linear program by relaxing
the integrality requirements on the variables x. To create a routing
solution and to generate an approximate integer-valued solution for
(IP-CA), each critical net Ti ∈ M is routed with the candidate route
t ∈ Si whose associated linear programming solution value x∗

it is
largest: i∗ ∈ argmaxt∈Si x

∗
it ∀Ti ∈ M. Non-critical nets are routed

in a greedy fashion. Specifically, each non-critical net Ti ∈ N \M
is routed by using the previously generated route for Ti that induces
the least amount of additional overflow in the solution to that point.
This routing solution is used in the subsequent RRR iteration.

Furthermore, as previously stated, the RLP also provides a measure
of relative utilization for each critical edge that will be used to
compute edge weights during the RRR step. Specifically, for each
critical edge e ∈ D, its relative utilization is taken to be π∗

e
ce

, where π∗
e

is the optimal dual value of its corresponding edge capacity constraint
in the reduced-sized LP. Further discussion of the weights is delayed
to the discussion of RRR in Section IV-D.

In practice, even though the budget of |D| = 5000 critical
edges is significantly smaller than the total number of edges (e.g.,
a few hundred thousand in the ISPD 2011 benchmark instances), our
analysis tool can still provide a good estimate of the regions that
contain hotspots. We attribute this good performance to the the fast
runtime of RLP that allows its iterative use within RRR. Note also
that each time RLP is invoked within RRR, the allocation of the
5000 critical edges to different regions changes based on the edge
utilizations obtained from the previous iteration of RRR. We have
observed that the allocation of the edges to regions of truly highest
congestion gradually increases during the algorithm.

C. INIT: Initial Solution Generation
To generate an initial solution, we first apply maze routing for each

two-terminal subnet obtained by decomposing the nets N based on
minimum spanning trees similar to [4], [9]. Maze routing is done by
applying the A∗ algorithm to find a smallest-weight path between
each pair of terminals. The edge weight used reflects the current
utilization of nets that are routed so far. To enforce that net Ti is
routed within its ηi-scaled bounding box, a large weight is given to
edges outside this box. The maze routes of the subnets of a multi-
terminal net are merged to form its first candidate route.

The initial candidate route set for each net is augmented by adding
variations of the route found by pattern routing. Specifically, two
candidate routes are added by considering only L-shaped routes for
each bend subnet of a multi-terminal net. One candidate route is
obtained by merging the top-right L-shaped routes of the subnets.
The other is obtained by merging the right-top L-shaped routes. Two
additional candidate routes are added using Z-shaped routes for the
subnets. One is by merging right-top-right Z-shaped routes of the
subnets. The other is by merging the top-right-top Z-shaped routes.

Overall, we obtain five candidate routes for each net from maze
routing and pattern routing. We then apply the RLP procedure where
we assume the input route for each net is its first candidate route from
maze routing (to determine the critical edges and nets that pass from
the high-overflow edges). RLP generates a route for each net which
will be the initial solution given to RRR. In our experience, this step
requires no more than two minutes to complete for any of the ISPD
2011 benchmark instances using a routing box that is ηi = 10%
larger than the original bounding box for each net Ti ∈ N .

D. RRR: Rip-up and Re-route
At each iteration of RRR an input routing solution is rerouted to

reduce overflow. Figure 3 gives an overview of the steps in one RRR
iteration. The first step uses RLP to produce a new routing solution
and a measure used to setup edge weights during rip-up and reroute.
Compared to other RRR procedures like [3], [4], [9], [18] one of
our contributions is effective integration with RLP. Our experience
is that integrating RLP with RRR allows for a significant overflow
reduction in a short runtime, even though fewer RRR iterations are
done than other methods because of the overhead incurred by RLP.

After performing RLP to produce an updated routing solution and
edge utilization measures, each multi-terminal net is decomposed into
two-terminal subnets based on its minimum spanning tree. For each
subnet a route is constructed by identifying the path connecting its
two terminals on the route of its multi-terminal net. For each subnet,
we compute the total overflow divided by the number of edges that
have overflow on its route. Subsets are ordered in ascending order of
this measure, so that easy-to-fix nets with overflow are rerouted first.

Re-routing of the subnets begins by first computing weights for
each edge. Edge e is given weight we = 1+ pe × he, where pe and
he are the penalty and history terms, respectively.

Update edge utilization

(evokes RLP)

Order decomposed nets

RRR: Rip-up and Re-route

Multiple Rip-up

Single Re-route for

all overflow nets

Single Rip-up

Single Re-route for

all overflow nets

Yes No

Improved overflow by MRSR

in previous RRR?

(MRSR)

Fig. 3. Overview of rip-up and reroute

For a critical edge e ∈ D, the penalty term is computed as
pe=pow(5, −π∗

e
ce

), where ce is the edge normalized capacity and π∗
e

is the optimal dual value of the capacity constraint for edge e in the
reduced-sized LP, as discussed in Section IV-B. For a non-critical
edge e ∈ E \ D, if it has overflow, then pe=pow(5, ue−ce

ce
) and

otherwise, pe = ue
ce

. In the expressions of the non-critical edges, the
term ue indicates the edge utilization of the current routing solution.
The history term he in the expression for we is initially 1 and
incremented by a constant (hinc = 1.2) at the beginning of each
round of RRR if edge e has overflow. This edge weighting scheme is
similar to that of [9], but our edge weight penalty function depends
on the output of RLP (either the current routing edge utilizations
ue for non-critical edges or the dual values π∗

e for critical edges).
Furthermore, our history term he is also updated within an RRR
iteration, as the nets are traversed.

Using these edge weights, nets that contain overflow may be
rerouted either by a multiple rip-up, single reroute (MRSR) process,
or a single rip-up, single reroute (SRSR) procedure. For the RRR
iterations, initially MRSR is performed at each iteration, until no
overflow improvement is detected. After that SRSR is performed in
the remaining iterations. (See Figure 3.) In SRSR, each net is routed
by first freeing the normalized edge capacity used by the subroute
generated by RLP. A standard weighted shortest path algorithm is
used to connect the subnet to the remainder of the route.

Multiple Rip-up Single Re-Route (MRSR): We made the obser-
vation that decomposed subnets of different nets often had the same
start and end terminals. The MRSR procedure is a novel strategy
to take advantage of this fact by simultaneously removing multiple
routes and routing them together. To apply MRSR after RLP, we
first identify all equivalent subnets that contain overflow. Equivalent
subnets for each terminal pair are aggregated into groups of size at
most cavg , the average capacity of the edges in the projected 2D grid.

For example, in Figure 4(a), 6 subnets pass over the overflow
edges. The edges that have overflow are marked in the example. Here,
subnets n1 to n4 are equivalent since they all connect the terminals
p1 and p2. For cavg = 3, we assign n1, n2, n3 to group G1 and
thus n4 will be assigned in a new group G2. Similarly, subnets n5

and n6 are both connecting p1 and p3 and are assigned to group G3.
(See Figure 4(b).) After the equivalent subnets are aggregated into
groups, the subnet-list is traversed in the previously explained order.
If a subnet in a group is to be rerouted, all subroutes in the group
are simultaneously removed, updating the available normalized edge
capacities accordingly. A single reroute procedure is applied to route
all the equivalent subnets. The edge utilization on the aggregate route
is incremented by the number of equivalent subnets in the group.

Figure 4(c), shows 3 reroute steps for groups G1, G2 and G3. The
routes are shown with different thicknesses in Figure 4(c) to represent

G1:

P1

P2

3

G2:

P1

P2

1

G3:

P1

P3

2

n1 n2 n3

n5

n4

n6

average edge capacity = 3

p1

p2

p3

p1

p2

p3
(a)

(c)

group size

(b)

n1

n2

n4

n3

n5

n6

G2

G1

G3

Fig. 4. Multiple Rip-up Single Re-route (a) subnets before MRSR, (b) subnets
after MRSR, (c) equivalent subnet grouping

their varying contributions to the edge utilizations. In this example,
overall we rip-up 6 subnets but reroute only 3 times. The re-routing
process is a major bottleneck for RRR, so this strategy allows for
significant speedup, especially for the larger benchmarks. We note
that the route of the (undecomposed) nets that share the same subnet
may still remain significantly different. Further, we apply MRSR in
the first iterations of RRR, until we observe that the previous RRR
iteration did not result in overflow improvement. We then switch to
single rip-up single reroute for the remainder of the RRR iterations.
E. CLA: Congestion-Aware Layer Assignment

The CLA step converts the generated 2D route of each net into
a 3D route. First, the Steiner points of each route are identified
to eliminate the inaccuracy introduced by the overlapping subnets.
The nets are sorted in ascending order of the number of bends in
their corresponding routes and then visited in this order and assigned
to the layers using a greedy strategy. Specifically, for each net, the
corresponding 2D route is broken into branches at the Steiner points
and each branch is further broken into horizontal and vertical flat
segments. A flat segment is assigned to a layer if overflow is not
introduced. Otherwise, the segment is assigned to multiple layers
in a greedy manner to minimize the total overflow and via count
up to that point. Finally, the segment will be connected using vias
to the closest segment of the same net to ensure connectivity. If a
segment includes a terminal located in a layer other than M1, then
a via connection will be made to connect it to the terminal at the
target layer. As the segments are assigned to the layers, the procedure
updates the corresponding edge utilizations by accounting for their
specific wire sizes and spacings. During the CLA step, all the edges
that are designated as blockage with a 0 capacity are avoided.

V. COALESCGRIP

The congestion analysis framework presented in Section IV was
implemented as a tool which we refer to as CGRIP. A simplified
variation of this framework, called coalesCgrip was implemented as
the reference router to evaluate the ISPD 2011 contest [1]. Compared
to CGRIP, coalesCgrip relies on a modified version of FGR [9] to
generate an initial solution and does not have the INIT step. (We
modified FGR to handle the ISPD 2011 benchmark requirements.)
coalesCgrip uses the RLP step and its integration in rip-up and
reroute, however not based on the formulation of (IP-CA) but based
on the formulation of GRIP [16] to minimize the total overflow. For
rip-up and reroute, its net ordering is based on the bounding boxes of
the decomposed nets. It lacks the MRSR step and does not update the
history term of an edge weight within an RRR iteration. In the contest,
coalesCgrip was only used with maximum resolution. Therefore, due
to lack of space, we skip the details for lower resolutions.

VI. SIMULATIONS

CGRIP and coalesCgrip were both implemented in C++ and used
CPLEX 12.2 for solving the reduced-sized linear programs1.All
experiments ran on a machine with a 2.8GHz Intel CPU and 12GB of
memory. (Our actual memory usage was just a fraction of the 12GB
memory.) Our analysis tool supports the new bookshelf format used
in the ISPD 2011 benchmark suites [13]. These benchmark instances
include different wire sizes and spacings for 9 metal layers, routing
obstacles, and net terminals located at higher metal layers. We used
the branch-free data structure [6] to represent the decomposed subnets
in our implementation of CGRIP and coalesCgrip.

A. Total Overflow Minimization
The first experiment is aimed at demonstrating the effectiveness

of CGRIP to generate high-quality routing solutions using only a
short runtime budget. In this case, we use the formulation (IP-CA)
with |R| = |E| regions and κ = 0, so the analysis tool seeks to
minimize the total overflow on the global routing grid-graph. For
each benchmark, we use the placement instance identified as “the best
solution” among the contest participants which we downloaded from
the ISPD 2011 contest website [1] and then apply routing. For CGRIP,
we impose a 15-minute runtime budget as the (only) stopping criteria.
For coalesCgrip, we run the (same) binary as used at the contest on
our machine which resulted in the runtime of some benchmarks to
be higher than 15 minutes. For this experiment, there is no limit on
the size of the routing box for each net in either of the tools.

We compare the wirelength (WL scaled to 10−5) and total overflow
(TOF). We note again that the solutions generated by CGRIP and
coalesCgrip both avoid routing on the specified blockages. Alter-
natively, routing on the blockages and counting it as overflow can
yield to less overflow. But this is against the blockage definition,
although the generated solution still passes the ISPD 2011 evaluation
script. Furthermore, our reported TOF is for the generated 3D routing
solution as given by the contest evaluation script. It reflects the
routing resource usage and not the number of tracks. So if a route is
assigned to a lower layer, it consumes less routing resource.

The results are reported in Table I. Columns 2 and 3 report the
grid size and the number of nets for the benchmarks. The name of
the used placement instance is reported for each benchmark. CGRIP
performs significantly better than coalesCgrip in reducing the TOF.
The TOF is improved on average by 77.29%. The CGRIP WLs are
always higher than coalesCgrip but in general it can be decreased by
controlling how scenic the nets are routed.

B. Identifying and Ranking the Regions with Overflow
Our second experiment is aimed at assessing the accuracy of

CGRIP at identifying and ranking the overflow regions. To perform
this experiment, we run CGRIP, using κ = 0 in the IP model (IP-CA),
for different resolutions and runtime budgets.

The following cases are compared:
• maxRes60: CGRIP is ran with maximum resolution (given in

column 2) which results in minimizing the TOF for a time-
budget of 60 minutes. This case is also our reference case.

• maxRes15: CGRIP is ran with maximum resolution with a
shorter time-budget of 15 minutes.

• lowRes15: CGRIP is ran with a much lower resolution of rx ×
ry = 15x15, resulting in regional minimization of overflow for
225 regions for a time-budget of 15 minutes.

In all the above cases, we force CGRIP to control the scenic nets,
ensuring that all nets are routed within 110% of their bounding boxes.

1Both CGRIP and coalesCgrip tools are available for download at
http://homepages.cae.wisc.edu/∼adavoodi/gr/cgrip.htm

TABLE I
EVALUATION OF CGRIP FOR MINIMIZING THE TOTAL OVERFLOW, AND FOR IDENTIFYING AND RANKING THE REGIONS WITH OVERFLOW

Total OF minimization CGRIP ranking of regions with OF
coalesCgrip CGRIP maxRes60 maxRes15 lowRes15

Benchmarks XGxYG #Nets Placer WL TOF WL TOF TOF Imp.% TOF |Rc| TOF Err TOF Err

superblue1 704x516 822744 SimPLR 150.24 0 150.91 0 0.00 0.5K 1 0.5K 0.0 0.5K 0.0
superblue2 770x1114 990899 Ripple 307.73 797898 317.83 138544 82.64 353K 100 380K 22.1 382K 18.8
superblue4 467x415 567607 Ripple 108.57 85538 111.51 2968 96.53 23K 60 28K 12.0 32K 10.1
superblue5 774x713 786999 Ripple 172.86 126186 176.32 28676 77.27 55K 36 56K 3.2 58K 1.0

superblue10 638x968 1085737 RADIANT 250.16 616742 256.55 112720 81.72 52K 101 120K 20.4 122K 9.2
superblue12 444x518 1293436 SimPLR 228.85 415428 241.56 35954 91.35 338K 108 352K 15.2 357K 6.1
superblue15 399x495 1080409 Ripple 179.11 125936 185.19 14052 88.84 54K 97 60K 21.9 64K 10.9
superblue18 381x404 468918 mPL11 98.44 31440 102.40 0 100.00 42K 51 43K 18.1 47K 13.00

Average 187.00 274896 192.78 41614 77.29 69.2 14.1 8.6

Consequently the TOF values in this experiment are higher than the
previous one. The blockages are not allowed to be used.

The purpose of this experiment is to measure how closely solutions
obtained with a short run time budget match the reference solution.
We measure in the following manner. After obtaining a routing
solution in each of the above three cases, we super-impose a 15x15
grid-graph and rank the resulting 225 regions in descending values of
the TOF at each region. We then consider the top entries in the ranked
list of the reference case corresponding to the regions with (non-zero)
overflow. These entries reflect the indexes of the congestion hotspots
in the reference case, and sorted with respect to the descending order
of “difficulty”. We refer to these regions as Rc.

We then check the accuracy of the other two ranked lists
(maxRes15 and lowRes15) with respect to the reference one. To mea-
sure the accuracy of a ranked list, we compute the displacement of the
rank of each region r with respect to its rank in maxRes60 and report
the average over all the regions in Rc. For example for maxRes15,

we compute Err =
∑

r∈Rc
|rankr,maxRes60−rankr,maxRes15|

|Rc| .
The results are reported in Table I in columns 10 to 15. The number

of considered regions |Rc| defined by the reference case is reported in
column 11. For maxRes15 and lowRes15, we report the ranking error
(Err) as explained above. For each of the 3 cases, we also report the
total overflow (TOF) of the generated routing solution. For example
in superblue10, the average displacement in ranking of the 101
regions with overflow is 9.2 units in lowRes15 and 20.4 (more than
twice) in maxRes15. On average for all the benchmarks, the ranking
error is 8.6 units in lowRes15 while it is 14.1 units in maxRes15 out
of 69.2 regions with overflow.

The computational results indicate that for the same runtime budget
of 15 minutes, lowRes15 always offers a significantly lower error
than maxRes15 and thus can more accurately rank the congested
regions. This confirms our intuition that minimizing the TOF may
not be the correct objective for a small time-budget if the goal is
identifying the congested hotspots. Furthermore, maxRes60 has the
smallest TOF due to a longer runtime and directly minimizing TOF as
the objective. The TOF of lowRes15 is similar (often slightly higher)
than maxRes15. However, we contend that the results of lowRes15 is
more valuable to a routability-driven placer than maxRes15 since it
can more accurately rank the hotspots in the order of their difficulty.

VII. CONCLUSIONS AND FUTURE WORKS

This work introduced CGRIP, a new routing congestion analysis
tool. CGRIP operates on a flexible model of global routing that
accurately reflects various factors that contribute to congestion. We
proposed a (parameterized) Integer Programming formulation for
the congestion analysis problem that identifies and ranks the most-
congested hotspots for a routability-driven placer. To engineer a
practical solution approach to our formulation, we introduced several
new ideas, such as working with a reduced-sized linear program,

integrating dual prices from a linear program with traditional rip-up
and re-route procedures, simultaneous re-routing of multiple nets, and
a congestion-aware layer assignment technique. Computational exper-
iments show that our tool achieves roughly an order-of-magnitude
improvement in the total overflow when compared to coalesCgrip, a
simpler variation of our framework used in the ISPD 2011 contest. We
also show that given a 15-minute runtime budget, the most-congested
regions can be estimated more accurately with a coarse-grained
(15x15) resolution of our IP model than one that minimizes the total
overflow. Future work includes integration with a routability-driven
placer to verify the impact of resolution in improving routability and
investigating more complex region definitions.

REFERENCES

[1] ISPD 2011 routability-driven placement contest [online]
http://www.ispd.cc/contests/11/ispd2011 contest.html.

[2] U. Brenner and A. Rohe. An effective congestion driven placement
framework. In ISPD, pages 6–11, 2002.

[3] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang. NTHU - Route 2.0: A fast and
stable global router. In ICCAD, pages 338–343, 2008.

[4] H.-Y. Chen, C.-H. Hsu, and Y.-W. Chang. High-performance global
routing with fast overflow reduction. In ASP-DAC, pages 582–587, 2009.

[5] M. Cho, K. Lu, K. Yuan, and D. Z. Pan. BoxRouter 2.0: A hybrid
and robust global router with layer assignment for routability. ACM
TODAES, 14(2), 2009.

[6] J. Hu, J. A. Roy, and I. L. Markov. Completing high-quality global
routes. In ISPD, pages 35–41, 2010.

[7] C. Li, M. Xie, C. Koh, J. Cong, and P. Madden. Routability-driven
placement and white space allocation. IEEE TCAD, 26(5):858–871,
2007.

[8] M. Pan and C. Chu. IPR: An integrated placement and routing algorithm.
In DAC, pages 59–62, 2007.

[9] J. A. Roy and I. L. Markov. High-performance routing at the nanometer
scale. IEEE TCAD, 27(6):1066–1077, 2008.

[10] J. A. Roy, N. Viswanathan, G.-J. Nam, C. J. Alpert, and I. L. Markov.
CRISP: Congestion reduction by iterated spreading during placement.
In ICCAD, pages 357–362, 2009.

[11] P. Spindler and F. M. Johannes. Fast and accurate routing demand
estimation for efficient routability-driven placement. In DATE, pages
1226–1231, 2007.

[12] T. Taghavi, Z. Li, C. J. Alpert, G.-J. Nam, A. Huber, and S. Ramji.
New placement prediction and mitigation techniques for local routing
congestion. In ICCAD, pages 621–624, 2010.

[13] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam, and J. A. Roy.
The ISPD-2011 routability-driven placement contest and benchmark
suite. In ISPD, pages 141–146, 2011.

[14] M. Wang, X. Yang, K. Eguro, and M. Sarrafzadeh. Multi-center
congestion estimation and minimization during placement. In ISPD,
pages 147–152, 2000.

[15] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic congestion
prediction. In ISPD, pages 204–209, 2004.

[16] T.-H. Wu, A. Davoodi, and J. T. Linderoth. Global routing via integer
programming. IEEE TCAD, 30(1):72–84, 2010.

[17] T.-H. Wu, A. Davoodi, and J. T. Linderoth. A parallel integer program-
ming technique to global routing. In DAC, pages 194–199, 2010.

[18] Y. Xu, Y. Zhang, and C. Chu. Fastroute 4.0: global router with efficient
via minimization. In ASP-DAC, pages 576–581, 2009.

