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ABSTRACT

We propose GRIP, a scalable global routing technique via
Integer Programming (IP). GRIP optimizes wirelength and
via cost without going through a layer assignment phase.
GRIP selects the route for each net from a set of candi-
date routes that are generated based on an estimate of con-
gestion generated by a linear programming pricing phase.
To achieve scalability, the original IP is decomposed into
smaller ones corresponding to balanced rectangular subre-
gions on the chip. We introduce the concept of a floating

terminal for a net, which allows flexibility to route long nets
going through multiple subregions. We also use the IP to
plan the routing of long nets, detouring them from congested
subregions. For ISPD 2007 benchmarks, we obtain 3.9% and
11.3% average improvement in wirelength and via cost for
the 2D and 3D versions respectively, compared to the best
results reported in the open literature.
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1. INTRODUCTION
Design of Integrated Circuits in nanometer regime is sub-

ject to many obstacles such as manufacturability, variabil-
ity, yield-loss and timing failures. With increasing design
sizes and shrinking device geometries, the severity of many
of these issues is impacted by the routing of interconnects.
Global routing (GR) is the primary step of routing during
which the net regions will be planned. It has increasingly
gained significance in recent years due to its larger role on
the above-mentioned issues. It is crucial that the GR gener-
ates a high-quality routing solution in a manageable runtime
that scales well with the design size.
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Among the two-categories of concurrent [8], [20], [21], [15],
[4], [3], [5] and sequential [19], [22], [6], [18], [17] global
routers, the latter has been more successful in terms of the
tradeoff between solution quality and execution runtime. Se-
quential approaches have much smaller runtime but rely on
an ordering of the nets and applying rip-up and re-route.

Much attention has been given to sequential approaches
because the concurrent ones are inherently more time con-
suming. The most recent concurrent approach is the IP-
based BoxRouter [8]. BoxRouter is extremely fast, but it
only considers L-shaped routes in the IP. Recently [15] pro-
poses the use of a few more basic patterns for routing each
net in a progressive congestion-driven IP formulation. Simi-
larly, [15] also has the downside of only considering a limited
number of pre-determined patterns in the IP formulation.
This in turn requires applying complicated pre- and post-
processing steps to generate a final solution [8]. Also re-
cently [21] proposes a hierarchical IP formulation for GR.
However, as we discuss, the major downside of any hierar-
chical GR is failure to effectively account for the impact of
short nets. In this paper, we make the following contribu-
tions to overcome some of these challenges:

1. We propose an IP formulation that simultaneously min-
imizes wirelength and via cost, thereby skipping the
traditional layer assignment phase. The IP works with
3D Steiner routes and heavily penalizes overflow.

2. Promising routes for each net are generated by a linear
programming pricing phase that takes into account a
measure of current congestion at each iteration. The
IP decides among these many promising routes for each
net while considering capacity constraints.

3. To achieve scalability, we decompose the chip area into
rectangular subregions to achieve balanced and smaller-
sized IPs and then effectively integrates their solutions.
The execution runtime depends on the number of sub-
regions, some of which can be processed in parallel.

4. We introduce the concept of floating terminals for a
net. Floating terminals allow flexibility in routing long
nets through subregions while remaining compatible
with our pricing phase for candidate route generation.
We also discuss a pricing procedure for planning the
regions through which long nets will travel during the
decomposition of the IP into subregions.

Compared to [3], our candidate routes are generated by vary-
ing a base Steiner route, considering congestion as weights in
a grid-graph as well as the other candidate routes generated
so far at each iteration of column generation.



In our simulation results, we achieve an average 11.3%
improvement in total wirelength and via cost of 3D ISPD
2007 benchmarks, compared to the best result reported for
each benchmark. This is due to the concurrent nature of our
approach, the pricing phase for candidate route generation,
and directly working with the 3D model of the problem.

The organization of the paper is as follow. In Section 2,
we discuss the IP formulation and customized column gener-
ation procedure. In Section 3, we discuss IP decomposition,
subregion extraction, long net planning, and subregion so-
lution integration. Simulation results are in Section 4.

2. PRICE AND BRANCH FOR GR
The algorithm proposed for global routing is based on

the (approximate) solution of a large-scale integer program
(IP). The solution procedure begins with a column genera-
tion (pricing) phase, followed by branch-and-bound.

2.1 An Integer Program for the GR Problem
In a mathematical description of the global routing prob-

lem, we are given a grid-graph G = (V, E) describing the
network topology, a set of (multi-terminal) nets given by
N = {T1, T2, . . . , TN}, (with Ti ⊂ V ), and edge capacities
ue and weights ce ∀e ∈ E. Denote by T (Ti) the collection
of all Steiner trees (routes) connecting the terminals in Ti,
and let the parameter ate = 1 if Steiner tree t contains edge
e ∈ E, ate = 0 otherwise. Define the binary decision vari-
able xit that is equal to 1 if and only if net Ti is routed with
route t ∈ T (Ti). An integer program for the global routing
problem can be written as

min
x,s

N
∑

i=1

∑

t∈T (Ti)

citxit +
N

∑

i=1

Msi (ILP-GR)















∑

t∈T (Ti)
xit + si = 1 ∀i = 1, . . . , N

∑N

i=1

∑

t∈T (Ti)
atexit ≤ ue ∀e ∈ E

xit = {0, 1} ∀i = 1, . . . , N, ∀t ∈ T (Ti),
si ≥ 0 ∀i = 1, . . . , N .

The parameter cit is the cost of route t for net Ti which is
computed as the total length of the 3D route, cit =

∑

e∋t
ce,

where the notation e ∋ t denotes that edge e ∈ E is con-
tained in route t ∈ T (Ti). The first set of equations in the
model enforces the routing of each net. The decision vari-
able si will be positive if net Ti cannot be routed, and the
objective function trades off the total routing length with
the number of nets that are routed. Typically M is chosen
sufficiently large to ensure that all nets are routed. The sec-
ond set of equations in the model ensure that the given edge
capacities are not exceeded. The formulation (ILP-GR) has
a number of appealing properties.

1. The exact properties of the route, such as topology
and metal layer can be incorporated into the “cost” of
a route. The objective is to minimize this cost. The
formulation can thus handle the 3D GR problem to
include both wirelength and via cost as the cost of a
route. It then avoids a traditional layer-assignment
phase which can be a source of sub-optimality.

2. The formulation does not require that the nets be a

priori broken into two-terminal segments. Breaking
nets before doing routing can be a significant source of
sub-optimality in the resulting final routing [19]. We
note that the final version of our proposed algorithm

has some“net-breaking”to define subproblems for scal-
ability. (See Section 3).

3. The slack variables si and the corresponding objective
penalty factor M push the optimization to generate a
no-overflow routing solution. The model is quite flex-
ible, as with minor modifications, the integer program
can be set to minimize the total overflow.

A significant disadvantage of the formulation (ILP-GR)
is its size. First, for a given net Ti, the number of decision
variables for this net is equal to |T (Ti)|—the number of pos-
sible Steiner trees connecting the terminals in Ti. Second,
the number of nets N may also be very large. Nevertheless,
we use (ILP-GR) as the basis of our GR algorithm. In the
subsequent discussion, we outline the manner in which we
deal with the issues posed by large formulation size.

2.2 Column Generation
The first step in an IP-based approach to global rout-

ing is to solve the linear-programming (LP) relaxation of
(ILP-GR), a relaxation obtained by replacing the binary re-
quirement on the variable xit ∈ {0, 1} with a nonnegativity
restriction 0 ≤ xit ≤ 1. The linear program is solved by a
column-generation (CG) procedure [11, 12].

To describe the column generation procedure it is helpful
to consider the dual (LPD-GR) of the linear programming
relaxation of (ILP-GR):

max
λ≤M,π≤0

∑

i∈N

λi +
∑

e∈E

πeue (LPD-GR)

s.t. λi +
∑

e∋t

πe ≤ cit ∀i = 1, . . . , N, ∀t ∈ T (Ti). (1)

In a column generation procedure, only a small subset of all
possible routes is explicitly included in the LP relaxation of
(ILP-GR). Let S(Ti) ⊂ T (Ti) be the set of routes considered
for net Ti. The restricted master problem for (ILP-GR) is

min
x≥0,s≥0

N
∑

i=1

∑

t∈S(Ti)

citxit +
N

∑

i=1

Msi (RMLP-GR)

{

∑

t∈S(Ti)
xit + si = 1 ∀i = 1, . . . , N

∑N

i=1

∑

t∈S(Ti)
atexit ≤ ue ∀e ∈ E.

Solving (RMLP-GR) yields a (primal) solution (x̂, ŝ) as well

as values λ̂ ≤ M and π̂ ≤ 0 for the dual variables in
(LPD-GR). By linear programming duality, if the solution

(λ̂, π̂) satisfies all the dual constraints (1), then (x̂, ŝ) is an
optimal solution to the LP relaxation of (ILP-GR). If not,
then the violated dual constraint suggests a column (vari-
able) that may be added to (RMLP-GR) to reduce its ob-
jective value.

To determine if the dual solution (λ̂, π̂) is feasible, we

must determine if there exists a route t ∈ T (Ti) with λ̂i +
∑

e∋t π̂e > cit. This is itself an optimization problem, known
as the pricing problem, that can be decomposed into in-
dependent problems for each individual net i = 1, . . . , N .
Specifically, given net Ti, for each edge e ∈ E define the bi-
nary decision variables te, taking value 1 if and only if edge
e is used in a route for net Ti. The pricing problem for net
Ti is then

min
t

{
∑

e∈E

(ce − π̂e)te | t ∈ T (Ti)}. (PP(Ti))



Let t∗ be an optimal solution to (PP(Ti)). If
∑

e∈E
π̂et

∗
e +

∑

e∈E
cet

∗
e < λ̂i, then t∗ identifies a violated constraint (1)

in (LPD-GR), and the current solution to (RMLP-GR) can
be improved. The CG procedure is summarized as follows:

0. For each i = 1, . . . , N , initialize S(Ti) with at least
one route. (In our implementation, we use the route
generated for net Ti by the package Flute [9]).

1. Solve (RMLP-GR), yielding primal solution (x̂, ŝ) and

dual values (λ̂, π̂).

2. For each i=1,. . . , N , solve (PP(Ti)), yielding a route

t∗. If λ̂i+
∑

e∈E
π̂et

∗
e >

∑

e∈E
cete, then Si = Si∪{t

∗}.

3. If improving routes for some net Ti were found, return
to step 1. Otherwise, stop—the solution (x̂, ŝ) is an
optimal solution to the LP relaxation of (ILP-GR).

In order to speed solution time, we typically stop the pro-
cedure once the solution value has “tailed off.” Specifically,
if the objective value of (RMLP-GR) has made little or no
improvement in the last 10 iterations, the CG procedure is
terminated.

2.3 Solving the Pricing Problem
In the pricing phase (step 2) of the CG procedure, small-

weight Steiner trees with respect to the weights ŵe = ce −
π̂e must be identified. Finding a minimum-weight Steiner
tree is in general NP-Hard [14], so our approach for find-
ing columns that reduce the optimal value of (RMLP-GR)

is based on local search. Given a dual solution (λ̂, π̂), the

reduced cost of route t of net Ti is c̄it = cit − λ̂i −
∑

e∋t π̂e.
Note that the pricing problem (PP(Ti)) can be viewed as a
procedure for identifying a Steiner tree t for net Ti whose
reduced cost c̄it < 0. By the complementary slackness con-
ditions of linear programming, for any optimal solution (x̂, ŝ)

to (RMLP-GR) and corresponding dual solution (λ̂, π̂), the
reduced cost c̄it = 0 if x̂it > 0.

Our local improvement procedure for solving (PP(Ti))
uses this fact as well as the following simple observation.
Given a route t ∈ S(Ti), let V (t) be the set of vertices in t.
If the variable x̂it > 0, and if there exists a path P ′ from
some terminal u ∈ Ti to a vertex v ∈ V (t) such that the
weight of P ′ (with respect to weights ŵ) is less than the
weight of the path P from u to v using edges in t, the re-
duced cost of tree t′ = t ∪ P ′ \ P is negative. Thus, adding
the variable corresponding to route t′ to (RMLP-GR) may
reduce its objective value. Figure 1 demonstrates how new
routes can be constructed by finding short u-v paths from
u ∈ Ti to a vertex v on the base Steiner tree. An interesting
feature of this pricing algorithm is that the new routes can
use different Steiner points than the original routes.

To approximately solve (PP(Ti)) for a net Ti, our pro-
cedure starts with the tree t ∈ S(Ti) with largest value of
x̂ti. Using edge weights ŵe = ce − π̂e, a single-source short-
est path problem from some terminal u ∈ Ti to each vertex
v ∈ V (t) is solved. If the uv path length is smaller than the
existing path length, a new route has been identified.

Dijkstra’s single-source shortest path algorithm [13] gen-
erates an entire tree of shortest path weights, thus possi-
bly identifying many routes that would reduce the objective
value of (RMLP-GR). In our implementation, we add a
pre-specified maximum number of routes selected uniformly
from the set of all identified negative cost routes per net.

u

v

Figure 1: Improving routes via a shortest path al-
gorithm on a weighted grid-graph

An important component of our pricing algorithm for a
given net Ti is the selection of the starting terminals from
which Dijkstra’s algorithm to identify improving routes is
run. In our implementation, Dijkstra’s algorithm is run us-
ing the most congested terminals as starting points.

We identify these congested terminals as follows. For each
terminal we compute the weight of the path P ′ that connects
it to the base Steiner tree. The most congested terminals are
those for which the corresponding P ′ has maximum weight.

2.4 Selecting Nets to Price
For large instances of (ILP-GR), the CG procedure can be

significantly accelerated by only solving the pricing problem
(PP(Ti)) for a subset of all the nets. To select the nets
Ti ∈ N for which (PP(Ti)) is solved, our procedure takes
advantage of information provided by the solution of the
restricted master problem. Specifically, if ŝi > 0, then the
net Ti is not completely routed using the existing routes in
Si, so net Ti is priced by step (2) of the CG procedure.

Nets for pricing are also selected based on measures of con-
gestion in the current LP solution to (RMLP-GR). Conges-
tion may be identified in one of two ways. First, congested
edges are those edges e that have the most negative value
of π̂e. The intuition behind this choice is that π̂e provides
the rate of change in the objective function of (RMLP-GR)
per unit additional capacity on edge e. A second way to
identify a congested edge is to let ri ∈ arg maxt∈S(Ti) x̂ti

be the route for net Ti with the largest solution value in
(RMLP-GR). The value ηe =

∑N

i=1 arie is the number of
units of capacity on edge e that would be used if the routes
ri were used for each net Ti ∈ N . If the value (ηe − ue) is
large, then edge e is highly-congested. In our algorithm, a
bounding box around a congested edge e (identified by either
of the two measures) is created, and all nets Ti that contain
a terminal inside the bounding box are also candidates to
be priced by (PP(Ti)) in step 2 of the CG procedure.

2.5 Branch and Bound
Once the CG procedure for the solution of the LP relax-

ation of (ILP-GR) is complete, either because no improv-
ing routes were found in the pricing phase, or because an
iteration limit was reached, a promising candidate subset
of routes S(Ti) ⊂ T (Ti) has been identified for each net
Ti. Using only these route variables, the integer program
(ILP-GR) is formulated and solved by the commercial in-
teger programming solver CPLEX (v9) [10]. The solution
returned by CPLEX is a feasible solution to the problem.

The proposed approach, based on the direct solution of
(ILP-GR), has significant promise to improve the solution
quality of existing GRs. For example, using this approach,
we solved the 2D IBM01 circuit of the ISPD1998 suite [1]
and were able to improve the wirelength by approximately
5% compared to the best solution found by FGR [19], with-
out any overflows. However, the runtime to achieve this
high-quality solution was prohibitively long—a few hours.
Thus, in the following section, we discuss mechanisms for
decomposing the full global routing (ILP-GR) into smaller
instances in order to accelerate the overall runtime.



3. DECOMPOSITION FOR SCALABILITY
Many existing global routing algorithms define reasonably-

sized subproblems and create a full global routing out of so-
lutions to these subproblems. For example, to achieve a good
runtime, BoxRouter [8] starts by solving an IP over a small
rectangular box on the chip and then progressively increases
the size of the box to generate new IPs, fixing the solution
to the previous IP. Fixing the solution of previous IP when
increasing the box size may lead to a degradation in solution
quality. SideWinder [15] solves an IP over the entire chip by
gradually introducing more base patterns for the nets in the
congested areas at each iteration. However, Sidewinder only
works with three simple-shaped patterns which are defined
a priori. The work [21] proposes a hierarchical IP approach
that first solves a small IP to plan the routing of the longest
nets. However, the impact of the shorter nets is neglected.

As demonstrated in Section 2, our proposed algorithm for
global routing has potential to find high-quality solutions,
but also requires a mechanism to accelerate the procedure.
In this section, we first discuss a decomposition of the in-
teger program (ILP-GR) into smaller ones that correspond
to non-overlapping rectangular “subregions”on the chip. We
introduce the concept of “floating-terminals” to define the IP
of each subregion, providing significant flexibility for routing
nets that might enter or exit that subregion. We then discuss
effective integration of the subregion solutions to generate a
valid and high quality final solution. Finally, we discuss a
technique to plan long nets that pass multiple subregions.

3.1 Subregion Extraction / IP Decomposition
The goal of our decomposition procedure is to define non-

overlapping rectangular subregions on the chip. Each sub-
region defines the boundaries of a smaller-sized GR prob-
lem which we solve using the IP-based procedure outlined
in Section 2. The objective of the subregion definition is to
define balanced subregions, resulting in“equally-difficult”op-
timization problems that take approximately the same time
to solve. We first tried a coarse, uniform grid to define the
subregions. However, we noticed that the IPs corresponding
to the congested subregions were taking significantly longer
time to be solved by our procedure (e.g., hours for congested
subregion and minutes for the less congested ones).

To decrease the gap in solution times, our procedure at-
tempts to create subregions having the same average edge
utilization (AEU). To define the AEU, we first assume that
all nets are routed using the Steiner route generated by [9]
in the 2D-projected problem. For each edge, we define a uti-
lization factor as the ratio of the number of routes that cross
the edge to the edge capacity. Many edges might have a uti-
lization factor higher than one, indicating an overflow. For
a subregion, the AEU is the the average utilization factor of
all edges contained in the subregion.

The subregions are defined using a partitioning-based strat-
egy, depicted graphically in Figure 3. We recursively apply
bi-partitioning to subregions to obtain two new smaller-sized
subregions, at each step ensuring that the generated subre-
gions have similar AEU. During one bi-partitioning step,
to decide between a vertical or horizontal partitioning, we
choose the one that results in the smaller aspect ratio of
the generated subregions. The partitioning of a subregion is
stopped when any of its sides reaches 32 units of the routing
grid, a size empirically set to generate an IP that can be
typically solved by the procedure outlined in Section 2 in an
acceptable runtime.

nodes

(b)(a)

terminals
floating

auxiliary

Figure 2: Modifying grid-graph of a subregion to
handle floating terminals within our IP procedure.

Each subregion defines a new grid-graph G′(V ′, E′) and
set of nets N ′ ⊂ N . The set N ′ is composed of two types
of nets, nets that have all terminals inside the subregion
(Ti ⊆ V ′), and nets that have at least one terminal outside
the subregion (Ti 6⊆ V ′). Figure 2(a) shows the latter type of
these nets. The net in the figure belongs to three different
subregions. The common boundaries of these subregions
are shown in bold. Considering the top-right subregion, we
can think of having a net with one fixed and two “floating”
terminals. Each floating terminal represents a portion of a
subregion boundary through which the net will connect to
another subregion.

To specify such nets in our IP, we represent each float-
ing terminal using an auxiliary node. The auxiliary node
is added to the set of nodes V ′ in the grid-graph. Edges
connecting the nodes that are on the subregion boundary
to their corresponding auxiliary node are added to the set
E′. The added edges have infinite capacity and zero cost in
the definition of the integer program (ILP-GR). Figure 2(b)
illustrates the addition of auxiliary nodes and edges. Af-
ter applying this simple construction, the integer program
(ILP-GR) is well-defined, and can be solved by the proce-
dure outlined in Section 2.

The example of Figure 2 is for 2D routing, but in the gen-
eral 3D case, each boundary of a subregion is a plane and
graph G′ extends to the third dimension. The nodes on this
vertical boundary plane are connected to their correspond-
ing auxiliary node.

3.2 Handling Long Nets
In our subregion extraction procedure, the regions through

which net Ti are routed, and hence the locations of floating
terminals for Ti are taken from a given Steiner topology
(e.g., the route generated by Flute for Ti). Even though the
subregion IP has significant flexibility in implementing the
routes that connect floating terminals, the entire procedure
relies on knowing the assignment of each net to one or more
subregions. For long nets that are assigned to more than two
subregions, the subregion assignment issue becomes particu-
larly important. (This is in spite of the fact that the number
of subregions is typically much smaller than the number of
bins of the routing grid). Figure 3 illustrates this point. The
two long nets are routed using their Steiner routes, both of
which pass from subregion A. If A is congested, it is better
to detour these nets from A.

A
B

Figure 3: Assigning long nets to subregions using an
initial Steiner route can cause unresolvable overflow.



Temporarily fix the nets

Detour long net segments
from subregion i

Extract subregions

i=0

i++

Solve IP for subregion i

using the Steiner routes
generated by Flute

Figure 4: Dynamic planning of long nets

Many procedures for assigning the subregions of long nets
were investigated. First, similar to [21], we tried a stan-
dard hierarchical IP formulation in terms of long nets. This
approach helped considerably with the removal of overflow,
but its failure to accurately consider the impact of short nets
falling completely inside a subregion led to poor quality so-
lutions in terms of wirelength. Instead, we use the procedure
depicted in Figure 4, which is explained below:

1. Before extracting the subregions, all nets are broken
into two-terminal segments using the Steiner trees gen-
erated by Flute.

2. Next, the subregion extraction begins. The routes used
to compute the AEU during subregion extraction are
those generated by step 1.

3. Once the subregions are created, we begin solving the
IPs for each subregion in a congestion-based order that
is discussed in the next subsection. Before solving a
subregion IP, we use a procedure to detour as many
long nets that pass from the subregion as possible.
Once a subregion is solved, its solution remains fixed.
Before solving the IP for the next subregion, we apply
the same procedure to detour as many passing nets as
possible to the remaining subregions.

To detour long net segments outside a subregion, as required
by step 3, we apply a shortest path algorithm on the grid-
graph. We set the edge weights inside the target subregion to
a large number to avoid getting re-routed inside that subre-
gion. Also, outside the target subregion, the edges that have
overflow will also have a large weight. The weights of the
grid-graph gets updated every time a long net is detoured.

Our procedure provides two significant benefits. First, it
detours the long nets dynamically, every time a new subre-
gion is processed. Second, it considers an estimate of the
current congestions based on continually updating the edge
weights to detour long nets.

3.3 Subregion Integration
So far we explained how the subregions are extracted and

the long nets are dynamically planned. We then finalize the
routing solution using a two-phase approach. In the first
phase, we fix the locations of the floating terminals and gen-
erate a routing solution for all the routes that completely
fall within a subregion. For the routes that cover more than
one subregion, we fix a “backbone” inside each of its sub-
regions. In the second phase, we connect the backbones of
these longer nets in adjacent subregions. This two-phase ap-
proach is entirely based on integer programming and solved
using formulation (ILP-GR) as we elaborate next.

first Steiner point

fixed terminal

Figure 5: We remove the segment connecting the
fixed boundary terminal (previously floating) to the
first Steiner point in the route backbone. We
reroute these connecting segments given the fixed
boundary terminals using our IP procedure.

In phase 1, we visit and process the subregions in the
following order. We first compute the total edge overflow
(TEO) based on the initial Flute Steiner-routes in each sub-
region. Subregions are then processed in decreasing order
of their TEOs. Every time a subregion is solved, the float-
ing terminals for a net Ti will get fixed at a boundary of the
region. Specifically, the net Ti is partially routed, and subse-
quent subregion IPs must respect this partial routing. If two
consecutive subregions (in terms of TEO) are not physically
adjacent, we process them in parallel.

Phase 1 fixes the locations of the floating terminals on
the subregion boundaries and also generates an initial rout-
ing solution. For this routing solution, we fix all the (short)
nets that completely fall within a subregion. For the (long)
nets covering more than one subregion, we fix a “backbone”
inside each of its subregions as follows. For a long net we
visit each of its subregions. Inside each subregion, we remove
the “branch” that connects the fixed terminal on the subre-
gion boundary to the route backbone. Figure 5 illustrates.
Considering the route that goes within two subregions, for
each subregion, we remove the segment that connects the
identified fixed terminal on the boundary to the backbone
of the route. Specifically, the removed segment is one that
connects the boundary terminal to the first Steiner point of
the route in the subregion.

In phase 2, once these “connecting segments” are removed,
routing resources will be freed and we reconnect these seg-
ments using the formulation (ILP-GR) while fixing the routes
of short nets and backbones of long nets from phase 1.

In summary, our procedure uses the IP formulation of
Section 2 as a basic component throughout the routing pro-
cess. Subregion extraction aims to generate equally-difficult
optimization problems. Subregions are initially solved while
using the flexibility of floating terminals on their boundaries
as they are visited in the order of their TEO. After the initial
phase, all the short nets and the backbone of long nets within
each subregion are routed. In addition, the locations of the
floating terminals on the subregion boundaries will get fixed
to ones that ensure obtaining a feasible solution. The final
phase effectively connects the backbones of the long nets in
different subregions. In our simulation results, we observed
significant improvement in solution quality from phase 2 for
connecting the subregions using integer programming.

The result is a scalable, effective global router, called
GRIP (Global Routing via Integer Programming). GRIP
is a robust tool and does not rely on any design-dependent
tuning. Everything is based on integer programming. The
defined parameters AEU (for defining subregions) and TEO
(for ordering them) both depend on our congestion estimate
which is only based on the Flute-Steiner routes.



Table 1: Results for ISPD 2007 benchmarks.

Benchmark Best Approach GRIP
tool TOF WL TOF WL %Impr

adaptec1.2D FGR 0 54.7 0 52.8 3.5
adaptec2.2D FGR 0 52.4 0 50.1 4.4
adaptec3.2D FGR 0 131.5 0 125.9 4.3
adaptec4.2D FGR 0 125 0 122.1 2.3
adaptec5.2D FGR 0 153.2 0 144.5 5.7
newblue1.2D FGR 400 46.3 0 44.9 3.1
newblue2.2D FastRoute 0 76.4 0 73.2 4.1
newblue3.2D NTHU-R 31454 110.8 35573 107.9 N/A

adaptec1.3D FGR 0 88.6 0 78.9 10.94
adaptec2.3D FGR 0 90.1 0 80.7 10.41
adaptec3.3D FGR 0 200.6 0 182.2 9.17
adaptec4.3D FGR 0 183.0 0 167.7 8.36
adaptec5.3D NTHU-R 0 260.2 0 227.8 12.45
newblue1.3D NTHU-R 0 91.0 0 78.1 14.14
newblue2.3D FGR 0 132.5 0 114.7 13.46
newblue3.3D NTUgr 31454 167.0 33158 162.7 N/A

4. SIMULATION RESULTS
We implemented GRIP using C++. For solving individual

LPs and IPs we used CPLEX (v9) [10]. We demonstrate
the performance of GRIP on the ISPD 2007 benchmarks
[2]. Table 2 reports the total number of routed nets and the
grid size for each benchmark. Each benchmark has a 3D as
well as a projected-2D version, and the grid size is the same
in both versions. The 2D and 3D benchmarks have two and
six metal layers, respectively.

We compare the summation of wirelength and via cost
(denoted by WL) in Table 11. The comparison is made
against the best reported solution for each benchmark, found
by either FGR 1.1 [19], NTHU-Route 2.0 [6], FastRoute 3.0
[22] or NTUgr [7]. For the 2D and 3D benchmarks, we
obtained an average improvement of 3.9% and 11.3%. The
improvement in the 3D benchmarks were more significant
than in the 2D case, because GRIP considers explicit 3D
Steiner routes, skipping the layer assignment phase.

The total overflow (denoted by TOF) is also given in Ta-
ble 1. The GRIP solutions had zero overflow for all the
benchmarks except newblue3 which is known to be unroutable.
For newblue3 we report NTUgr as the best tool only because
it generates the smallest overflow (and not the smallest WL).

Table 2 reports the running time (wall clock time) of both
2D (column 5) and 3D (column 6) benchmarks. The runtime
unit is minutes. The number of subregions created by the
subregion extraction procedure described in Section 3.1 for
each benchmark is given in column 4. In reporting the run-
times we process independent subregions in parallel, which
is why wall time is the appropriate measure. GRIP was run
on a heterogenous grid of CPUs, shared by many users, and
controlled by the Condor grid computing toolkit [16]. When
solving the IP formulation, the majority of runtime was
spent on the linear program (for column generation) rather
than solving the integer program using branch-and-bound.
This helped us to effectively identify candidate routes; the
number of candidate routes reached up to a hundred for
some nets, while for some nets only a few routes were gener-
ated in the linear program. Overall, our runtimes are scal-
able and adjustable, since they depend on the number of
subregions we chose to create. Continuing work is aimed at
further exploiting parallelism to obtain similar high-quality
solutions in a smaller run time.

1Benchmark solutions are available for download at:
http://wiscad.ece.wisc.edu/gr/

Table 2: Our grid size, subregion count and runtime

benchmark #nets grid #subregions 2D 3D

adaptec1 176715 324x324 91 290 440
adaptec2 207972 424x424 169 229 366
adaptec3 368494 774x779 562 262 387
adaptec4 401060 774x779 558 240 398
adaptec5 548073 465x468 199 410 688
newblue1 270713 399x399 137 319 513
newblue2 373790 557x463 242 230 296
newblue3 442005 973x1256 1162 701 1389

5. CONCLUSIONS
We presented GRIP, a tool for global routing using inte-

ger programming. We introduced a novel IP formulation to
select candidate routes for each net based on a continually-
updated congestion metric, while directly working with the
3D model of the routing problem. To achieve reasonable
runtime, we discussed subregion extraction and IP decom-
position as well as a method for planning long nets and in-
tegrating the subregion solutions.
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