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ABSTRACT
We propose a parallel global routing algorithm that con-
currently processes routing subproblems corresponding to
rectangular subregions covering the chip area. The algo-
rithm uses at it core an existing integer programming (IP)
formulation—both for routing each subproblem and for con-
necting them. Concurrent processing of the routing sub-
problems is desirable for effective parallelization. However,
achieving no (or low) overflow global routing solutions with-
out strong, coordinated algorithmic control is difficult. Our
algorithm addresses this challenge via a patching phase that
uses IP to connect partial routing solutions. Patching pro-
vides feedback to each routing subproblem in order to avoid
overflow, later when attempting to connect them. The end
result is a flexible and highly scalable distributed algorithm
for global routing. The method is able to accept as input tar-
get runtimes for its various phases and produce high-quality
solution within these limits. Computational results show
that for a target runtime of 75 minutes, running on a com-
putational grid of few hundred CPUs with 2GB memory, the
algorithm generates higher quality solutions than competing
methods in the open literature.
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1. INTRODUCTION
Global routing is a major step in the design flow of In-

tegrated Circuits and can influence crucial factors such as
manufacturability and timing. In the past few years, it has
received high attention from the research community, result-
ing in continuously-improving algorithms such as BoxRouter[3],
FGR[7], NTUgr[2], NTHU-Route[1] and FastRoute[10].
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Recently, a routing method called GRIP [8] was proposed
that relies heavily on integer programming (IP) techniques.
GRIP works by decomposing the chip into rectangular sub-
regions together with their net assignments to form smaller-
sized “subproblems”. It then applies an IP-based procedure
to solve the subproblems in a systematic order.

By applying IP in a systematic manner, GRIP obtained
a significant improvement in solution quality for benchmark
instances but with prohibitively long execution runtimes.

The focus of this paper is to eliminate the bottlenecks
to a parallel implementation based on IP. An obvious way
to parallelize GRIP would be to parallelize the branch-and-
bound search of each subproblem. However, achieving high
efficiency from a parallel IP solver running on hundreds of
concurrent processors is a difficult task and an area of active
research [9, 6]. Similar to GRIP, the approach taken here
works by decomposing the chip into subproblems but one in
which subproblems may be routed independently, ensuring
(through a one-time synchronization) that resulting routings
of the subproblems can be effectively patched together. The
patching itself is also accomplished by IP. The end result
of the work is a parallel global router that is based on an
extended IP procedure of GRIP, but allows for concurrent
processing of the subproblems and significant parallelism.

There are several challenges to obtaining high-quality so-
lutions from a parallel global router that relies on concurrent
processing of subproblems. The first challenge is effective de-
composition of the routing problem into subproblems—this
step can significantly impact the final solution quality. The
second challenge is to generate the subproblem solutions in
a manner that later facilitates their connectivity and avoids
overflow. Our work addresses both of these challenges. Spe-
cific contributions of our work include the following items.

1. To form the rectangular subregions and the correspond-
ing subproblems, we extend GRIP to include a formal
procedure for the initial estimation of the distribution
of the nets. This step is crucial to obtain a high quality
routing solution and to achieve balanced subproblems.

2. In order to effectively achieve concurrent processing
of individual subproblems, we employ a one-time syn-
chronization approach so that significant portions of
the computation can occur completely without cen-
tralized control. This synchronization is via our novel
use of an integer programming “patching” procedure.

3. Our procedure can accept as input a target runtime
and produce a high-quality solution within this limit.
The runtime can alternatively be expressed as limits
on number of iterations of each computational step.



We also extend the IP formulation of GRIP to explicitly
minimize overflow, and use various instances of it as a core
component at different phases of our massively parallel pro-
cedure to avoid overflow. We also introduce a parallel pro-
cedure to independently connect neighboring subproblems.

Similar to GRIP, our approach has low memory require-
ments as it loads individual subproblems within the local
memory of each CPU or core. Specifically in our experi-
ments, cores with a maximum of 2GB of memory were re-
quired. The resulting algorithm was highly scalable, concur-
rently using up to 725 cores while solving the ISPD 2007/2008
benchmarks. In GRIP, parallelism was limited to roughly 20
concurrent processes. Our routing procedure also achieves
high quality solution with a runtime limit of 75min, both
in terms of wirelength and overflow. Our goal is to demon-
strate a practical global router which can work on distributed
computing or future many-core computing platforms.

The remainder of the presentation is organized into four
sections. Section 2 summarizes GRIP. Section 3 explains
details of our procedures. Simulation results are in Section
4, and conclusions are offered in Section 5.

2. SUMMARY OF GRIP
A mathematical description of the global routing problem,

which is an extension of the one given in GRIP [8], goes as
follows. We are given a grid-graph G = (V, E) describing
the network topology, a set of (multi-terminal) nets given by
N = {T1, T2, . . . , TN}, (with Ti ⊂ V ), and edge capacities
ue and weights ce ∀e ∈ E. Denote by T (Ti) the collection
of all Steiner trees (routes) connecting the terminals in Ti,
and let the parameter ate = 1 if Steiner tree t contains
edge e ∈ E, ate = 0 otherwise. Define the binary decision
variable xit that is equal to 1 if and only if net Ti is routed
with route t ∈ T (Ti). An integer program for the global
routing problem can be written as

min
x,s

NX
i=1

X

t∈T (Ti)

citxit +
X

∀e∈E

Qeoe (ILP-GR)
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P
t∈T (Ti)

xit = 1 ∀i = 1, . . . , NPN
i=1

P
t∈T (Ti)

atexit ≤ ue + oe ∀e ∈ E

xit = {0, 1} ∀i = 1, . . . , N, ∀t ∈ T (Ti),
oe ≥ 0 ∀e ∈ E.

The parameter cit is the cost of route t for net Ti which is
computed as the total length of the route, given by cit =P

e3t ce, where the notation e 3 t denotes that edge e ∈ E
is contained in route t ∈ T (Ti). The costs of vias are also
incorporated to compute the cost of a 3D route.

In the above formulation, the first set of equations enforces
the routing of each net; for each net Ti exactly one route will
be selected. The second set of equations enforces the edge
capacity constraint. The decision variable oe will be positive
if routing of the nets on edge e results in overflow, and the
objective function trades off the total routing length with
the degree of overflow. Typically Qe is chosen sufficiently
large to avoid overflow as much as possible. An advantage
of this formulation is that it works with 3D routes T (Ti),
avoiding a traditional layer assignment phase, similar to [7].

The formulation ILP-GR is slightly different than the for-
mulation used in GRIP. The IP formulation of GRIP does
not contain overflow variables oe. Rather, the GRIP for-
mulation has a slack variable for each net, and maximizes
the number of routed nets by heavily penalizing unrouted
nets along with minimizing the wirelength in its objective.

Figure 1: GRIP solves a subproblem with some flex-
ibility in routing the “inter-region” nets.

Maximizing the number of routed nets does not correspond
exactly to minimizing overflow. The formulation ILP-GR
directly attempts to minimize overflow. Moreover, different
penalties Qe can be assigned for each edge, which will be
helpful in avoiding overflow in our parallel implementation.

We approximately solve (ILP-GR) by the two-phase price-
and-branch procedure of GRIP. Even though the formula-
tion (ILP-GR) is slightly different than that of GRIP, the
procedure to solve it is identical to the one discussed in [8].

First, we perform a pricing phase based on an iterative
column generation [5] to (approximately) solve the linear
programming relaxation of (ILP-GR). This phase identi-
fies a set of promising candidate routes for each net gener-
ated by the package Flute [4] in conjunction with a weighted
shortest-path procedure. Restricted routing rules may also
be incorporated within the pricing phase. Finally, a branch-
and-bound-based IP solver is used to find one route for each
net from the set of its candidate routes.

Doing this price-and-branch procedure for a large global
routing benchmark is computationally impractical. There-
fore GRIP defines rectangular subregions as subproblems to
be individually solved using the IP-based procedure. A fun-
damental obstacle to this spatial decomposition approach is
routing the nets which have terminals in multiple subprob-
lems. GRIP solves the IP formulation on a modified grid
wherein these “inter-region” nets can be routed anywhere
through a specified boundary of a subproblem as shown by
the arrows in Fig. 1 (left). After solving a subproblem, fixed
“pseudo-terminal” locations will be known on the subprob-
lem boundaries, and must be honored by the neighboring
subproblems that have not been solved yet (Fig. 1 (middle)).
To obtain a complete solution, the subproblems are solved
in a sequential order, with limited parallelism, allowing non-
neighboring subproblems to be concurrently processed.

Subproblems in GRIP were solved in descending order
of “difficulty,” and the ordering was crucial component in
obtaining high-quality solutions. The intuition behind this
observation is that the more “difficult” subproblems require
higher flexibility in their pseudo-terminal locations on the
boundary, and the flexibility decreases as more subproblems
fix pseudo-terminal locations. Once all subproblems are pro-
cessed, to further improve the solution quality, the segments
connecting the inter-region route fragments in adjacent sub-
problems are removed and then more effectively reconnected
using a similar IP-based procedure (Fig. 1 (right)).

3. PARALLEL GLOBAL ROUTING
In this section, we discuss the details of our parallel global

router that removes the requirement of sequential processing
of subproblems. Similar to GRIP, we first generate a routing
solution for each subproblem, and then attempt to connect
these partial routing solutions. Unlike GRIP, these compu-
tations can be done almost completely independently. Our
parallel global router is also fundamentally different from
GRIP in the way it uses the IP formulation (ILP-GR) at
different stages of the algorithm, and in the manner in which
candidate routes to populate the IP (ILP-GR) are generated.
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Figure 2: Overview of our parallel global router

Figure 2 gives an overview of our approach. When solv-
ing individual subproblems, we modify the pricing proce-
dure for candidate route generation so that each subprob-
lem receives one-time feedback encoding information about
the candidate routes of its neighboring subproblems. Given
this information, the subproblem solver “reprices” routes in
order to generate candidate route fragments that are more
likely to connect without overflow.

More specifically, the subproblems first undergo a quick,
initial phase to generate a small set of candidate routes.
Next, each subproblem sends information on the utilization
of its boundaries by inter-region candidate routes to one or
more “master” CPU(s). The master CPU(s) then considers
pairs of neighboring subproblems. For each pair, a “patch-
ing” integer program is solved that locates a desired win-
dow on the subproblem boundary for the pseudo-terminal
for each inter-region net. The subproblems then incorporate
this feedback in a (longer) reprice procedure to generate can-
didate routes that obey these restrictions on location of the
pseudo-terminal and are more likely to connect neighbor-
ing subproblems without overflow. After adjusted pricing,
a routing solution is generated for each subproblem using a
branch-and-bound based IP solver. In a final phase, a paral-
lel and distributed IP-based procedure is applied to connect
the route fragments from neighboring subproblems.

Another important aspect of our parallel global router is
generation of the individual subproblems. Defining the ini-
tial subproblems can highly impact the final solution quality
(as we show in our simulations).

In this section, we provide more details about each step
of our procedure—subproblem generation (Sec. 3.1), initial
pricing (Sec. 3.2), patching (Sec. 3.3), repricing (Sec. 3.4),
and parallel connection of neighboring subproblems (Sec. 3.5).

3.1 Defining Subproblems
Defining the subproblems is a crucial step in our proce-

dure, significantly affecting the solution quality and run-
time. Poorly defined subproblems contain highly congested
areas with many nets. Congested subproblems are usually
difficult and may result in overflow. In addition, the sub-
problems typically take much longer to solve, resulting in
idle time in our parallel procedure that relies on finishing all
subproblems before connecting them.

Two tasks are accomplished by subproblem definition—
subproblem boundaries are specified and nets are assigned
to the subproblems. There are different ways to accomplish
these tasks. One way is to first define the boundaries, for
example via recursive bi-partitioning of the chip area. The
assignment of each net is defined next, for example based
on its 2D-projected route given by the package Flute [4].
However, defining the assignments solely based on the“Flute
estimate” can result in highly-congested subproblems.

To mitigate the congestion, one could attempt to detour
the routes generated by Flute into less congested subregions,
for a better assignment. However, detouring requires knowl-
edge of the subproblem boundaries. On the other hand,
defining the boundaries without considering an estimate of
the routes and congestion hot-spots during bi-partitioning
might significantly limit the amount of detouring. Therefore
the two tasks of subproblem definition are inter-dependent.

GRIP performs subproblem definition by first defining the
subproblem boundaries via recursive bi-partitioning. When
partitioning, GRIP attempts to balance the average utiliza-
tion of the grid-edges (AEU) of the 2D-projected route of
each net generated by Flute. GRIP then orders the subprob-
lems based on the value of the total edge overflow (TEO)
(estimated using the 2D Flute routes). The most difficult
subproblems (the subproblems with the highest TEO), are
solved first. Before solving a subproblem, GRIP quickly ap-
plies a perturbation to some of the Flute routes in order
to detour them outside the subproblem into its neighboring
ones that have lower TEO. This detouring is done in the
sequential order, right before each subproblem is solved.

A primary contribution of our work is to extend GRIP to
obtain a more effective and formal procedure for subproblem
definition. The procedure works as follows:
1) The first step is to generate a routing of all nets to guide
the bi-partitioning. GRIP relies solely on Flute to generate
this routing, while we combine Flute with the IP formula-
tion (ILP-GR) in the following manner. First, Flute is used
to generate projected 2D routes for each net. The short nets
are fixed in place, and the linear programming relaxation of
(ILP-GR) is solved. In (ILP-GR), the parameter Qe corre-
sponding to edge overflow Oe is set to 1 for all e ∈ E. In
practice, we provide as input a target runtime limit (con-
trolling the number of iterations of column generation) after
which we stop the procedure to get a fractional solution to
(ILP-GR). We then associate a weight with each route pro-
portional to its fractional value in the solution to the relaxed
problem. The weights are used to select one route for each
net via a random procedure where the probability of select-
ing a route is proportional to its weight. This is a well-known
“randomized rounding” procedure and is better than select-
ing the route with highest fractional value for each net, as
we also verified in our implementation.
2) Using the estimated routing generated in Step (1), recur-
sive bi-partitioning is applied to define the problems bound-
aries. When partitioning, the total number of nets is used
as the metric to balance at each step of the bi-partitioning.
Our computational experience indicated that this metric (as
opposed to the AEU used by GRIP) was more highly corre-
lated with the final solution quality and did a better job of
balancing the computational effort (pricing and branch-and-
bound) for solving each subproblem. The bi-partitioning
is terminated when the number of nets in a subproblem is
smaller then 4000, a value empirically determine based on
observing the runtime of many subproblems.
3) After fixing the boundaries, we traverse the subproblems
sequentially and apply the detouring procedure of GRIP [8].
The subproblems are processed in order of their estimated
TEO from the solution obtained in Step (1). Note that we
are not solving the subproblem, but merely perturbing some
of the assignments made in Step 1 to obtain more balanced
subproblems. This step has negligible contribution to the
runtime of our routing procedure.



3.2 Initial Pricing at the Subproblems
After defining the subproblems, we apply an initial pro-

cedure to estimate the utilization of boundaries and the lo-
cation of the pseudo-terminals to connect inter-regions nets
for each subproblem. This initial procedure is done indepen-
dently for each subproblem, which implies that we allow the
generation of candidate routes for inter-region nets that may
connect anywhere on the boundary of the subproblem. After
the initial pricing is completed, information from adjacent
subproblems is sent to a “patching” process (see Section 3.3)
that determines a window (restricted region) on the bound-
ary for the location of each pseudo-terminal.

The initial pricing is done by solving the (linear program-
ming relaxation) of the formulation (ILP-GR) as described
in Section 2. A time-bound (or iteration limit) is imposed
on the initial pricing phase. In our experiments, a limit of
five minutes was used for this step.

The (ILP-GR) formulation requires the definition of pa-
rameters Qe for each edge overflow variable oe. In the initial
pricing phase, we set Qe to be equal to the Manhattan dis-
tance of edge e from the center of the subproblem. Thus,
grid edges that are closer to the boundaries have a larger
overflow penalty. As we have previously noted, a major goal
(and challenge) of the concurrent processing of subproblems
is to avoid overflow in the boundaries when connecting the
subproblems. The weighted overflow penalization is an im-
portant factor towards achieving this goal.

In the initial pricing phase, inter-region nets are allowed
to have a pseudo-terminal anywhere on the corresponding
subproblem boundary (see Fig. 1(a)). In order to assess the
utilization of boundaries by pseudo-terminals in a subprob-
lem, it is important to generate candidate routes for all the
nets in the subproblem, not only the inter-region ones.

3.3 Distributed IP-based Patching
Patching is an IP-based procedure that receives as an in-

put two neighboring subproblem boundaries and the loca-
tions of pseudo-terminals on the boundaries from the initial
pricing phase. A separate patching procedure is applied for
each pair of neighboring boundaries. The purpose of patch-
ing is to generates feedback to the corresponding two sub-
problems to enhance their connectivity through subsequent
repricing phase.

Consider the example in Fig. 3(a). Two neighboring bound-
aries are shown along with pseudo-terminals of candidate
routes at each boundary. Here Mi and Li reflect the pseudo-
terminals of net i based on the generated candidate routes
of subproblems SPM and SPL, respectively. Here, net 1
has two pseudo-terminals (denoted by M1) on one boundary,
and two pseudo-terminals (denoted by L1) on the other. Net
2 is also given. It has one pseudo-terminal on one boundary
and two on the other one.

Patching simultaneously considers the connection combi-
nations for all the nets crossing the two boundaries (e.g.,
the four combinations of net 1 along with the two combina-
tions of net 2 in Fig. 3(a)). Each of these combinations is
encoded as a spanning window on the boundaries as shown
in Fig. 3(b). The output of patching is one “restricting”
window for each net, describing the permissible range of lo-
cations of its two pseudo-terminals on the two boundaries.
This restricting window is selected from the set of existing
windows. For each net, one window is generated for the two
boundaries, but different nets can have different windows.

c13
M1

M1

L1

(a)

L2

L1M2

L2

(b) (c) G’(V’,E’)

v

e
c11

c12 c14

Figure 3: Patching procedure.

These windows are then passed as the feedback to the two
subproblems during the repricing phase.

The patching problem can be posed as an integer program.
Assume a routing grid-graph G′ = (V ′, E′), where v ∈ V ′ if
v is a vertex, and e ∈ E′ is an edge on the boundary of one
of the subproblems. An example graph is given Fig. 3(c).
Edges e ∈ E′ are given a modified capacity that is the sum
of the capacities of the boundary edge in one subproblem
and its “mirror” edge in its neighboring one.

For each net i, the IP considers |Li|×|Mi| possible combi-
nations for connecting its two portions. For net i, each pos-
sible combination is denoted by a “virtual route” t spanning
its virtual terminals in V ′. Define the parameter ate = 1
if virtual route t contains edge e ∈ E′, ate = 0 otherwise.
For each virtual route t for net i, define the binary decision
variable xit that will equal 1 if route t is selected for net
i, and 0 otherwise. Define the parameter cit which is the
length of the virtual route t of net i, in terms of number of
edges in G′. For example, in Fig. 3(b), for net 1, we have 4
combinations (virtual routes) with spans c11 = 2 to c14 = 2.

For N nets to connect, the patching problem for two
neighboring boundaries is mathematically described as the
following integer program:

min
x

NX
i=1

|Li|×|Mi|X
t=1

citxit +

NX
i=1

Qsi (ILP-PATCH)
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P|Li|×|Mi|
t=1 xit + si = 1 ∀i = 1, . . . , N

PN
i=1

P|Li|×|Mi|
t=1 atexit ≤ ue ∀e ∈ Ev

xit = {0, 1} ∀i = 1, . . . , N, ∀t = 1, . . . , |Li||Mi|.

The first set of equations enforces selection of one virtual
route for each net. The parameter Q is set be large enough
to force all “slack variables” si to take value zero, if possible.
The second set of equations ensures that the given virtual
edge capacities are not exceeded. If si = 0 for net i ∈ N ,
then exactly one xit variable will be 1 for net i. The corre-
sponding virtual route t, characterized by its two vertices in
V ′, specifies the window on the boundaries of subproblem
for net i ∈ N . All subsequent routes generated by the next
pricing phase must obey this constraint. If si > 0 for net
i ∈ N in the solution to (ILP-PATCH), this indicates that
inter-region net i is very difficult to route effectively, so its
window is set to the entire boundary of the subproblem.

The parallel routing algorithm solves one patching prob-
lem for each pair of subproblem boundaries that share at
least one inter-region route. These instances of the patching
IP are independent from one another and can be solved in a
distributed manner by many CPUs or, since the CPU time
required to solve the patching IPs is minimal, by a single
designated processor, as in our implementation.



Table 1: Results for ISPD 2007 and ISPD 2008 benchmarks. The wirelength (WL) is scaled to 105.
Benchmark PGRIP GRIP FGR[7] FastRoute[10] NTHU-Route[1]

TOF WL Edge Via #SP WCPU TCPU TOF WL(%) TCPU TOF WL(%) TOF WL(%) TOF WL(%)

adaptec1(07) 0 82.3 36.5 45.8 90 76 2101 0 -1.56 2247 0 7.00 0 9.60 0 7.38
adaptec2(07) 0 83.4 33.8 49.6 110 76 2704 0 -1.24 2677 0 7.20 0 8.90 0 8.21
adaptec3(07) 0 186.5 97.5 88.9 211 77 6319 0 -0.58 5168 0 6.61 0 8.87 0 7.15
adaptec4(07) 0 173.2 91.5 81.7 221 79 5221 0 -0.52 5258 0 3.44 0 7.36 0 6.88
adaptec5(07) 0 241.5 104.8 136.6 280 77 3175 0 -1.07 7133 0 7.13 0 10.79 0 7.20
newblue1(07) 0 84.9 25.0 59.9 122 76 2306 0 -1.14 3076 526 9.97 0 7.46 0 6.71
newblue2(07) 0 123.3 48.2 75.1 215 77 4192 0 -1.55 5228 0 4.73 0 9.11 0 8.43
newblue3(07) 41K 156.3 76.0 80.3 258 82 14590 53K -1.03 6768 30K 10.02 32K 14.17 31K 6.38
Avg. Impr. -1.09 6.58 8.87 7.42

newblue4(08) 132 124.9 83.4 41.4 255 77 2944 152 -0.44 3974 262 3.65 144 6.78 138 4.29
newblue5(08) 0 223.9 147.7 76.0 504 80 4953 0 -0.44 6598 0 3.95 0 5.47 0 3.38
newblue6(08) 0 172.0 102.5 69.5 459 78 2219 0 -0.88 5096 0 4.61 0 5.83 0 2.78
newblue7(08) 54 338.4 189.8 148.6 725 86 4788 74 -0.83 5377 1458 3.37 62 5.17 68 4.22
bigblue1(08) 0 54.0 37.3 16.7 124 76 956 0 -0.54 2770 0 5.81 0 6.72 0 3.49
bigblue2(08) 0 86.5 48.4 38.1 243 77 3411 0 -0.64 3793 0 5.38 0 9.50 0 4.50
bigblue3(08) 0 126.5 78.7 47.8 326 78 2690 0 -0.24 3448 0 4.20 0 3.24 0 3.22
bigblue4(08) 176 221.1 122.0 99.1 453 82 3096 186 -0.22 4400 414 4.54 152 8.50 162 4.30
Avg. Impr. -0.53 4.44 6.40 3.77
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0.5
0.5

0.5
0.5

0.5
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Figure 4: Uniform allocation of routing resources
for parallel-connecting the boundaries.

3.4 Adjusted Pricing at the Subproblems
After each patching IP (ILP-PATCH) is solved, the solu-

tion, in the form of restricted windows for each inter-region
net is sent back to the processors responsible for the sub-
problems. At this point, previously generated candidate
routes that do not connect within the specified window range
are filtered from further consideration. Next, a new pricing
phase begins wherein candidate routes are generated for each
net while imposing the constraint that the nets can only con-
nect to the boundaries within their specified windows. This
is for the same IP formulation as explained in Section 3.2.
In earlier experimental work, we tried connecting subprob-
lems using a heuristic method, but found the IP to generate
solutions of much higher quality. A time limit is imposed
on the adjusted pricing phase (e.g., a limit of 20min in our
experiments). Once the adjusted pricing is over, a commer-
cial IP solver is called to generate a solution to each region’s
subproblem that obeys the patching window constraints.

3.5 Parallel Connecting of Subproblems
The parallel global routing procedure concludes with a

final connection and polishing phase. Specifically, after con-
currently solving all the subproblems, for each inter-region
net, the final segment that connects its “backbone” to the
subproblem boundary is removed, as shown in Fig. 2(middle).

We then fix all the nets that fall completely inside the
subproblems. We also fix the backbones of the inter-region
nets, and implement an IP-based price and branch procedure
similar to GRIP to connect the backbones of the inter-region
nets. Here we show this connection phase can be done in a
distributed manner for each pair of neighboring boundaries.

As shown in Fig. 4, we divide each subproblem into quad-
rants. Each quadrant is adjacent to two neighboring sub-
problems (e.g., top-right quadrant is adjacent to the top
and the right neighboring subproblems). For each routing
edge, we divide its remaining capacity (not utilized by the
fixed routes) into equal portions to be allocated for solving
two“connection”problems of its two corresponding subprob-
lems. For each of the two neighboring boundaries, we solve

an IP-based connection problem. For example, for the two
boundaries shown in Fig. 4, we use the top-left and bottom-
left quadrants of the right subproblem with the top-right
and bottom-right quadrants of the left one. For each edge,
we use half of its remaining capacity. We then solve the
(ILP-GR) procedure to connect the inter-region nets.

4. SIMULATION RESULTS
Our parallel global routing procedure, named PGRIP, was

implemented in C++. For solving individual linear pro-
grams (for pricing) and integer programs (for branch-and-
bound), the software packages MOSEK 5.0 and CPLEX 6.5,
respectively, were used. Parallel processing of subproblems
was performed by submitting jobs to a grid of hundreds of
heterogeneous CPUs of 2GB memory, managed by the Con-
dor resource management system. The algorithm was eval-
uated for the ISPD 07 and ISPD 08 benchmarks. This is
specifically allow full comparison with the GRIP solutions.

A 10min runtime limit was imposed on solving the relaxed
(ILP-GR), to define subproblems (Sec. 3.1). For the initial
pricing (Sec. 3.2), repricing (Sec. 3.4), and pricing to connect
the subproblems (Sec. 3.5), we set runtime limits of 5min,
20min, and 20min, respectively. For solving the IP using
branch-and-bound after candidate route generation we used
a runtime limit of 10min. We did not limit the patching pro-
cedure since this step was very fast. (In general the number
of nets crossing between two subproblems is fairly small).
As a result we report slight variation in the runtimes of our
algorithm on different benchmark instances.

In Table 1, we compare the solution quality of PGRIP
with existing approaches. For each benchmark, the total
overflow (indicated by TOF), total cost of wirelength and
via (indicated by “WL”) and the breakdown between wire-
length and via (indicated by “Edge” and “Via” respectively)
is reported for PGRIP. For other approaches, we report the
percentage improvement in total cost of wirelength and via
(indicated by %WL), and the TOF. Our solutions were eval-
uated using the ISPD 2008 script and are available online1.

Excluding GRIP, the PGRIP solutions improve signifi-
cantly in WL of each instances (ranging from 3.37% to 10.79%).
Compared to GRIP, which has the best reported solution
but impractical runtimes, on-average it only has 1.1% and
0.5% degradation of ISPD 07 and 08, respectively2.

1http://wiscad.ece.wisc.edu/gr/ for PGRIP solutions
2The GRIP solutions were downloaded from the same link.



Furthermore, the solutions obtain zero overflow for any
benchmark that already had zero overflow solution from
other tools. For benchmarks newblue4 and newblue7, the
solutions from the parallel global router have the smallest
overflows reported so far (even better than GRIP). This is
likely due to a better definition of the initial subproblems
and measuring overflow directly in the IP formulation.

Table 1 also reports the PGRIP’s wall clock runtimes in
minutes indicated by WCPU ranging from 76 to 86 minutes.
These wall clock times are computed for the case when the
grid would not be shared with other users. The actual wall
clock time for solving the instances was larger, as jobs sub-
mit to the Condor-controlled grid often waited in the job
queue while higher-priority jobs were run. PGRIP required
an average walltime of 79min.

The number of subproblems (#SP) are also reported in
the table for PGRIP. All the subproblems were concurrently
processed so the number of parallel CPUs in our experiments
were equal to the number of subproblems, on average 281
processors, indicating we were able to take advantage of a
significant amount of parallelism. GRIP can on average use
only 23 processors effectively [8]. Another feature of PGRIP
is that its runtimes are similar over different benchmarks,
indicating a high level of scalability. We also compare the
total CPU times (indicated by TCPU) between PGRIP and
GRIP. We regenerated these values for GRIP. As can be
seen, both runtimes are quite comparable with each other.

We didn’t have access to the codes of all the other rout-
ing tools to make fair runtime comparison. Additionally,
NTHU-Route required 10GB memory. Thus, we don’t re-
port runtimes of the other competing methods, but simply
note that the runtimes of our approach on 2GB machines is
quite comparable with other tools, specifically for the bench-
marks that are highly congested.

Another feature of our approach is that by changing its
runtime limit, we can explore the tradeoff between runtime
and solution quality; for example by allowing more run-
time on the pricing phase, we can generate more candidate
routes which in turn can improve the solution quality. Take
adaptec1 as an example. Changing the runtime limit of the
pricing phases to 30min (instead of 20min in our first exper-
iment) results in an additional 1.13% improvement in WL.
The total runtime is 96min. Reducing the runtime limit of
pricing to 10min, reduces the total runtime to 57 min, but
degrades the WL by 4.41%.

Next we analyze the quality of defining subproblems be-
fore starting their concurrent processing. We measure it
based on an estimate of overflow after defining the subprob-
lems. Recall in defining subproblems we apply a 3-step ap-
proach (see Sec. 3.1): 1) initial routing using a relaxed ILP,
2) defining boundaries, and 3) detouring routes of step 1 to
distribute the net assignments. We estimate the edge over-
flow based on the routes generated in step 3, and calculate
the average and maximum edge overflows in each subprob-
lem. We report the average of each of the two quantities
over all the subproblems in columns 2 and 3 of Table 2. We
also report these two quantities, assuming detouring is not
applied (so the edge overflow is estimated only using the
routes of relaxed ILP). These are reported in columns 4 and
5. As can be seen the average and maximum overflows of
a subproblem based on the estimate of routes in step 1 and
step 3 are not very different. This means detouring does not
result in much improvement after applying the relaxed ILP.

Table 2: Estimated overflow of initial subproblems.
Benchmark step1+step2+step3 step1+step2 Flute+step2

Avg. Max. Avg. Max. Avg. Max.

adaptec1 1.29 59 1.41 70 3.56 144
adaptec2 1.13 85 1.19 94 2.50 183
adaptec3 0.72 49 0.77 52 2.71 158
adaptec4 0.27 54 0.31 59 0.97 111
adaptec5 2.17 100 2.34 118 4.77 306
newblue1 0.43 40 0.49 43 0.94 73
newblue2 0.41 79 0.45 83 0.96 131
newblue3 0.84 660 0.92 748 2.16 1119

newblue4 1.12 88 1.13 101 2.14 147
newblue5 2.15 75 2.80 89 4.94 155
newblue6 1.03 93 1.19 113 2.68 192
newblue7 7.64 252 8.33 302 13.17 574
biglue1 19.31 87 22.78 99 28.77 167
biglue2 5.83 59 6.28 62 8.61 93
biglue3 9.43 126 10.27 147 17.26 373
biglue4 7.02 71 7.95 82 11.33 221

Figure 5: Congestion map of adaptec1; after sub-
problem generation (left), final solution (right)

To better show that the relaxed ILP is helpful to define
subproblems, we also report the average and maximum over-
flow of the subproblems if 2D routes are taken from Flute,
and then subproblems are generated using step 2. These
are reported in columns 6 and 7. Now we can see that our
procedures can significantly improve overflow in initial sub-
problems before starting their concurrent processing. Fig. 5
shows the congestion map of adaptec1 before concurrent pro-
cessing of defined subproblem, and of the final solution.

5. CONCLUSIONS
A fundamental contribution of our work is to demon-

strate a global routing tool which can remove the synchro-
nization barriers between subproblems, effectively utilizing
many more processors and reducing runtimes to an accept-
able practical level. The parallel implementation highly re-
lied on integer programming techniques, resulting in much
flexibility and significant solution improvement. We believe
this can be a very promising model for utilizing cloud com-
puting or many-core platforms of near future.
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