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ABSTRACT

Local nets are a major contributing factor to mismatch be-
tween the global routing (GR) and detailed routing (DR)
stages. A local net has all its terminals inside one global
cell (gcell) and is traditionally ignored during global rout-
ing. This work offers two contributions in order to estimate
and manage the local nets at the GR stage. First, a proce-
dure is given to generate gcells of non-uniform size in order
to reduce the number of local nets and thus the cumulative
error associated with ignoring or approximating them. Sec-
ond, we approximate the resource usage of local nets at the
GR stage by introducing a capacity for each gcell in the GR
graph. With these two complementary approaches, we offer
a mathematical model for the congestion-aware GR problem
that captures local congestion with non-uniform gcells along
with other complicating factors of modern designs including
variable wire sizes, routing blockages, and virtual pins. A
practical routing procedure is presented based on the math-
ematical model that can solve large industry instances. This
procedure is integrated with the CGRIP congestion analy-
sis tool. In the experiments, we evaluate our techniques in
planning for local nets during GR while accounting for other
sources of congestion using the ISPD11 benchmarks.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids—layout

Keywords

congestion, detailed routing, global routing

1. INTRODUCTION
Many factors complicate the routing process for modern

designs. Variation in the the wire sizes and spacings of the
metal layers, routing blockages, and virtual pins in higher
metal layers all contribute to make the routing process more
difficult. Additionally, modern designs often have high pin
density and vias, which further contribute to congestion.
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To improve a design’s routability, one set of techniques
focus on routability-driven placement procedures that rely
on mechanisms for predicting routing congestion. There are
many successful efforts in this area, including [7, 8, 9, 10,
11, 14, 16].

Another avenue for improving routability is to adjust the
global routing (GR) procedure to account for modern com-
plicating factors. Along this line, CGRIP [13] is a flexible
GR tool that can handle arbitrary routing blockages and
virtual pins, and varying wire sizes and spacings. However,
CGRIP does not account for local congestion effects. More-
over, CGRIP was primarily tuned to provide a rapid esti-
mation of congestion by imposing a small runtime budget—
much smaller than typically spent during GR on unroutable
designs which contain routing congestion.

The focus of this work is to improve routability by modi-
fying the GR procedure to account for congestion caused by
local nets, in addition to the complicating factors already
handled by CGRIP. A local net has all its terminals in one
global cell (gcell). The routing of a local net is determined
during the detailed routing stage, and local nets are typically
ignored during GR. In many instances, a significant portion
of the nets to be routed are local. For example, for the
ISPD11 benchmarks [15], using the winning placement so-
lutions, on average 31.20% of the nets are local. The aim of
this work is to account for these local nets during GR which
translates into significant reduction in the effort right after
one iteration of ripup-and-reroute during detailed routing.

This work offers two complementary techniques to man-
age the impact of local nets during GR. First, we propose
to reduce the number of local nets by using gcells of non-
uniform size. A procedure is presented to transform a given
GR instance into one with fewer local nets. The procedure
results in an increase in the number of global nets however
to have a control on the runtime complexity at the GR stage,
it keeps the number of gcells intact. So the effort required at
the GR stage may increase but a significantly better solution
in terms of the induced overflow is observed, just after one
iteration of ripup-and-route at the detailed routing stage.
Second, we approximate the area required to route the local
nets and adjust the areas of the affected gcells before GR.

Using these two complementary techniques to approxi-
mate and reduce the local nets, a graph model and a math-
ematical formulation of GR with non-uniform gcells is pre-
sented which includes vertex capacity in addition to the con-
ventional edge capacity. Our model also captures other fac-
tors contributing to congestion such as varying wire size and
spacing, routing blockages, and virtual pins.



The recent work [17] proposes several methods to approx-
imate the routing usage of local nets inside the gcells, all of
which are translated into a reduction in the capacities of re-
lated edges in the graph model of GR. In this work, we show
using a motivational example and experiments that adding
a vertex capacity during GR to reflect this local usage, re-
sults in GR solutions which provide a better starting point
to perform detailed routing in terms of the induced (detailed
routing) overflow, compared to solely reducing the edge ca-
pacities. The focus of this work is not on computation of
the vertex capacity; any model of the usage of routing re-
sources within a gcell, such as the ones explored in [17], can
directly be used as the vertex capacities in our framework.
Overall, we show to reflect local congestion during GR, the
use of varying vertex capacities together with (unreduced)
edge capacities avoid cutting the size of the feasible search
space which may otherwise happen if the edge capacities are
solely reduced and vertex capacities are not used.
Our experiments are conducted using the recently-released

ISPD11 benchmarks [15] which capture a large set of the fac-
tors contributing to routing congestion in modern designs.
To the best of our knowledge, there is no work in the open
literature on global routing which have used this challenging
set of benchmarks to evaluate routing congestion. In fact
we show in an experiment that ignoring these factors during
GR and just considering local congestion is not effective in
reducing the actual routing congestion.
Our ideas are implemented into a practical routing frame-

work which handles large industry-sized instances. The prac-
tical realization is based on integration with the CGRIP con-
gestion analysis tool [13], revising its functionality to suit the
goals of this research effort.

2. NON-UNIFORM GCELLS
To reduce the error caused by the modeling approxima-

tion of local nets, we propose to define the gcells in a non-
uniform manner in order to reduce the number of local nets.
Reducing the number of local nets increases the number of
global nets (since the total number of nets is constant) and
thus creates a more difficult global routing (GR) instance.
However, the effort required for detailed routing can be sig-
nificantly reduced. We will give computational results in
Section 5 indicating that the extra effort applied during GR
often pays off, generating improved overall designs with less
total computing time.
In this section, we first provide mathematical notation for

describing local nets in the presence of gcells of unequal size.
We then present our non-uniform gcell generation procedure.

2.1 Notation and the Binning Problem
To more accurately account for local effects in GR, we

revisit how instances for GR arise out of the design process.
At the most fundamental level, we are given a 3-dimensional
placement grid

P = {0, 1, . . . X} × {0, 1, . . . , Y } × {1, . . . L}.

In most instances, like the ISPD11 benchmark, there are
L = 9 layers in the grid.
The design problem also consists of a set of nets N =

{T1, T2, . . . , T|N|}, where each net Tn ∈ N consists of a set
of pin locations on the placement grid P . As a first step,
each net with multiple pins is decomposed into two-terminal
subnets based on a minimum spanning tree connecting the
pins.
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Figure 1: Binning to create non-uniform gcells.
Therefore, after decomposition, each net consists of two

pin locations: (Tn = {pn1 , p
n
2 }). The pin locations are co-

ordinates on the placement grid (pnk = (xn
k , y

n
k , ℓ

n
k ) ∈ P ),

and typically all pin locations are in the first layer (ℓnk = 1).
However virtual pins outside of the first layer are also pos-
sible. For example, in the ISPD11 benchmarks, virtual pins
are located at layer 4.

To create an instance that can be solved by GR software,
this very detailed placement grid P is replaced with a less-
refined version, where coordinates of the placement grid are
aggregated into global cells.

Each layer ℓ ∈ {1, . . . , L}, consists of a number of global
cells (gcells),

Cℓ = {Cijℓ}i=1,...,Nℓ
x,j=1,...,Nℓ

y
,

where each gcell Cijℓ is a rectangular region on a fixed level
of the placement grid P . In our work (and in all benchmark
instances), we will assume that a gcell Cijℓ is characterized
as a pair of intervals

Cijℓ = ([αℓ
i , α

ℓ
i+1], [β

ℓ
j , β

ℓ
j+1]), (1)

and the intervals have the property that they partition in-
dividual coordinate axes of the placement grid, i.e.

0 = α
ℓ
1 < α

ℓ
2 < . . . < α

ℓ
Nx+1 = X (2)

0 = β
ℓ
1 < β

ℓ
2 < . . . < β

ℓ
Ny+1 = Y (3)

We define the selection of the intervals ([αℓ
i , α

ℓ
i+1], [β

ℓ
j , β

ℓ
j+1])

for the gcells as the binning problem. In most GR instances,
the gcell intervals have a uniform size. For example in the
ISPD11 benchmark instances, all gcell intervals are of length
40. In Section 2.2 we discuss advantages of creating in-
stances whose gcells are of different sizes.

2.2 Binning Procedure
When selecting intervals that define gcells, we do not

wish to change the total number of gcells, just their indi-
vidual sizes. Specifically, N ℓ

x and N ℓ
y will remain unchanged

in Equations (2) and (3), but the cell starting locations
αℓ
i , β

ℓ
j in Equation (1) will be adjusted by the binning pro-

cedure. For purposes of making a 2D-projection of the in-
stance straightforward, the binning procedure will keep all
gcells to be of uniform size between layers, i.e. α

ℓ1
i = α

ℓ2
i

and β
ℓ1
j = β

ℓ2
j ∀i, j, ℓ1, ℓ2.

We explain the procedure for gcell definition using the
example shown in Figure 1. We assume that each multi-
terminal net is decomposed into two-terminal subnets based
on its Minimum Spanning Tree (MST). The MSTs are shown
on the placement grid in (a). The standard instance has 9
equal-sized gcells specified by 3x3 grid shown in (b). This
gcell configuration results in 2 global nets and 6 local nets.



Our procedure for defining gcells is based on an iterative
bi-partitioning. At each iteration, both a horizontal and
vertical cut are made to maximize the number of nets that
are cut. For example, in (c) the maximum number of nets
cut in the horizontal and vertical directions are 3 and 4,
respectively, and the corresponding cuts are shown. After
each iteration, the nets that are cut are removed from con-
sideration (as shown in (d)). The process completes when
the number of intervals N ℓ

x and N ℓ
y are of the requisite size.

By allowing for gcells of non-uniform size, the number of
local nets is reduced to 0, but the number of global nets is
increased to 8, as shown in (e).
The binning procedure reduces the number of local nets by

maximizing the number of nets that pass a vertical or hor-
izontal cut at each step of the algorithm. It is also compu-
tationally useful to consider a parameterized version of this
algorithm that controls the tradeoff between the increase in
global nets and the decrease in local nets. In the parame-
terized version of the procedure, when deciding the location
of a vertical or horizontal cut at each iteration, we select
the cut location that results in the number of cut nets to be
closest to ηNmax, where Nmax is the maximum number of
nets that can be cut at that iteration. The user-specified pa-
rameter η is between 0 and 1 and allows for more fine-tuned
control of the eventual number of local nets.
Post-Processing for Local Congestion Balancing: An-
other important consideration in the binning problem is to
generate gcells with“balanced” local congestion. This means
to reduce the deviation in local congestion among neighbor-
ing gcells. This consideration is helpful in detailed routing
because local nets are typically routed inside the correspond-
ing gcell. Reducing this deviation makes it easier to route
the local nets during the detailed routing stage. Therefore,
after generating non-uniform gcells, we post-process the in-
tervals, perturbing the boundaries of the gcells in order to
balance the local congestions among the gcells. For each
gcell Cijl, we define the local congestion ratio LCijl as

LCijl =
Rijl

Aijl

, (4)

where Rijl denotes the routing resources consumed by local
nets inside Cijl and Aijl is the area of gcell Cijl. (We discuss
a method for estimation of Rijl in the next section.)
The post-processing step is a greedy heuristic with the

objective to decrease the deviation of the congestion ratios
among the gcells, while ensuring that the number of local
and global nets remains the same. The procedure sequen-
tially considers the impact of adjusting each cut line (e.g., up
and down for horizontal cuts), computing the updated local
congestion ratios and number of global and local nets if the
interval boundary was changed. The new cut line location
is chosen to be the one that (1) does not change the number
of local and global nets; and (2) results in the maximum
decrease in total deviation of the gcells’ congestion ratios
from the average. The latter helps to reduce the deviations
in the local congestion ratios among the gcells as a mean to
balance the local congestion.
The effect of post-processing is depicted in Figure 2. In

Figure 2(a), the congestion ratios are shown for each gcell,
calculated assuming the dimensions of each gcell is 4 × 4,
and local congestion is computed using the bounding box of
each local net (which is 2 for all local nets). Figures (b) to
(d) show the steps of post-processing for the horizontal cuts.
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Figure 2: Post-processing example.

In Figure (b), the top cut line (shown by the dashed line)
is slightly moved down and as a result some of the local
nets are moved from the bottom gcells to their neighboring
top gcells. The new congestion ratios corresponding to this
step are shown in the gcells and the total deviations in the
congestion ratios are reduced from 3.26 to 2.17, compared
to the average in each case. Similarly, in Figures 2(c) and
(d) the remaining horizontal cut lines are visited and in the
end the total deviation in the congestion ratios is reduced
from 1.67 to 1.63 in Figures (c) and (d).

An important consideration when applying binning is the
amount of routing blockage in the design. For example, in
the sb10 benchmark instance, over 67% of the first four
metal layers are defined as routing blockages. In such a
case, generating bins of non-uniform size can significantly
complicate the global routing procedure and add to its com-
plexity. Therefore, in our framework, we only apply the
binning procedure if the amount of routing blockage com-
pared to the total chip area is beyond 50%. In such a case,
the less-invasive post-processing step is solely applied.

In Section 5, we show that the above binning strategy is
effective for the ISPD11 benchmarks. So far, these bench-
marks are the only instances which capture some of the fac-
tors that challenge the routability in modern designs and are
openly available to the research community. In cases that
are not captured by these benchmarks such as designs with
more complex routing blockages and/or containing various-
sized macros, it would be interesting to investigate our bin-
ning strategy when it is selectively applied to “appropriate”
regions of the layout.

3. LOCAL CONGESTION MODELING
In this section we describe mathematical models for ap-

proximating the routing resources consumed by local nets
while considering factors such as non-uniform wire size, wire
spacing, and routing blockages. These models are embedded
into an Integer Programming (IP) formulation to describe a
congestion-aware global routing (GR) problem.

3.1 Local Congestion and Graph Models
To create a GR instance, the gcell information is used to

construct a graph G = (V,E), where

V = ∪ℓ∈LCℓ,

with one vertex v = (i, j, ℓ) ∈ V for each gcell Cijℓ. Edges
e ∈ E are created between adjacent gcells.



In a given layer, all wiring tracks are oriented in one di-
rection. Additionally there are vias to allow for routes to
move between adjacent layers. Therefore, each edge e =
((i1, j1, ℓ1), (i2, j2, ℓ2)) ∈ E is of one of the following types:

• (EW): if ℓ1=ℓ2=ℓ, j1=j2, and i2=i1+1 or i2=i1-1,

• (NS): if ℓ1=ℓ2=ℓ, i1=i2, and j2=j1+1 or j2=j1-1,

• (VIA): if i1 = i2, j1 = j2 and ℓ2 = ℓ1 - 1 or ℓ2 = ℓ1+1.

We assume without loss of generality if ℓ is odd, edges are
of (EW) type, and if ℓ is even, edges are of (NS) type.
Pin locations for each net Tn ∈ N are mapped to gcell

locations. Specifically, if pin pn1 ∈ Cijℓ and pn2 6∈ Cijℓ, then
vertex v = (i, j, ℓ) ∈ V is a terminal of Tn that must be
connected in the GR instance. A net Tn is a local net for
gcell Cijℓ if pn1 , p

n
2 ∈ Cijℓ. As explained in the introduction,

local nets are not explicitly considered by the GR instance,
which may result in difficulty at the detailed routing stage.
In the GR instance, (EW) edges and (NS) edges e =

(i1, j1, ℓ), (i2, j2, ℓ) ∈ E have a normalized capacity ue that
depends on the length of the interval defining the gcell:

ue =







βℓ
j2

−βℓ
j1

wℓ+sℓ
if e is a EW edge

αℓ
i2

−αℓ
i1

wℓ+sℓ
if e is a NS edge

(5)

where wℓ and sℓ denote the wire size and spacing in layer
ℓ. By dividing the interval with wℓ + sℓ, the normalized
capacity ue reflects the number of wiring tracks that can
pass between the boundary of adjacent gcells. The first layer
ℓ = 1 is not available for GR in ISPD11 benchmarks, so the
capacity is set to 0 for these edges. VIA edges are given a
capacity ue = γ that is determined by the technology. For
the ISPD11 benchmark instances, γ = ∞.
To account for local effects, we also consider that each

vertex v = (i, j, ℓ) ∈ V has a normalized vertex capacity rv.
The vertex capacity is designed to limit the total number of
routes that can pass through a vertex (gcell). To capture
local effects in a GR instance, the vertex capacity should
be reduced based on the area required to route local nets
contained in gcell Cijℓ. We estimate the area required to
route local net Tn = {(xn

1 , y
n
1 , ℓ), (x

n
2 , y

n
2 , ℓ)} in level ℓ by

multiplying the wire width by a length equal to the net’s
half-perimeter bounding box in the lowest possible levels:

d
ℓ
n =

{

wℓ|xn
1 − xn

2 | if ℓ = 3
wℓ|yn

1 − yn
2 | if ℓ = 2.

Let Aij ⊂ N be the set of nets local to cell Cij1. The routing
resources consumed by local nets at level ℓ is then

Rijℓ =

{

∑

n∈Aij
dℓn if ℓ = 2, 3

0 otherwise.

Note that we make a practical assumption that the local
nets of gcell Cij1 only impact the capacities corresponding
to gcells Cij2 and Cij3. Other models for approximating the
routing usage of local nets such as [17] can be incorporated
in the above equations. If there are routing blockages inside
a gcell Cijl, the blockage area should be added to Rijℓ.
The capacity of vertex v = (i, j, ℓ) is the area of the cor-

responding gcell reduced by the estimated area required for
routing local nets. The capacity is normalized by the length
of the appropriate gcell interval (depending on whether v is
in an (EW) layer or a (NS) layer), so rv becomes a measure
of the number of routes that may cross the gcell. We let

rv =
Aijℓ −Rijℓ

λijℓ

, (6)
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Figure 3: Various global routing graph models.

where Aijℓ = (βj+1 − βj)(αj+1 −αj) and λijl = (αℓ
i+1 −αℓ

i)
if ℓ is even, and λijl = (βℓ

j+1 − βℓ
j) if ℓ is odd.

3.2 Integer Program Model
Input to the integer programming model consists of the

grid-graph G = (V,E) and a set of multi-terminal global
nets denoted by N = {T1, T2, . . . , TN} with Ti ⊂ V , created
as described in Section 3.1. Let Tn be the candidate global
routes for net Tn—the collection of all Steiner trees connect-
ing the terminals of Tn. We define the parameters ate = 1
if Steiner tree t contains edge e ∈ E, and ate = 0 other-
wise. Similarly, we define parameters bvt = 1 if Steiner tree
t contains vertex v ∈ V , and bvt = 0 otherwise. The model
contains binary decision variables xt that are equal to 1 if
and only if tree t ∈ Tn is used to route net Tn. An Integer
Program (IP) describing the GR with the normalized vertex
capacity is given as follows:

min
x,o,s

∑

n∈N

∑

t∈Tn

ctxt +M1

∑

e∈E

oe +M2

∑

v∈V

sv (IP-LC)

∑

t∈Tn

xt ≥ 1 ∀n ∈ N (λn)

∑

n∈N

∑

t∈Tn

aetxt − oe ≤ ue ∀e ∈ E (πe)

∑

n∈N

∑

t∈Tn

bvtxt − sv ≤ rv ∀v ∈ V (µv)

xt ∈ {0, 1} ∀n ∈ N , ∀t ∈ Tn

oe, sv ≥ 0 ∀e ∈ E, ∀v ∈ V

The parameter ct is the cost of global route t, computed
as the lengths of its corresponding edges: ct =

∑

e∈E(T ) ce.
For the non-uniform binning case, the length of each edge
is computed as the distance between the centers of the cor-
responding gcells. In formulation (IP-LC), the first set of
inequalities enforces the routing of each net using one of its
candidate trees. In the second set of inequalities, oe is a vari-
able that measures the overflow of the normalized capacity
ue on edge e. In the third set of inequalities, sv is a variable
that measures the overflow of the normalized vertex capac-
ity rv. The objective is a linear combination of total global
routed length, total edge overflow, and total vertex over-
flow. The two parameters M1 and M2 are large numerical
constants, so that edge and vertex overflow are minimized.

Motivational Example: Figure 3 depicts a GR instance
that demonstrates the utility of vertex capacities. Subfig-
ure (a) shows five gcells with the middle one having high
local congestion. The number inside each gcell is an ap-
proximation of total number of routes that can cross its four
boundaries without causing overflow. A conventional graph
model would ignore the local congestion, resulting in the
instance depicted in Subfigure (b). In this case, each edge
is given a capacity of 6, reflecting the maximum number of
routes that can pass the boundary of the two corresponding
gcells. Vertex capacities are not included in this model.



Subfigure (c) shows a model that accounts for the local
congestion inside the middle gcell by reducing the the num-
ber of routes that can pass from each of its boundaries to
4. This case accounts for the local congestion better than
(b), but it does so by reducing edge capacities. However,
accounting for local congestion by reducing edge capacities
may be too restrictive. For example, a solution to the in-
stance depicted in Subfigure (a) can have 6 routes crossing
the top boundary, and this solution is excluded by reducing
the edge capacities in (c). Subfigure (d) depicts the alterna-
tive presented in this work, which uses the same edge capac-
ities as (a). In addition, a vertex capacity of 16 is placed on
the middle gcell. This case most accurately models the true
instance by accounting for local congestion without unduly
restricting the search space.

4. ROUTING FRAMEWORK
In this section we describe our routing framework, which

is an extension of CGRIP [13]. By extending from CGRIP,
our framework can also account for the same complicating
factors— varying wire size and spacing at different metal
layers, routing blockages, and virtual pins—as CGRIP. We
start by giving a brief overview of CGRIP and then discuss
specific extensions to plan for local net congestion.

Overview of CGRIP: The routing procedure in CGRIP
starts with a 2D-projection of the instance and the creation
of an initial 2D-solution. A rip-up and reroute (RRR) proce-
dure is iteratively applied until a time limit is reached, or no
improvement in overflow is possible, similar to other routing
procedures [2, 3, 5, 6, 7, 12, 19, 18]. A congestion-aware
layer assignment is applied at the last step to account for
wire size and spacing, virtual pins, and routing blockages.
CGRIP’s procedure assumes gcells have uniform size.
CGRIP relies heavily on an IP formulation similar to (IP-LC).

A reduced size linear program (RLP), consisting of a subset
of the variables of the IP corresponding to critical edges and
nets are selected and relaxed to take continuous values. The
RLP is solved to determine the amount of utilization on the
critical edges which are subsequently fed into the current
step of the RRR procedure. The iterative use of these two
procedures (i.e., forming an RLP and integrating its solu-
tion with the current RRR iteration) leads to a tremendous
reduction in total overflow.
Note that CGRIP was designed for rapid congestion anal-

ysis. It relies on an input resolution parameter. In this ex-
tension, we set this parameter to be of maximum resolution.
For details about CGRIP, please refer to [13].

Extensions: We now discuss how individual steps in CGRIP
are revised to handle the new IP formulation (IP-LC) and
the local congestion models with non-uniform gcell sizes.
1) 2D Projection: The 2D projection is done similar to
CGRIP. It is done in a straightforward manner using our
mathematical notations (presented in Section 3.1) and be-
cause even with non-uniform gcell sizes in each layer, we
require uniformity across the layers in our gcell generation
procedure. In our 2D projection, cells Cijℓ, for a fixed lo-
cation (i, j), whether of uniform or non-uniform size, are
aggregated so that there is one gcell at each location (i, j)
representing all the layers. Specifically, the 2D graph is
G2D = (V2D, E2D), where V2D = {(i, j)}i=1,...,Nx,j=1,...,Ny ,
and there is an edge e = ((i1, j1), (i2, j2)) ∈ E if i2 = i1 + 1,
i2 = i1 − 1, j2 = j1 + 1 or j2 = j1 − 1.

Normalized capacity for edges e = ((i1, j1), (i2, j2)) ∈ E2D

are computed by summing capacity defined in Eq. (5) over
the metal layers:

ue =

L
∑

ℓ=1

u(i1,j1,ℓ),(i2,j2,ℓ).

Similarly, vertex capacity for v = (i, j) ∈ V2D is obtained by
summing vertex capacity (Equation 6) over the metal layers:

rv =

L
∑

ℓ=1

ri,j,ℓ. (7)

2) Initial Solution: To create an initial solution, multi-terminal
nets are decomposed into two-terminal subnets according to
their Minimum Spanning Tree (MSTs), as in [4, 12, 13]. The
same decomposition is used during the procedure to gener-
ate non-uniform gcells which was explained in Section 2.

To generate an initial solution, the reduced-sized linear
program (RLP) for the modified IP given by formulation
(IP-LC) is solved to identify an initial solution from a set of
pre-defined candidate routes obtained using maze and pat-
tern routing. This procedure is similar to CGRIP except in
the way the RLP is formed which will be explained next.
3) Reduced-Sized Linear Program (RLP): We form a reduced-
sized version of (IP-LC) by writing the formulation only for
a subset of optimization variables oê, sv̂ and xt̂ and the cor-
responding constraints that include these variables. Vari-
ables are identified by first identifying a set of critical edges,
based on current utilization estimates. (The procedure for
identification of critical edges is the same as CGRIP.) For
each identified critical edge ê = (v̂1, v̂2), the variable oê and
two variables sv̂1 and sv̂2 are added. This is because vertex
capacities are considered in formulation (IP-LC).

If a critical edge is used in the current solution to route a
net Tn, then this net is a critical net, and a sufficiently large
subset of routes t̂ ∈ Sn corresponding to candidate routes
(Sn ⊂ Tn) will have their decision variables xt̂ included in
the RLP. We note, this process to define the reduced ver-
sion of formulation (IP-LC) depends on whether gcells are
of uniform size. This is because both vertex and edge ca-
pacities are computed based on the gcell dimensions. We
note however that our non-uniform gcell generation proce-
dure ensures the size of the grid-graph (in term of number
edges and vertices) remain the same as the uniform case.
4) Rip-up and Re-Route (RRR): The RRR procedure rips
up nets with high overflow and re-routes them. The nets to
rip-up are based on the computed overflow in the current
solution. The re-route step solves a weighted shortest path
problem. In contrast to CGRIP, the shortest path problem
in our extension also has weights on vertices. This is because
we consider capacity of edges and vertices.

Specifically, in CGRIP, each edge e has a weight of 1+f( ge
ue

),
where f is an exponential function of an estimate of utiliza-
tion of edge e, denoted by ge, and the normalized capacity of
e. Similar to CGRIP, if e is a critical edge, then the utiliza-
tion ge is the dual value corresponding to the edge capacity
constraint for e (πe shown in (IP-LC)). Otherwise, ge is
computed as the number of global routes that use edge e in
the most current routing solution.

In our framework, each edge e ∈ E2D has an edge weight
of le + f( ge

ue
), where le is the length of edge e, computed as

the distance between the centers of the two gcells that edge
e connects. The role of le in this edge weight expression is to
account for the used wirelength associated with each edge.



In contrast, CGRIP uses le = 1 in its edge weight expression.
This is because the cell sizes are equal in CGRIP and the
relative contributions of the edges in terms of wirelength are
equal to each other.
In our extension, during the re-routing, we also have weights

for each vertex v = (i, j) ∈ V2D. The vertex weights are
f(hv

rv
), where f is the same function used for the edge weight,

hv is an estimate of the vertex utilization, and rv is the nor-
malized vertex capacity (7). If v is an endpoint of a critical
edge, then its utilization hv is taken from the dual value cor-
responding to the vertex capacity constraint for v, denoted
by µv in formulation (IP-LC). Otherwise, the utilization hv

is taken to be the sum of the edge utilizations for all edges
incident to vertex v: hv =

∑

e∈δ({v}) ge.

5) Congestion-Aware Layer Assignment: The RLP and RRR
procedures are iterated for a pre-specified time limit, or un-
til no additional overflow improvement is identified. The
routes in G2D are then converted into routes on G using a
congestion-aware layer assignment procedure. CGRIP uses
a greedy procedure for layer assignment which accounts for
virtual pins, routing blockages and varying wire sizes and
spacing. Here we extend the CGRIP procedure in two ways:
(1) we use updated edge capacities which account for local
congestion using our model which assumes the local nets
are routed at the two lowest layers; and (2) computation
of routing resource utilization in the greedy procedure of
CGRIP is extended to account for non-uniform gcell dimen-
sions. Specifically, the routing resource of an edge e in G is
computed using an estimated length le and the correspond-
ing wire size for that layer. The length le is computed as the
distance between the centers of the two gcells corresponding
to the two vertices of edge e.

5. SIMULATION RESULTS
The routing framework described in Section 4 and the bin-

ning procedure of Section 2 to create global routing (GR)
instances with non-uniform cells were both implemented in
C++ and integrated with the CGRIP congestion analysis
tool [13]. For the binning procedure, the parameter η was
set to 0.9, given significant weight to reducing the number
of local nets in the instance. For solving linear programs,
CPLEX 12.0 was used. ISPD11 benchmarks were used to
validate our framework, and GR instances were created from
the winning placement solutions of the ISPD11 contest [1].
For each benchmark, Table 1 shows the placement solution
used, the grid size, and the number of nets before and after
terminal decomposition. These benchmarks consider non-
uniform wire size and spacing, routing blockages, and vir-
tual pins. They are specifically designed to be challenging
instances for routability.
GR Variations: We implemented four GR variations:

1. U-E (Uniform-Edge): Uniform grid with edge capac-
ity only, without any adjustment for local congestion;

2. U-AE (Uniform-Adjusted-Edge): Uniform grid with
adjusted edge capacity to capture the impact of local
nets without any vertex capacity;

3. U-AV (Uniform-Adjusted-Vertex): Uniform grid with
unadjusted edge but adjusted vertex capacity to reflect
local congestion;

4. NU-AV (Nonuniform-Adjusted-Vertex): Non-uniform
grid with unadjusted edge capacity and adjusted ver-
tex capacity to reflect local congestion.

Table 1: ISPD 2011 benchmark info
Bench Placer Grid Size #Nets #2T-Nets

sb1 SimPLR 704x516 822744 2038444
sb2 Ripple 770x1114 990899 2237446
sb4 Ripple 467x415 567607 1316401
sb5 Ripple 774x713 786999 1713307
sb10 RADIANT 638x968 1085737 2579974
sb12 SimPLR 444x518 1293436 3480633
sb15 Ripple 399x495 1080409 2736271
sb18 mPL11 381x404 468918 1395388

The method U-E is identical to CGRIP [13]. Methods U-
AV and NU-AV are the ones proposed in this work. They
both consider vertex capacity based on local congestion as
well as (unadjusted) edge capacity. The only difference be-
tween them is whether or not gcells are of uniform size. The
method U-AE adjusts the edge capacity ue to account for
local nets similar to Figure 3(c). Specifically, for each edge
e = (i, j) of type EW and NS, the edge capacity is reduced
to reflect a smaller number of routes that can pass the corre-
sponding boundary of two neighboring gcells. The local con-
gestion is computed using vertex capacities ri and rj (given
by Equation (6)) for the two end endpoints of an edge. The
adjusted edge capacity is then computed by replacing the
numerator in Equation (5) by min(ri, rj) indicating that the
reduction in the edge capacity is dominated by the gcell with
more local congestion. The strategy of reducing the edge ca-
pacity to reflect the resource usage due to local congestion
is also used in [17].

The above variations are used to create four different GR
solutions. The termination criterion in all cases was set to be
when no additional improvement in overflow was obtained
during the rip-up and reroute (RRR) phase of the algorithm.
Detailed Routing (DR) Emulation: To measure the im-
pact of different GR solutions on the detailed routing stage,
we (obviously) require a mechanism for performing detailed
routing (DR). In this work, we had to implement our own
detailed routing emulator to perform this evaluation. We
would prefer to use an actual DR tool, but at the time of
this writing, there were no DR tools, having an interface
that takes a GR solution as input, available to us.

We did obtain a binary of the DR tool RegularRoute,
kindly shared by the authors of [20]. RegularRoute is one of
the most recent, competitive academic DR tools. However,
at this phase, and similar to other DR tools, RegularRoute
does not account for the complicating factors introduced in
the ISPD11 benchmarks, such as zero metal-1 capacity, vir-
tual pins, and non-uniform wire sizes and spacings. Our
attempts to use RegularRoute after simplifying the bench-
marks (by removing these factors) also failed.

We also carefully evaluated the use of Cadence’s wroute to
perform DR. Unfortunately for our purposes, wroute, simi-
lar to other commercial detailed routers that we considered,
does not have an interface that takes a GR solution as input.
Rather, it accepts a placement instance as input. This same
issue is also mentioned in the paper [20].

Thus, we created our own DR emulator, designed to illus-
trate the impact of considering local congestion right after
the first iteration of detailed routing. We will show that
the impact is significantly different among the GR varia-
tions that were tested. The goal of our DR emulator is to
illustrate the impact of the generated GR solution immedi-
ately after one iteration in the detailed routing stage, as a
relatively-accurate surrogate measure to reflect the difficulty
of the corresponding detailed routing instance.



Table 2: Comparison of wirelength and total overflow at various stages

U-E (CGRIP) U-AE U-AV NU-AV

GR-OF DR-OF GR-WL GR-OF DR-OF GR-WL GR-OF DR-OF GR-WL GR-OF DR-OF GR-WL
sb1 0 23142 153.36 0 23020 154.20 0 12740 154.65 0 806 154.67
sb2 3168 18880 335.80 14496 18506 335.36 10526 13154 344.46 7780 9180 350.31
sb4 228 28696 114.40 2024 27476 115.12 880 13296 119.20 418 876 119.88
sb5 0 10878 184.74 322 9256 187.45 0 2588 187.78 450 1036 188.82
sb10 124 84842 270.32 4502 73862 282.65 872 66780 281.01 766 65232 281.23
sb12 0 44556 256.58 274 44416 264.11 302 36414 259.03 12120 15732 261.46
sb15 0 29982 191.81 1022 29800 192.32 846 18886 192.01 2630 7678 193.50
sb18 0 11406 105.47 0 11184 106.90 0 558 106.70 0 444 107.80

average 1.0X 1.0X 1.00X 6.4X 0.9X 1.00X 3.8X 0.7X 1.00X 6.9X 0.4X 1.01X

Our emulator uses a projected DR instance that can be
used to estimate the overflow occurring during DR. Specifi-
cally, our DR emulator works on a two-layer grid, with one
layer containing NS edges and one containing EW edges con-
nected with VIAs. Each route in a given GR solution is then
projected to this two-layer grid. Only the original (uniform)
gcells are used at this stage to define the gcells where each
gcell in the projected instance has a 40x40 detailed routing
grid DRG superimposed upon it. This 40x40 granularity
gives the same resolution as the placement grid P in the
ISPD11 instances, ensuring that pins of all nets (global and
local) are vertices of the DR grid. The capacity of each
NS/EW edge in the DRG is equal to the number of the
NS/EW layers above that edge that do not contain an ob-
stacle at that location.
Global cells are individually routed over the DRG in a

sequential, breadth-first manner, starting from bottom left.
When visiting gcell c, first the local nets are routed, and then
a track assignment is made for all global routes mapped to c

in the current GR solution. This process is similar to other
published detailed routing algorithms such as [20]. Some
track assignments are imposed by neighboring (previously-
visited) gcells. For global routes that connect to c through
a VIA edge in the GR model, a utilization of one unit of
the DRG grid edge inside c is used to reflect this VIA us-
age. Once the track assignment is made for c, rip-up and
reroute (RRR) is applied to route the remaining subnets of
each global route and all local nets inside c. In our emula-
tor, we do only one iteration of RRR, so that our emulator
shows the immediate impact of the translation of a GR so-
lution into a DR solution. When doing RRR, the same net
ordering as in the GR procedure is used. Each net inside c

is routed using its shortest path after updating the routing
resource usage by the previously-routed nets, similar to the
GR framework. Each net, however, is restricted to be routed
within a bounding box of its terminals.

Evaluation Metrics: For each generated GR solution, the
overflow (denoted by GR-OF) is measured using the (un-
adjusted) edge capacities that are used in the U-E method.
The wirelength of each case (denoted by GR-WL) is also
measured. In NU-AV, the wirelength is computed while ac-
counting for non-uniform gcells for fair comparison. For ex-
ample, an edge in NU-AV which is twice than an edge in
U-E due to non-uniform gcells is counted as 2 units of wire-
length. For each GR solution, the total overflow computed
by the DR emulator (denoted by DR-OF) is computed.

Comparison of Evaluation Metrics: Table 2 shows com-
parison of GR-OF, DR-OF, and GR-WL for each tool vari-
ation. The results confirm the following:
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Figure 4: Tradeoff in DR-OF and GR-OF with η.

• Methods U-AE, U-AV, and NU-AV, which account for
local nets, result in a reduced DR-OF of 0.9X, 0.7X,
and 0.4X, respectively compared to U-E (1.0X).

• Methods U-AE, U-AV, NU-AV all have a significantly
higher GR-OF than U-E.

• The GR-WL of methods U-AE, U-AV, NU-AV are up
to 1% larger than U-E. Wirelength is increased due to
detours as a result of reduced vertex or edge capacities
in these methods.

The increase in GR-OF in methods U-AE, U-AV, and NU-
AV is to be expected, since solutions are generated for in-
stances with a reduced edge capacity. The resulting solution
when evaluated with the original unadjusted edge capacities
may have a high overflow compared to U-E. However, in
most cases, this increase in the GR-OF is more than offset
by a decrease in the DR-OF.

Consideration of vertex capacity (U-AV) results in more
improvement in DR-OF compared to only reducing the edge
capacity (U-AE). It allows reaching higher quality solutions
which are excluded from the model of U-AE. Similarly, non-
uniform binning results in more improvement in DR-OF.
Impact of Non-Uniform Binning in NU-AV: Our bin-
ning procedure is parameterized by a value η that controls
the reduction of local nets when generating non-uniform
gcells. Figure 4 demonstrate the impact of varying η for the
instance sb2. (Similar behavior was observed in the other
instances.) In the figure, we see that increasing η (which de-
creases the number of local nets), increases the GR-OF, but
decreases the DR-OF. The runtimes have a reverse trade-off:
lower η (higher local nets) results in lower GR runtime but
higher DR runtime. Note that our binning procedure keeps
the total number of gcells the same in all the cases.

When using the binning procedure in NU-AV, we note
that for all the benchmarks, DR-OF was improved both
with and without the post-processing step. However, post-
processing provided additional reduction in these metrics.
For example in sb2 for η = 0.9, the DR-OF with and with-
out post-processing were 11378 and 9180 respectively —both
smaller than DR-OF of the other methods.



Table 3: Comparison of runtime (min) and local nets

Bench U NU U-E U-AE U-AV NU-AV

%LC %LC GR DR GR DR GR DR GR DR
sb1 30.8 14.1 3 28 7 21 5 18 7 7
sb2 28.9 13.5 352 22 321 17 303 17 389 17
sb4 35.2 16.8 180 39 60 25 201 25 60 8
sb5 29.4 12.2 135 42 184 33 164 24 221 5
sb10 34.1 34.0 251 62 341 51 329 32 342 33
sb12 28.6 14.6 238 41 360 42 309 37 306 22
sb15 34.4 15.8 212 34 269 24 259 19 233 10
sb18 28.2 15.0 10 32 20 20 16 15 10 9

ave 31.2% 17.0% 1.0X 1.0X 1.1X 0.8X 1.1X 0.6X 1.1X 0.4X

Comparison of Runtimes: Table 3 gives a runtime com-
parison for the different methods. The table shows that
the CPU time of the DR emulation is reduced on average by
0.8X, 0.6X, and 0.4X for U-AE, U-AV, NU-AV, respectively,
compared to U-E. The GR runtime on average is increased
around 10% compared to U-E. Columns 2 and 3 report the
percentage of local nets for uniform and non-uniform cases.
The termination condition of CGRIP can be set by the

user based on the design flow—whether the user wants a
“quick-and-dirty” solution or a solution that spends higher
effort to produce a high-quality GR solution. In this work,
we set the parameters of CGRIP to reduce the overflow of
the GR-solution as much as possible. Specifically, the termi-
nation condition for each method is when no improvement
in its objective is made for two consecutive RRR iterations.
With this termination criterion, the GR runtimes of U-E are
3min and 10min for sb1 and sb18, respectively. However,
the runtimes are multiple hours for the other instances. This
longer runtime could be reduced at the expense of larger GR-
OF values. For example, running CGRIP (the method U-E)
for one hour results in GR-OF of 13568 for sb2, and over-
flow exists in 6 of the 8 benchmarks. A comparison of these
values to column 2 of Table 2 indicates that the additional
effort can significantly reduce GR-OF.

Impact of Local Congestion versus Wire Sizes: Local
nets and non-uniform wire sizes are two factors that con-
tribute to congestion, but are ignored or not mentioned in
the GR published works. To evaluate the individual im-
pact of these two factors, we conducted a small experiment
comparing three GR methods: 1) when local congestion is
ignored but non-uniform wire sizes are considered; 2) when
non-uniform wire sizes are ignored but local congestion is
considered; and 3) when both non-uniform wire size and lo-
cal congestion are considered. In all cases, the gcells are of
uniform size. Case 1 is same as U-E (i.e., CGRIP). Case 3 is
U-AV with adjusted vertex capacity. In case 2, we assumed
the same wire size and spacing in all layers to be equal to
layer 1, which was done by changing the benchmark header
line describing the per layer wire size and spacing values.
(The routing procedures remain intact.) As a result, if layer
4 had a wire size of 2 units, after getting normalized to wire
size of 1 unit in layer 1, then it passes double the number of
wires on each edge. This transformation resulted in an in-
crease in the normalized capacity of the edges in the higher
layers, since these layers allow for more routing tracks to pass
an edge once their wire sizes are reduced to match layer 1.
This behavior is the same as the ISPD08 benchmarks. After
generating GR and DR solutions, we evaluated each solution
using the original wire size using our DR emulator, similar
to the previous experiments.

In all cases, the DR-OF, which we are using as a surrogate
measure for the goodness of the true DR solution, was signif-
icantly reduced by considering both additional complicating
factors. For example, for benchmark sb4, the DR-OF for
cases 1, 2, 3 were 28696, 3348396, and 13296, respectively.
Note that case 2 had significantly higher DR-OF than the
other cases. We conclude that non-uniform wire sizes and lo-
cal nets are both crucial factors for routability. Our routing
models and framework can account for both of these factors.

6. CONCLUSIONS
We proposed two techniques for considering local effects

during global routing. First, we introduced a technique for
constructing GR instances with gcells of non-uniform size
that can decrease the number of local nets while controlling
the complexity of the GR procedure. Second, we proposed a
model to approximate the congestion induced by local nets
and incorporated this mathematical model as a vertex ca-
pacity constraint into a congestion-aware Integer Program-
ming (IP) formulation. The IP formulation also accounts for
non-uniform wire sizes, routing blockages, and virtual pins.
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