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_Abstract—This work introduces GRIP, a global routing tech- In this work, we propose GRIP, a GR procedure that
nique via integer programming. GRIP optimizes wirelength heavily relies on integer programming techniques. Not only
and via cost directly without going through a traditional layer ;5 GR|p aple to generate solutions for large-sized instances,

assignment phase. Candidate routes spanning all the metal layers - .
are generated using a linear programming pricing phase that but the solutions found by GRIP demonstrate a considerable

formally accounts for the impact of existing candidate routes improvement in quality compared to the best solutions in the
when generating new ones. To make an integer-programming- open literature. In addition, GRIP has minimal dependency on

based approach applicable for today’s large-scale global routing the nature of the benchmark instances and robustly generates
instances, the original problem is decomposed into smaller the best solution in each case.

subproblems corresponding to rectangular subregions on the chip i ) .
together with their net assignments. Route fragments of nets that 10 erfeCt.'VeW use integer programming, GRIP decomposes
fall in adjacent subproblems are connected in a flexible manner. the large-sized problem into smaller-sized subproblems. Each

In case of overflow, GRIP applies a second-phase optimization subproblem corresponds to a rectangular subregion on the chip

that explfifcitly minimizes OVSrRﬂIOI;’V- E;)y qsinghi_ntr;ager ?rogra?wming together with its net assignments. The smaller-sized subprob-
In an effective manner, obtains Igh-qual |ty solutions. . .
Specifically, for the ISPD 2007 and 2008 benchmarks, GRIP lems are solved individually, and later the route fragments of

obtains an average improvement in wirelength and via cost of the same net in adjacent subproblems are connected. A final
9.23% and 5.24%, respectively, when compared to the best result phase can be run to reduce overflow. The above steps are based
in the open literature. on solving an integer program (IP) that aims to select one route
Index Terms—Global Rou“ng’ |nteger Programming. fOI’ eaCh net from a Set Of promISIng Candldate I’OUtES
This work makes the following contributions:

I. INTRODUCTION « An integer program for the GR problem that minimizes

Design of Integrated Circuits in nanometer regime is subject the cost of the routed nets as its objective. The cost is
to obstacles such as manufacturability, variability, yield-loss the sum of wirelength and via costs of 3-D routes, thus
and timing failures. The increase in the size of modern designs avoiding a layer assignment phase.
and the shrinking geometries of devices continue to escalate Generation of a promising set of candidate routes for each
these challenges. The severity of many of these design issues Nnet using a linear-programming-based pricing procedure.
is impacted by the routing of the interconnects. Global routing  Pricing is an iterative procedure that effectively considers
(GR) is the primary step of routing during which the net the impact of currently-generated routes when generating
regions are planned, so it has increasingly gained significance New ones via a measure that correlates with congestion.
in recent years. Higher quality GR solutions can potentially « A decomposition procedure to make integer programming
alleviate the severity of nanometer design issues. applicable to large-scale instances. The routing problem

The release of large-sized ISPD 2007 and 2008 benchmarks is divided into a set of balanced subproblems in terms
[2], [3] resulted in remarkable progress in GR procedures. of the complexity required to solve them. Consequently
Specifically, among the two categories of concurrent and the runtime of our procedure depends on the number of
sequential procedures, the latter became very popular recently subproblems, some of which can be processed in parallel.
to handle large-sized problem instances [8], [31], [23], [22], « A novel method called “floating terminals” for retaining
[26], [9]. However, an inherent downside of the sequential ~connection flexibility when solving each subproblem.
procedures is their high dependence on properties such as An integer-programming based technique for reconnect-
the ordering of the nets or the definition of empirical cost ing route fragments from the decomposed subproblems.
functions. Alternatively, some of the concurrent techniquese A final “clean-up” integer programming-based procedure
that are “optimization-centric” such as those based on integer for routing a set of designated nets to minimize overflow.

programming have typically been able to generate good soluyy simylation results, GRIP achieves an average 9.23% and
tions for moderate-sized problem instances. [7], [32], [4], [25 2495 improvement in total cost (i.e., wirelength and via
[6], [29], [17]. Procedures based on a hybrid combination @hst) for the ISPD 2007 [2] and ISPD 2008 [3] benchmarks
sequential and concurrent approaches are also proposed [LQhectively. These results are compared to the best solution
to explore the solution quality and runtime tradeoff. reported for each case from four state-of-the-art academic
An extended abstract of this paper was published by the 2009 Des@lpbal routers. The Signiﬁcant improvement is possible due to
Automation Conference (DAC'09) [30]. a combination of the concurrent nature of IP, effective pricing
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s <,D & - globa . To handle the muIti-Iaygr GR pro'blem, a 'Fwo-step approach
NS bins is usually adopted. The first step is to project all 3-D edges
global A ] il = to 2-D edges, aggregating their capacities, and to solve a 2-
bins e D GR problem. Next, a procedure called layer assignment is
L e global employed to take the solution to the 2-D assignment problem
global 4 = edges . .
edges H— [ 0 & and assign routes to the layers. Vias are used to connect these
cap.=C segments for the final 3-D solution. Minimizing the via cost
Fig. 1. The construction of grid graph for Global Routing problem. (or via count) is considered during the layer assignment phase.

The above two-step approach is adopted by the majority
The remainder of the paper is divided into eight sectionsf recent academic GR procedures [8], [23], [10], [26], [31].
In Section II, we discuss preliminaries of the GR problem. IHowever, neglecting the via cost when solving the 2-D routing
Section Ill, we discuss our IP model, and we give a proceduseoblem may lead to significant degradation in solution quality.
to approximately solve the IP in Section IV. Section MEven minor details in the strategies can significantly impact
discusses problem decomposition and integration of solutioing solution quality [20]. Recently [31] proposes via-aware
of subproblems. In Section VI, we give an IP to minimizeSteiner tree generation and “3-bend routing”, in conjunction
overflow and describe a procedure that uses this IP. A brigfth layer assignment to more effectively consider the via cost
comparison to other modern optimization-based approachksughout the GR problem. However, via cost is not directly
for global routing is given in Section VII. Computationalconsidered, thereby the solution space is not fully explored.
results are reported in Section VIII, followed by conclusions. Ideally, layer assignment could be avoided by solving the
3-D GR problem directly. Among the recent routing methods,
Il. PRELIMINARIES FGR [28] is the only one that is based on 3-D maze routing,
Global routing is a critical step of the design flow duringnd as a result demonstrates better solutions in the reported
which the routing path of each net is planned considering th@nchmarks but with higher execution runtime.
placement information. This planning later guides the detailed
routing stage that assigns wire segments to routing tracks.  1ll. AN INTEGERPROGRAM FORGLOBAL ROUTING

In a mathematical description of the GR problem, we

re given a grid-grapl = (V, E) describing the network
I%bology, a set of (multi-terminal) nets given hy =
g 1,12,...,Tn}, (with T; C V), and edge capacitias. and

ge costg. Ve € E. Denote by7 (T;) the collection ofall
Steiner trees (routes) connecting the terminalgjnand let

A. Global Routing Formulation

The GR problem can be conceptualized on a grid-gra|
G = (V, E) as depicted in Figure 1. After placement, a chi
is partitioned into rectangular regions called global bins. Ea
bin is a vertexs € V' in grid-graph. The boundary between twi

adjacent global bins is modeled as an edge E. With each the parameten,, — 1 if Steiner treet contains edge € E,

edgee € F is associated a capacity reflecting the maximum a,, = 0 otherwise. Define the binary decision variablg

. . . . 1
available routing resource between two adjacent bins. Alﬁ?at is equal tol if and only if netT, is routed with route

given as problem input to GR is a set of (multi-terminal) net; T(T\). An integer proaram for the GR problem can be
N. Each netT; is defined by a set of vertices (terminals) ir{Nritten( ;;2, ger prog P

V (T; C V). At the level of GR, we assume the terminals for N

the nets are located at the center of each global bin. The goal .

of the GR problem is to find a set of Steiner trees connecting HQIEZ Z
the terminals of each ndf;, Vi ¢ V.

When evaluating a routing solution, two metrics are typ-
ically used—wirelength and overflow. The wirelength is the Z rig+s;=1 Vi=1,...,N, 1)
sum of the lengths of the Steiner trees that route the nets te7(Tv)

N. Overflow is defined as the total amount by which routing ~

N
CitTit + Z Ms; (ILP-GR)
i=1teT (T;) i=1

demand exceeds capacity on the edges. Typically, overflowz Z aeTit <ue Ve € E, 2
should also be minimized (zero is desirable), since it directly =1 te7(T3)

corresponds to the routability of a design. Global routing is ry € {0,1} Vi=1,...,N,Vt € T(T;),
often repeatedly used in the physical design flow, so runtime si>0 Yi=1,...,N.

is an important practical consideration for a GR algorithm.
The parameter;, is the cost of route for net T; which is

B. Multi-Layer Global Routing computed as the total length of the 3-D routg,= >, ., c.,

In modern design, a chip usually contains multi-layer routvhere the notatiom > ¢ denotes that edgec E is contained
ing resources. For example, the ISPD'07 benchmarks haweoutet € 7 (T;). The equations (1) in the model enforce the
six routing layers—three horizontal layers and three verticeduting of each net. The decision variablewill be positive
layers [2]. Adjacent layers are connected by vias. In the gridnet 7; cannot be routed, and the objective function trades
graph, vias are modeled as edges with unlimited capacity. Bff the total routing length with the number of nets that are
associating higher wirelength costs to these edges, the usamded. The equations (2) in the model ensure that the given
of vias can be reduced. edge capacities are not exceeded.
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Typically M is chosen sufficiently large to ensure that albne candidate route per net. We then expdnd,) over the
nets are routed. Specifically}/ is chosen larger than theiterations of CG, while guaranteeing the added routes decrease
maximum wirelength that a route could have in an optim#he objective expression.
solution—for example, the total number of grid edges. When To describe the CG procedure, we need to first consider the
M is chosen in this way, the formulation explicitly maximizeslual (LPD-GR) of linear programming relaxation of (ILP-GR):
the number of routed nets, in addition to minimizing wire-
length. Other choices af/ are possible if wirelength is more /\<f]f\1ﬁ3§<o Z Ai + Z Tele (LPD-GR)
important than routing all of the given nets. The formulation T T ieN e€E
(ILP-GR) has a number of appealing properties.

1) The exact properties of the route, such as topology and
metal layer can be incorporated into its cogt The for-
mulation can thus directly handle the 3-D Global Routh & column generation procedure, only a small subset of
ing problem, avoiding the traditional |ayer-assignmerﬁ” possible routes is explicitly included in the LP relaxation
phase which can be a source of sub-optimality. of (ILP-GR). Let S(T;) c 7(T;) be the set of routes

2) The cost of a route can correspond to any other metgensidered for nef;. The restricted master problem for (ILP-
such as the area-capacitance of the route over multihR) considering only5(7;) is
metal layers. N N

3) The formulation does not require that the nets &e min Z Z CitTit +ZM31' (RMLP-GR)
priori broken into two-terminal segments. Breaking nets 220,520 teS(Ty) p
before doing routing can be a significant source of sub-
optimality in the r_esulting final routing [28]. We nqte ZteS(T») Ti 48 =1 Vi=1,...,N
that the final version of GRIP has some “net-breaking” ng Z s <u. VecE
to define subproblems for scalability. (See Section V). i=1 £teS(Ty) Theit = Te '

4) The slack variables; and the corresponding objectivesolying (RMLP-GR) yields a (primal) solutiofiz, 3) as well
penalty factorM/ push the optimization to generat@@a- a5 valuesA\ < M and # < 0 for the dual variables in
overflowrouting solution. The model is quite flexible, ag_pp-GR). By linear programming duality, if the valués, 7)
with minor modifications, the integer program can be s@gisfy all the dual constraints (3), thém, 3) is an optimal
to minimize the total overflow. (See Section VI). solution to the LP relaxation of (ILP-GR). If not, then the

A significant disadvantage of the formulation (ILP-GR) is itgiolated dual constraint suggests that adding the associated
size. First, for a given néf;, the number of decision variablescolumn (as a new route variable) to (RMLP-GR) may reduce
for this net is equal t¢7 (7;)|—the number of possible Steinerits objective value. The process can then repeat to further
trees connecting the terminals ). Second, the number of identify routes which can reduce the objective value. Solving
nets N and edgesf may also be very large. Neverthelesshe LP relaxation via column generation guarantees obtaining
we use (ILP-GR) as the basis of GRIP. In the subsequant optimal solution to the linear program, as if all the routes
discussion, we outline the manner in which we deal with thgere explicitly considered.

st N+ me<cyVi=1,...,NVteT(T;). (3)

e>t

issues posed by the large formulation size. To determine if the dual valueé\,#) (generated using
S(T;)) are feasible in (LPD-GR) (which includeB(T;)), we
IV. SOLUTION PROCEDURE VIAPRICE-AND-BRANCH must determine if there exists at least one raute7 (T;) with

GRIP’s procedure to obtain an approximate solution @ + > .5, 7e > cit. This is itself an optimization problem,
the above large-scale integer program (IP) consists of tkgown as thepricing problem and the pricing problem can
phases, as shown in Figure 2. Firstpdcing procedure is be decomposed into independent problems for each individual
used to generate a set of candidate routes. Sedmadgch- neti=1,..., N.
and-boundis applied to solve (ILP-GR) using only the set of Specifically, the pricing problem for néf; is
generated candidate routes. This two-phase heuristic procedure ) .
is commonly known as price-and-branch [5], [19]. min{ci; — Z”e |t T(T)}- (PRT:))

edt

A. Overview of Candidate Route Generation If the optimal solution of (PPT})) is sufficiently small € \;),

To generate a set of candidate routes for each net, GRIen the valueg\, 7r) are not dual feasible. Specifically, ket
solves a linear-programming (LP) relaxation of (ILP-GR), &€ an optimal solution to (R®;)). If
relaxation obtained by replacing the binary requirements on . “
the variablesz;; € {0,1} with the weaker constraints & Cit — Z”e <X
x4 < 1. The linear program is solved bycalumn-generation
(CG) procedure [13], [14] during which a subset of all possiblent* identifies a violated constraint (3) in (LPD-GR). The
routes (GRIP’s candidate routes) are identified. current solution to (RMLP-GR) can thus be improved by

In column generation, we start by replacifg(7;) (the updating7(S;) to includet* as a new column (candidate
set of all possible routes of net i) in the relaxed version wbute).

(ILP-GR) by the setS(T;) C 7 (T3), initially containing only Next we describe the steps of the iterative CG procedure:

(4)

edt
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procedure helps to iteratively disperse the initial nets from
; ‘ : lower layers to upper layers and from congested areas to less
[ ] congested ones. As a result, it is unnecessary to utilize layer

step 1: solve (RMLP—-GR) using candidate routes A - L.
to get dual values for (LPD-GR) assignment to manipulate the initial 2-D routes.
y : To summarize, the strengths of the pricing procedure are
[ step 2: solve the pricing problem for each net } the foIIowing:

1 « When generating new candidate routes at each iteration
step 3: ; of the CG procedure, the impact of candidate routes

have new route?

yes (add to candidate routes)

; ' of previous iterations are effectively taken into account.
B TR e RN " This is done by resolving (RMLP-GR), incorporating

ass candidate routes) . .. .
N T — the impact of all existing routes to get a new fractional

E'Branch Approximately solve (ILP-GR) only using the candidate routes\g solution, and new dual values.
------------------------------------------------------------------- « Within each iteration, solving the pricing procedure effec-
Fig. 2. Overview of Price-and-Branch for GR. tively identifies new candidate routes since the objective
of (RMLP-GR) is always improved. Moreover, based on
0. For eachi = 1,..., N, initialize S(T}) with exactly one the dual values, a measure that correlates with the current
route. (For netl; GRIP uses the route generated by the ~ congestion is also incorporated in selecting the nets to
package Flute [11].) price. (see Section IV-C).
1. Solve (RMLP-GR), yielding a primal solutioft, §) and The computational experience with the CG procedure in
dual values(\, 7). GRIP was that the objective value of (RMLP-GR) was quickly

2. Foreach=1...., N, use the dual solutiohi,fr) to setup improved in the first iterations, but the rate of improvement
the pricing problem (P@3;)). Solve (PRT;)) to obtain a decreased significantly in the later iterations. This “tailing
route t*. If cipe — > 5, e < i, thenS(T;) = S(T;) U off” phenomenon is very common to the CG procedure [14].
{t*} The improving routes at later iterations of the algorithm

3. If animproving route for some n&% was found in step 2, almost always come from nets outside highly congested areas.
return to step 1 to further identify new routes. Otherwisdsurther, the wirelengths of the improving routes are almost
stop—the solution(z, §) is an optimal solution to the LP identical to trees currently available for routing. In these
relaxation of (ILP-GR) cases, adding the routes to (RMLP-GR) makes little or no

(iﬂ]provement to the objective value. A significant portion of

each netT, is generated by Flute. When using Flute Wéhe runtime of the CG procedure can be spent on iterations that

randomly select one of attainable routes from the generaﬂ?&oroye thg ott)Jectlvec;/aIulet'of (tRMLF;g:TD)ton!y rlrllar?mallilh
Steiner points for each net. These routes are very close tlaus, In order to speed solution tme, ypiealy stops the

minimum Steiner trees for the nets. The total of their wir _rocedur_e once the solution value has tailed off. $pecifically,
inimu ! rw é?‘ the objective value of (RMLP-GR) has made little or no

length is likely to give a lower bound on the total wirelength . R
eng kel 10 g 9 anrovement (less than 10 wirelength units) in the last 20
|£e’?rations, the CG procedure is terminated.

these routes are initially 2-D routes that only use the lowe Next di the details of step 2 of the CG d
horizontal and vertical layers and would result in significant ext, we discuss the details of step < of the procedure.

overflow if all used in combination.

_After step 1, in a primal solutioni( s) with dual values B. Solving the Pricing Problem for One Net

(A, 7), netsT; € N that are not able to be routed completely In the pricing phase (step 2) of the CG procedure, GRIP
with existing Steiner trees in the s8(T;) will have 5; > 0 solves (PFT;)) for each net. We rewrite the objective expres-
and (by t_he complementary sl_ackness condlt!on of I!nearon of (PRT})) @Scit — > oor (1) Te = Doenr(zy)(Ce — Te),
programming)\; = M. Also by linear programming duality wherec, is the cost associated with edgée.g.,c. = 1 when
theory, the dual variabler. is the rate of change of theconsidering wirelength and via count).

optimal objective value of (RMLP-GR) per unit change in To minimize the above objective for n&}, GRIP considers
ue, the capacity of edge. It gives a (local) measure of howa weighted graph with edge weights = ¢, —#.. Minimizing
much the objective function (wirelength) would improve if onghe objective of (PPT;)) requires finding the smallest-weight
more unit of capacity was available for edgeWe use this Steiner trees on this weighted graph. Finding a minimum-
information to systematically identify new columns which caweight Steiner tree is in general NP-Hard [16], so GRIP adopts
reduce the objective value (routes that pass the conditionan(heuristic) approach for finding columns that reduce the
step 2) as we explain in the Section IV-B. objective value of (RMLP-GR) based on local search.

By observing the condition (4), the CG procedure will Within the pricing problem, condition (4) should be evalu-
naturally seek to find routes for ne§ with large \;, routing ated in step 3 of the CG procedure. Given a dual solution
them with edges that have. as close to zero as possible(ﬁ\,fr), the reduced costof route ¢ of net T; is ¢; =
Ideally the routes would use edges with= 0, which implies c;; — > 5, e — \:i. The pricing problem can be viewed as
(again by complementary slackness) that the edge is not beingrocedure for identifying a Steiner trédor netT; whose
used to capacity. In this way, one can imagine that the GQ@duced costc;; < 0. By the complementary slackness

Figure 2 illustrates these steps. First, one initial route f



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. , NO. 5

vl g , )
t, bl ° t, ty

1.0 0.0 0.0 0.0

1.0
~
1
0.0
~
~
<
1.0

1.0 1.0 gal.o 1.0 1.0 0.0 0.0 0.0 0.0 0.0
£y >
-

99.0

10
1.0
99.0

r
99

99.0
10
1.0
99.0

10 | 10 Uyl 10

L
1.0
1.0

U, | 10

@ (b) © (d)

Fig. 4. Procedure to identify new candidate routes with reduced cost via rerouting segments of an existing route.

Figure 4 demonstrates how new routes are constructed by
Y rerouting a two-terminali-v segment. In the figure, the cost
uy and capacity of each edge is 1, and there are two initial
Fig. 3. Improving routes via shortest path algorithm on a weighted grid-grap@Utest, and¢, for netsT, andT;, respectively. After solving
(RMLP-GR), GRIP sets the edge weights#Q = ¢, — 7.

condition of linear programming, for any optimal SolutionThese edge values are shown in 4(a). Note that the two edges

(,4) to (RMLP-GR) and corresponding dual valués #) with overflow have large negative dual valueg. (<< 0),
thé reduced cost, — 0 if 4y > 0 " resulting in large positive edge weights. Based on these edge

, . . weights, the cost of routelg andt, are 205.
GRIP.S local improvement procedu_re fo_r solving (B) . Assume that nef, is selected for pricing first. As shown
uses this fact as well as the following simple observatio

. . th Figure 4(a), tree, can be decomposed into three segments,
leep aroute € ‘S(Ti)’ I?t Vi(t) be the §et ot vertices of .the each including a terminal. The total edge weight is maximum
termmal; and Stem/er points inlf the Var'abl.ex” >0, and if in the segment that includes the two edges with large weights,
there exists a pai_:ﬁ’ that/ cor_mects two verhce_(a, v? < V(t) so GRIP starts by rerouting this segment, using the remaining
such that th? weight oP” (with respect to We.'ghtﬂ’) IS I_ess ones for the base Steiner tree. To reroute the segment, it is
than the weight of the pati® from u to v using e_dges M, removed fromt,, and the edge weights of the remaining edges
the reduced cost of tre€é = ¢t U P’ \ P is negative. Thus,

. . . on the base Steiner tree are set to zero, as shown in Figure
adding the variable corresponding to routeo (RMLP-GR) 4(b). Thus, GRIP considers the base tree as a backbone when
may reduce its objective value. Figure 3 shows inserting su '

. . onnecting:, andw, using Dijkstra’s algorithm.

au-v path into a base Steiner tree. After reconnecting, an improved routé, avoiding the

To approximately solve (RR;)) for a netT;, GRIP starts pighly-weighted edges, is identified with cost 10. In a similar
with the treet € S(T;) with largest value ofz;;. Using edge fashion, GRIP considers n@t, and reroutes the segmeny-
weightsw, = c. — 7., a single-source shortest path problem is, as shown in Figure 4(c). The new segmeptfor net T,
solved for someu-v paths, whergu,v) € V(t;). If the new has a new cost of 9 units. The reduced costs for these routes
u-v path has smaller length than the existing path, a roujgez,,, = 10 — A, andc,, = 9 — A\, respectively. If these
with negative reduced cost has been identified. To identifgduced costs are smaller than zero, (indicating the identified
sources and sinks for the shortest path problems, the selegiqgtes to violate the constraint (3) in (LPD-GR)), then these
routet is decomposed into a set of two-terminal segments routes are added to (RMLP-GR) as new candidate routes.
by breaking it at the Steiner points of The segments are  An interesting feature of this pricing algorithm is that the
considered in descending order of their weidhl ., w@.. new routes can use different Steiner points than the original
When considering segmen},, the remaining segments of gnes. In this example,, andt, are generated independently
are considered as a “base Steiner tree”, and an alternative rgiftehe same major iteration of column generation, with costs
of the segment;; must be found to connect to this basecoming from the same dual variables. GRIP will add both
Zeroing the weights for all tree edges which are not on thg these generated columns to the master LP (RMLP-GR),

segment . = 0 Ve > ¢\ r;;) and running Dijkstra’s single- and later let IP decide how to utilize these routes in the most
source shortest path algorithm connects the the segmettt  effective manner possible.

the base net in a minimum cost fashion [27].

Dijkstra’s algorithm [15] generates an entire tree of shorteSt Selecting Nets to Price
path weights, thus possibly identifyingany routes for one  For large instances of (ILP-GR), the CG procedure can be
net that would reduce the objective value of (RMLP-GR). Agignificantly accelerated by only solving the pricing problem
each iteration of column generation, GRIP identifies a subgeR(T;)) for a subset of all the nets. To select the riEte A
of these routes by uniformly sampling from all identified net$pr which (PRT;)) is solved, GRIP takes advantage of infor-
and adds them as new columns. Specifically, at most 40 routeation provided by the solution of (RMLP-GR). Specifically,
per net per CG iteration will be added for the nets inside tlie §; > 0, then netT; is not completely routed using the
congested area, and at most 16 routes per net per CG iteragisting routes inS(7;), so it is necessary to find routes for
are added for nets outside the congested area. (See Sedtigtril; using the pricing procedure. GRIP first prices all the
IV-C for how we define congested area.) nets in descending order éf (> 0).
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To decide whether or not to price the remaining nets with

$; = 0, GRIP considers measures of congestion in the current A : floating terminals
LP solution to (RMLP-GR). In the first measure, congested
edges are the edgesthat have the most negative value of
7. The intuition is that the dual valué. gives a (local) ]
measure of how much the objective function (wirelength) (b) auxf,iay
would improve if one more unit of capacity was available ] * _ hode
for edgee. In this sense, the edge weights have a positive _T T 3

}\T N

»

correlation with congestion. i
The second measure identifies a congested edge by letting @ ]\] I\I

ri € argmaxyes(r;) L+ be a route for nef; with the largest

solution value in (RMLP-GR). The valug. = Zf\il Ar;e IS ©

the number of units of capacity on edgehat would be used gy 5
if the routesr; were used for each néf, € M. If (. — u.)
is large, there is highly congested. As demonstrated in Section 1V, the price-and-branch pro-
GRIP defines a bounding box (of 3x3 units of grid edgesgdure has potential to find high-quality solutions, but needs
around an identified-congested edgeAll nets that contain to be accelerated. In this section, we discuss ideas for de-
a terminal inside the bounding box are repriced. GRIP firgépmposing the integer program (ILP-GR) into smaller ones
reprices nets that are identified by the first congestion measubgt correspond to non-overlapping rectangular areas on the
followed by repricing nets found by the second measure. chip, together with their net assignments. For example, if all
the terminals of a net fall within a rectangle, then the net is
D. Branch and Bound assigned to that subproblem and is bound to be routed inside
Once the CG procedure for the solution of the LP relaxatiahe rectangle. We first discuss how GRIP’s IP-based procedure
of (ILP-GR) is complete, either because no improving routés applicable to solve one subproblem. We then discuss the
were found in the pricing phase, or because tailing off wagocedures to define subproblems and integrate their solutions.
detected, a promising candidate subset of roég;) C
T(T;) has been identified for each n&t. Using only these A. Solving One Subproblem
route variables, the integer program (ILP-GR) is formulated A subproblem is characterized by a rectangle on the chip
and solved by a black-box commercial integer programmingferred to as a subregion, together with a set of nets that must
package. The solution returned by the solver is a feasilje routed within that subregion. For some nets, all terminals
solution to the problem. will lie within the subregion, but for longer nets, additional
The proposed approach, based on the direct solution (ef all) of their terminals might be outside the subregion.
(ILP-GR), has significant promise to improve the solutioNets whose terminals do not all fall within the subregion are
quality of existing GRs. For example, using this approach, weferred to as inter-region nets. Inter-region nets are partially
solved the small 2D IBMO1 circuit of the ISPD1998 suite [1}outed by each subproblem, and subsequently their segments
and were able to improve the wirelength by approximately 5% different subregions are connected.
compared to the best solution found by FGR [28], without any To be applicable in a decomposition-based procedure, GRIP
overflows. However, the runtime to achieve this high-qualitpust handle the case when a subproblem includes both within-
solution for such a relatively-small instance was prohibitivelsegion and inter-region nets. GRIP’s procedure works as
long—a few hours. Thus, in the following section, we discugsllows. Each subproblem defines a new grid-gréptl’’, E')
mechanisms for decomposing the full global routing (ILP-GRind set of nets\V’ ¢ N. The setA” is composed of two
problem into smaller instances and procedures for combinigypes of nets: the within-region nets that have all terminals
the solutions in order to generate high-quality solutions i@side the subregiofiZ; C V'), and the inter-region nets that
large-scale GR instances. The decomposition procedure chfve at least one terminal outside the subrediBnZ V7).

Modifying grid-graph of a subregion to handle floating terminals.

siderably accelerates the overall runtime. Figure 5(a) shows the latter type of these nets. The net in the
figure belongs to three different subregions. The neighboring
V. DECOMPOSITION FORSCALABILITY boundaries of these subregions are shown in bold. The routing

Many existing global routing algorithms define reasonablyroblem for the bottom-left subregion views this net to have
sized subproblems and create a full solution from the solutioase fixed and two “floating” terminals. Each floating terminal
to these subproblems. For example, to achieve a good runtimepresents a portion of a subregion boundary through which
BoxRouter [10] starts by solving an IP over a small rectangultiie net will connect to another subregion.
box on the chip and progressively increases the size of thelo route inter-region nets in a subproblem, GRIP represents
box to generate new IPs, fixing the solution to the previowach floating terminal using an auxiliary node that is added to
IP. However, this solution fixing when increasing the box sizthe set of noded’’ in the grid-graph. Edges connecting the
may lead to a degradation in solution quality. The work [32jodes that are on the subregion boundary to their correspond-
proposes a hierarchical IP approach that first solves a smallihg auxiliary node are added to the g6t. The added edges
to plan the routing of the longest nets. However, the impalsave infinite capacity and zero cost in the definition of the
of the shorter nets is neglected. integer program (ILP-GR). Figure 5(b) illustrates the addition
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T T both of which pass through subregioh Net 77 does not
A}t\\ T gi\ T have any terminals inside subregich If A is congested, it
—— 1 - ,L—- is better to detoufl; from A, as shown in Figure 6(right),

i reserving the routing resources for nets thaistbe routed

into the subregion.

1 1 To improve the net assignments to the subregions, GRIP

relies on the fact that subproblems are solved in a congestion-

rrgased ordering, described with more details in Section V-C.
efore solving a subproblem, GRIP detours as many nets as

possible that “pass” through the corresponding subregion (i.e.,

of auxiliary nodes and edges. After applying this simplgo not have a terminal in it). The remaining (undetoured)

construction, the integer program (ILP-GR) is well-defined!®t inside the subregion are the ones assigned to it and

and can be solved by the procedure outlined in Section IV.the corresponding subproblem is then solved. The procedure

The example of Figure 5(b) is for 2-D routing, but in thd ;
general 3-D case, each boundary of a subregion is a plan 0 detour routes out of a subregion, a shortest path algo-

and the graph’ extends to the third dimension, as ShOW[[IIt m is used. For a net that does not have any terminals

in Figure 5(c). The nodes on this vertical boundary plane a{%the current subregion, we |dent|f3_/ the segment (using its
connected to their corresponding auxiliary node. ute route) that passes the subregion, and consequently the

two terminals that are connected using this segment. The two
) terminals are reconnected via a new segment back to its tree
B. Forming the Subproblems backbone using the same shortest path procedure explained
The challenge of decomposing the problem into subproipr the Section IV-B (see Figure 6). The weights on the grid
lems is best understood by means of our initial computatiorgidaph for the shortest path problem are set as follows. Since
experience. Our first decomposition approach was to defingha net should be detoured outside the subregion, weights of
uniform grid of subregions consisting of the same area. Naifl grid-edges inside the subregion are set to infinity. For the
assignment to the subregions was based on their routing reynaining edges, if an edge is used to capacity by the existing
Flute. This natural but naive decomposition approach result@lute and detoured Flute) routes, the weight is set to a large
in the IPs corresponding to the congested subregions takjngsitive number (=100). The remaining edges have a weight
significantly longer to be solved by our procedure (e.g., houo$ 1. The detouring procedure in GRIP has the benefit that it
for congested subregion and minutes for the less congesiedlynamic, continually updating edge weights for rerouting,
ones). Thus, an important objective of the subproblem defvery time a new subregion is processed.
inition is to achievebalance resulting in “equally-difficult” This strategy of creating the subproblems may result in
problems that take approximately the same time to solve. congested regions getting divided, which may result in break-
GRIP's procedure for defining subproblems begins by roufig many nets. An advantage of breaking nets in this way
ing all nets using the 2-D Steiner route generated by Fluie. that it allows more routing resources into each subre-
For each grid edge of the 2-D problem, a utilization factor is gion, as the regions are typically composed of small, highly-
defined as the ratio of the number of (Flute) routes that crossngested areas and less-congested areas. In addition, before
edgee to its (projected) capacity... The utilization factor solving a subproblem, GRIP detours as many nets as possible
plays an important role in defining the subregion boundariggto unprocessed subproblems (which are less congested) to
Next, GRIP applies a recursive bi-partitioning strategyurther release routing resources. Moreover, the detrimental
trying to balance an average edge utilization factor (AEU) faffects of net breaking are mitigated by the flexible, IP-based
each region. At each step, one rectangular partition is dividatechanism for attaching pseudo-terminals, described further
into two new rectangles where the AEU is balanced betwegnSection V-C.
the two. The AEU for a partition is defined as the average of
the utilization factors of the grid edges in the correspondin
rectangle. Moreover, to decide between a vertical or horizontal
partitioning, GRIP chooses the one that results in the smallerThus far, we have explained how the subregions are formed
aspect ratio of the generated rectangles. The recursive dnid how the net assignments are made to define subproblems.
partitioning stops when any of the sides of the current partitiddRIP solves the subproblems in a rather sequential order
reaches 32 units of the routing grid, a size empirically set with limited parallel processing. After all the subproblems are
generate an IP that can be typically solved by the procedwaved, a final phase connects the route segments that pass
outlined in Section IV in an acceptable runtime. This partitioneighboring subregions. Both of these phases are explained in
will then be taken as a subregion. Figure 6(left) shows a cHipis section.
that has been divided into subregions by the procedure. GRIP first orders the subproblems based on the total edge
Once the subregions are created, the net assignments svgrflow (TEO) inside their subregions. The TEO is total
gested by Flute are further improved by considering themount of overflow that would occur in the subregion if the
congestion of the subregion. Figure 6(left) illustrates this poirdssigned Steiner routes (the Flute and detoured Flute routes
The two netsI; and7T5 are routed using their Steiner routesgescribed in Section V-B) were used. Subregions are sorted in

Fig. 6. Defining subproblems using initial Flute-based net planning (le
Improving net assignment to the subregions via detouring (right).

epeats before solving the subsequent subproblem.

Patching the Solutions of Subproblems
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X : first Steiner point

a list in decreasing order of their TEOs and processed in that ' _
@ : fixed terminal

order. Every time a subregion is processed, the floating termi- .
nal(s) for a nefl; are fixed at a boundary(s) of that subregion, AL l__)L
as shown in Figure 7. Thus, the né} is partially routed, $--
and subsequent, neighboring, subproblems must respect this
partial routing by assuming the imposed boundary-terminal is
fixed. This isnot, however, the final connection for the net.
After all subregions are routed, a IP-based post-processing step Subregion 1 Subregion 2
(subsequently described in this section) is applied that unfixes
pseudoterminal locations and reconnects route segments. Fig. 7. Connecting route-segments in adjacent subproblems.

GRIP processes the subregions in parallel by making a
number of passes through the subregion list, ordered by TE@.a manner that ensures that neighboring subproblems in
At each pass, it processes few of the unrouted subregiogs. quadrants will be able to be effectively connected. It is
Specifically, it processes an unrouted subregion in a pass if tRthortant to reiterate that when generating candidate routes
subregion is not physically adjacent to any other subregiofs the reconnection phase, the s&t7}) is augmented, so
being processed on that pass. As previously mentioned, ofggt routes may contain different pseudo-terminal locations

the subregions in a pass are processed, their pseudotermjifahe boundaries compared to the initial locations when the
locations are temporarily fixed. GRIP iterates over the suBubproblems were solved.

region list until all subregions are routed. We subsequently
refer to the number of passes through the subregion list as the V]. HANDLING OVERFLOW

number of stepsf the GRIP algorithm. Aft ing th borobl \uti GRIP |
After solving all the subproblems, they need to get con- er connecting the subproblem solutions, evaluates

nected to each other. Specifically if an inter-region net spaﬁ\gnz net f's Ie;t unrboutﬁd. In case ﬁ" the_ ne_zts v¥ere routec(ij,
multiple subregions, its segments in different subregio ich we found to be the case In the majority of our teste

should be connected to each other. This connection is via lRp_nghm:;rks, GRIP te_rmlnates% Ifhnets were Igft un;(_)cL;ted, then
lizing the grid edges between the boundaries of the subregio ting those nets using any of the generated candidate routes

as shown in Figure 5(a). Note, by reserving the edges betwdd inFroduce .overflow (the corrt.esponding.slack variable in
adjacent subregions to be used only during the connecti'cziﬂuat'on (1) is 1). In this section, we discuss an IP and

phase, GRIP in effect uses a non-greedy strategy to faiﬁ?ecifics of price-and-branch procedure to reduce overflow
allocat,e the routing resources between them of a given solution. We then discuss how GRIP applies this

Before attempting to connect the subregions to each oth%li,?cedure to selected areas on the chip.
GRIP further releases some routing resources inside each sabinteger Program for Overflow Reduction
region by unrouting branches of some route fragments which . o )
connect to the subregion boundaries. These branches will ge(f;RIP uses the following IP to minimize overflow:
rerouted during the connection phase. This strategy allows min Z M.o, (ILP-OV)
obtaining a higher quality solution when connecting route % VeeE
fragments in different subregions to each other. Specifically,
for each inter-region net which spans multiple subregions, Z Tig=1 Vi=1,...,N, (5)
GRIP fixes a “backbone” for each of its route fragments inside teT(Ty)
each of its subregions. To create the backbone, GRIP removesn~y
the branch of the route fragment that connects the boundaryz Z teTit < Ue + 0. Ve € E, (6)
terminal to the first Steiner point of that tree in the subregion. =1 te7(1})

(See Figure 7). After identifying the backbones, an inter-region z€{0,1} Vi=1,...,N,Vt e T(T}),
net will end up with a set of backbones that are not connected
. L . ; 0. >0 Vee L.
to the boundaries and fall inside a set of adjacent subregions
which need to be connected to each other. Compared to (ILP-GR), the slack variahigis removed from

Once these connecting segments are removed, routing ttee net constraint (1), but a new slack variableis added to
sources are freed. GRIP then uses the same IP-based proceithgreedge capacity constraints (6). The slack variablevill
to connect the route segments in adjacent subproblems. GR&positive if edge: contains overflow, and the objective is to
connects these segments using the formulation (ILP-GR), firsinimize the overflow over all edges. In (ILP-OV)/{. is a
fixing all routes of within-region nets and backbones of theonstant weight that can be set to a different value for each
inter-region nets. In the IP, the nets to be routed are tvemlge. For example, in the cadé. = 1 Ve, the objective is to
terminal nets crossing the inter-region boundary, each termimainimize the total overflow.
being a Steiner point of the backbone in the region. By settingGRIP setsM, by considering the overflow produced by
the edge weightv. = 0 for all edges in the backbone, therouting the nets which were left unrouted by the original IP-
IP effectively connects the two sub-nets aty location on based procedure. To route an unrouted net, GRIP selects from
the backbones. When connecting two neighboring subregiotiee candidate routes for that net, the route that would lead to
remaining (unfixed) capacity is allocated to the subprobleminimum additional overflow. If edge contains overflow in

0.0 0.0

0.0

=
5}

0.0

0.0

=1
o

0.0 0.0
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this complete solution, then?, is set equal to the amount of
overflow. If it does not contain overflowd/, is set equal to 1. A "
Assigning higheM/,, will result in removing the overflow from - A
these edges, but may transfer the overflow to the other edges. A
Consequently, the end result in terms of total units of overflow L -
may not differ. In our computational experience, setting 1 B
as described above and settihfy = 1,Ve € E both result in
roughly the same amount of final overflow reduction. = : edge with max overflow
A : fixed termina
B. Solution Procedure via Price-and-Branch Fig. 8. Defining few subregions around the edges with overflow.

Similar to IP-based procedure of Section IV, GRIP utilizes
column generation to solve the LP relaxation of (ILP- OV)g”d edges in descending order of their overflow values in

The dual of the LP relaxation of (ILP-OV) is a complete solution. GRIP defines a rectangular subregion
of 40x40 grid edges centered at each overflow edge. If an

maxZA,»JrZweue (LPD-OV) overflow edge is already included in a previously-defined

i€EN e€E subregion, a new subregion will not be defined. Moreover, if

N+, me <0 Vi=1,... NYteT(T), dgflnmg the_ subreglor_w for an overflown edge results m_overlgp

M. <7 <0 Vee E, with a previously defined subregion, the new subregion will

be shifted until the overlap is removed.

All the routes inside a subregion will be rerouted using
GRIP starts with a small subset of routes and solves th& |P-based procedure for overflow reduction. If a net has
restricted master problem for (ILP-OV): terminals outside the subregion, fixed-terminal location(s) will

A fre_e.

min Z M.o, (RMLP-OV) be defined on the subregion boundary, based on its route
£>0,0>0 generated from the previous steps. The fixed terminal locations
Vee . . .
are honored when solving the subproblem. Figure 8 illustrates
Ztesm)xit =1 Vi=1,...,N, this point. This process also ensures that the segments of
Y Yies(r,) Getit < e + 0, Ve € E. rerouted nets in congested subregions will remain connected.

Please note that our overflow reduction procedure is par-
At the first iteration,S(7;) only contains one route per net—ticularly calibrated as a post-processing step when a global
the route used to obtain the complete solution. GRIP solvesuting solution of low wirelength and overflow has already
(RMLP-OV) to obtain the dual values and#. The pricing been generated. At this stage, we can define much larger
problem is solved to identify a new route that violates subregions which we found necessary to effectively reduce
the first constraint of (LPD-OV) (i.e; + Y ecr Tets > 0), overflow when solving (ILP-OV).
indicating the objective of (RMLP-OV) may be improved if GRIP does not include any additional steps, such as post-

t* is added toS(T;). processing, besides the ones mentioned thus far.
When solving the pricing problem to identify a negative

reduced cost route for each net, the edge weight= —#,
is used. Note thatt. < 0, so w. > 0, and Dijkstra’s
single-source shortest path algorithm can be used to identifyA number of other authors have proposed optimization-
promising routes, exactly as in the procedure described based methods for global routing, and the purpose of this
Section IV-B. Just as in the GRIP for solving (ILP-GR), th&ection is to attempt to place our work in context of these
linear program solution process is terminated when tailing gftevious contributions.

is detected. The resulting routes are given to a branch-andAn early description of applying a pricing procedure to

VIl. COMPARISON TOOPTIMIZATION-BASED METHODS

bound solver to find an integer solution to (ILP-OV). solve the global routing problem is given by [18]. This work is
o ) perhaps the most similar to the GRIP algorithm, in that it relies
C. Defining Subproblems for Overflow Reduction on column generation, on defining subregions, and on pasting

After integrating the subproblem solutions, overflow was ngartial solutions together. In their work, there is no mention
observed in the majority of the tested benchmarks. Only fof solving the IP, only its LP relaxation, and computational
three benchmarks in the ISPDO08 suite was overflow observeesults are not reported.

Further, overflow was typically confined to a very few “hot The works [4] and [29] both focus on developing fast
spots”. GRIP exploits this observation to define small-sizeddgorithms for approximately solving the (full) LP relaxation
subregions with their net assignments on which to appbf the global routing problem. In these approaches, the ac-
the IP-based procedure for overflow reduction, described timal, primal, integer-valued, routing solution is done by a
Section VI-A. The routes on the other portions of the chipandomized rounding procedure. This is quite different from
remain intact. GRIP. GRIP is based on a price-and-branch approach for

GRIP defines the subregions on which to reduce overflow approximately solving the integer program. So both procedures
a sequential order but solves the corresponding subproblemfisolving the LP relaxation (pricing), and obtaining an integer
in parallel. To define the subregions, GRIP traverses thelution (branching) are different.
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TABLE | . . . .
ISPD 2007, ISPD 2008 BNCHMARKS given in the cglumn TOV, and the tqtal wirelength (WL) is
[Benchmark| # Nets | Grid | # Layers | Vicap | H.cap | broken down into both edge and via costs. GRIP is com-
adaptecl | 176715 | 324x324 6 70 70 pared to four recent academic global routers: FGR 1.1 [28],
adaptec2 207972 | 424x424 6 80 80 _
adaptec3 | 368494 | 774x779 6 62 62 FastRoute 4.0 [31], NTHU-Route 2.0 [8], and BoxRouter 2.0
adaptec4 401060 | 774x779 6 62 62 [10]. For each router, we report the percentage improvement
adaptec5 548073 | 465x468 6 110 110 ; :
newbliel | 270713 | 399x399 6 62 62 in wwelgngt.h foupd by GRIP, as well as the total overflow.
newblue2 | 373790 | 557x463 6 110 | 110 Considering wirelength, GRIP consistently generates the
newblue4 | 636195 | 455x458 6 84 84 best result for each benchmark, typically significantly improv-
newblue5 1257555 | 637x640 6 88 88 . . . .
newblue6 | 1286452 | 463x464 6 132 | 132 ing the best known result. The improvement is larger in ISPD
newblue7 | 2635625 | 488x490 8 212 | 212 2007 benchmarks since the via cost is 3 for these benchmarks,
bigbluel 282974 | 227x227 6 110 | 110 heref he benefits of iding | . q
bigblue2 576816 | 468x471 6 52 52 and therefore the benefits of avoiding layer assignment an
bigblue3 | 1122340 | 555x557 8 148 | 148 directly generating 3-D routes are more significant. If the same
bighlue4 | 2228903 | 403x405 8 202 | 202

GRIP solutions for the ISPD 2007 benchmarks (for via cost

The paper [25] is a similar approach to that of [4] and [29bf 3) are evaluated assuming via cost is 1, still a wirelength
but designs an algorithm that can specifically accounts for thiprovement of on average 5.25% is obtained.
effects of wire spacing during yield optimization. GRIP generates solutions with no overflow for the ma-

The work [19] is a full branch-and-price procedure thgbrity of the benchmarks, so the overflow reduction proce-
mathematically shares many commonalities with GRIP. Howure of Section VI need not be applied. For four ISPD
ever, the work [19] is designed specifically for the switchbox008 benchmarksiewblue3 , newblue4 , newblue7 , and
routing problem, and the instance sizes are small enoughtigblue4 |, the overflow found by GRIP (before applying the
that region-based decomposition, done in GRIP, is not needggerflow step) is reported in column 10. The corresponding

Similar to (ILP-GR), the paper [6] also suggests IP formulayverflow and wirelength numbers after applying the overflow
tions for the global routing problem. To solve the formulationgeduction procedures is reported in the last two columns of
in [6], column generation is not employed, but rather a set ghple I1, as well as the number of subproblems solved for over-
possible routes for each net is iteratively constructed durifigw reduction. GRIP generates the best known overflow for
a congestion estimation phase. Generating rodtesg the the newblue4 andnewblue7 , and quite comparable over-
LP solution process, as done in GRIP, has the significafdw for bigblue4 , while maintaining the wirelength im-
advantage of exploiting the dual information to suggest gogflovement. Fonewblue3 which is an artificially-generated
routes. The work [6] additionally considers a number djenchmark, GRIP ends up obtaining significant wirelength
different objectives besides wirelength or overflow. The papphprovement but the total overflow still remains higher than
[32] builds on the work of [6], by describing different “heirar-other methods even after the OV step os applied. For the three
chical” approaches, where the routing problems are solvBenchmarks rewblue4 , newblue7 , and bigblue3 ) the
either “top-down” or “bottom-up.” Computational results arerage degradation in wirelength compared to GRIP without
given for chips with up to around 25,000 cells and nets.  its overflow step is about 0.11%.

BoxRouter [10] uses IP formulations as a fundamental As described in Section IV-B, when generating candidate
component of their algorithm. These IP formulations a6¢ routes, at most 40 routes per net, per iteration of column
Steiner-tree packing formulations like (ILP-GR). A fundamenyeneration are selected. The total number of routes generated
tal idea behind BoxRouter is that pfogressive IPwhere the for a net may be higher than this number. Tal@vblue?7
IP formulation is solved first for a subregion, and pOI’tiOﬂéS an examp|e_ For the first (most Congested) Subprob|em,
of this solution are fixed before proceeding to other regiongp iterations of column generation were required. In this
This is quite a different approach than GRIP’s area-basggdbproblem, there was one net for which 2292 candidate routes

decomposition and patching. were generated (about 38.2 per iteration). This net was long,
spanned significantly over the congested subproblem, and had
VIIl. SIMULATION RESULTS many terminals. For the same subproblem, there were some

GRIP was implemented using C++. For solving individudvo-terminal nets for which only 2 candidate routes were

LPs and IPs, MOSEK 5.0 [24] and CPLEX 6.5 [12] were usegenerated. On average, 24.67 candidate routes per net were
respectively. In our simulations we set parametérequal to 9€nerated for the first subproblem mewblue7 .
20,000 in formulation (ILP-GR) since we empirically knew GRIP was run on a heterogenous grid of CPUs of 2GB
that the wirelength of an individual route is smaller than thifl€mory. shared by many users, and controlied by the Condor
number. We report results on the ISPD 2007 [2] and 20@Eid computing toolkit [21]. Condor is a resource management
benchmarks [3]. Table | reports the total number of routexpftware that allows for the creation of shared computational
nets and the grid size for each benchmark. Column 4 sho@4ds from the idle cycles of workstations. Table IIl reports

the number of metal layers. The last two columns report i€ run time information, not including the overflow step.
projected edge capacities for vertical and horizontal layers.]h€ number of subproblems created by the decomposition

Table Il reports on the performance of GRIP on the bencRrocedure for each benchmark is given in the second column.

mark instances For each benchmark, the total overflow is AS described in Section V-C, GRIP uses a congestion-based
ordering to process and solve the subproblems in parallel.

1Benchmark solutions can be downloaded at http://wiscad.ece.wisc.edu@@lumn 5 in Table Il gives the number of passes through
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TABLE I
RESULTS FORISPD 2007AND ISPD 2008BENCHMARKS. THE WIRELENGTH (WL) IS SCALED TO10°.

Benchmark FGR1.1 FastRoute4.0 NTHU-Route2.0 BoxRouter2.0 GRIP (without OV step) GRIP (with OV step)

TOV | WL(%) | TOV | WL(%) | TOV | WL(%) | TOV | WL(%) | TOV | WL | Edge | Via TOV | WL | #sp
adaptecl (07) 0 8.42% 0 10.99% 0 8.79% 0 11.99 0 81.0 36.5 44.5 - - -
adaptec2 (07) 0 8.33% 0 10.01% 0 9.33% 0 12.60 0 824 | 337 | 487 - - -
adaptec3 (07) 0 7.14% 0 9.39% 0 7.69% 0 10.61 0 1854 | 97.5 87.9 - - -
adaptec4 (07) 0 3.94% 0 7.84% 0 7.36% 0 7.57% 0 1723 | 915 80.8 - - -
adaptec5 (07) 0 8.11% 0 11.73% 0 8.18% 0 11.65 0 238.9 | 104.8 | 134.1 - - -
newbluel (07) 526 10.99% 0 8.51% 0 7.76% 400 9.73% 0 83.9 | 249 | 59.0 - - -
newblue2 (07) 6.18% 0 10.49% 0 9.83% 9.83% 0 121.4 | 48.0 | 734 -

0 0 . - -
newblue3 (07) | 39908 | 10.14% | 31634 | 14.28% | 31454 | 6.50% | 38958 | 9.48% | 52518 | 156.1 | 76.2 79.9 | 45960 | 157.6 | 38

Avg. WL Impr. 7.91% 10.40% 8.18% 10.43
newblue4 (08) 262 4.00% 144 7.12% 138 4.65% 200 3.92% 196 124.2 83.2 41.0 136 124.4 2
newblue5 (08) | 0 436% | O 588% | O 379% | 0 435% | 0 | 2228 1476 | 75.2 - - -
newblue6 (08) | 0 544% | 0 6.64% | O 361% | 0 515% | 0 | 1705 | 102.4 | 68.1 - - -
newblue7 (08) 1458 4.12% 62 5.91% 68 4.97% 208 6.36% 110 3355 | 189.5 | 146.0 54 335.8 1
bigbluel (08) 0 6.33% 0 7.24% 0 4.02% 0 5.76% 0 53.7 37.2 16.5 - - -
bigblue2 (08) 0 594% | 0 | 1003%| O 507% | O 489% | 0 86.0 | 483 | 37.7 - - -
bigblue3 (08) 0 4.40% | 0O 3.44% | 0 343% | 0 391% | 0 | 1262| 787 | 475 - - -
bigblue4 (08) | 414 | 472% | 152 | 867% | 162 | 4.48% | 472 | 469% | 232 | 2205| 1219 | 986 | 180 | 2207 | 1
Avg. WL Impr. 4.91% 6.87% 4.25% 4.88%
TABLE Il .

RUNTIME INFORMATION (WITHOUT OVERFLOW STEB. The Condor resource management policy ensured that each

Benchmark ‘ #Subp_‘ Runtime ‘ #Steps‘ FParallel Subp. CPU ran at most one job at each time, so the CPUs were
Wall | Total CPU Ave. | Max. solely dedicated to solving the subproblems when utilized

:jgg:gg; Eg;g o | & 2 s 8 by us. Moreover, the CPUs in our computational grid were
adaptec3 (07) | 576 | 478 6319 32 | 180 | 38 not vastly significantly different from each other in terms of
gggg:gig Eg;g A I Rt B speed or memory. Therefore, we expect that the total CPU
newbluel (07)| 144 | 483 2306 18 8.0 15 runtimes listed in Table Il provide a fair approximation of the
e Eg;g Errl A Iy e e I sequential runtime if all the computations ran on one CPU.
newblued (08)| 174 | 529 >0dd >0 55 ) For the benchmarks with overflow, an additional 30 minutes
newblue5 (08) | 311 | 821 4593 31 9.5 21 of walltime was used for solving the problem (RMLP-OV) to
newblue6 (08)| 140 | 448 2219 15 89 | 16 ; e
newblue7 (08)| 325 | 985 1788 36 90 18 generate candidate routes, and a 5 hour limit was used for solv-
bigbluel (08) | 49 339 956 12 3.9 7 ing the IP using branch-and-bound. In the overflow case, the
bigblue2 (08) 172 690 3411 21 8.0 20 L . ..
bigblue3 (08) | 208 | 731 2690 28 73 6 IP solver took significantly longer than when solving similar
bigblue4 (08) | 215 | 726 3096 27 7.6 21 IPs whose primary objective was wirelengh. The runtime can

the subproblem list before all subproblems were process@@tentially be improved by tuning the commercial solver, using
The average and maximum number of subproblems procesadtewer version of the CPLEX tool, or by developing a custom
independently on a pass are reported in columns 6 and 7. Fe&ver which we leave to future work. For each benchmark,
wall clock times are given in columns 3. The runtime unit ighe number of subregions defined around the congested areas
minutes. These wall clock times are Computed for the Caﬁ%‘ overflow reduction is listed in the last column in Table II.
when the computational grid was shared with other users. Theese subregions were all processed in parallel.
actual wall clock time for solving the instances was larger, as
jobs submit to the Condor-controlled shared grid often wait in
the job queue while higher-priority jobs are run. GRIP is a new tool for global routing via integer program-
Compared to other routers, even IP-centric routers (spedaifing (IP). It is based on solving an IP formulation by column
ically BoxRouter which is the fastest one), our walltime igeneration followed by branch and bound to select candidate
significantly higher, so we skip any explicit runtime compar+outes for each net. The method uses the information from the
ison. To reiterate, the focus of this work is to demonstratiual values of the relaxation of the integer program to create
the significant improvemenin route quality that is possible a dynamically-updated metric that correlates with congestion
with an intelligently-engineered IP-based scheme. Reduciagd suggests promising routes for each net. GRIP directly
the computational time, via additional parallelization of theolves the 3D model of the routing problem. To achieve
algorithm, will be a focus of subsequent work. reasonable runtime for large instances, GRIP uses methods
Table Il also reports the total CPU runtimes, computed &8 decompose the problem into subproblems of manageable
the summation of the runtimes spent by the CPUs to solsize and reconnects the subproblem solutions using IP. In case
the subproblems in column 4. From the table, we can segoverflow, it applies an overflow reduction procedure.
that GRIP’s significant improvement in solution quality comes GRIP is the only IP-based procedure that achieves signifi-
at a considerable CPU time expense. However, comparicantly lower wirelength and comparable overflow compared to
the total runtime to the wall clock time, it can be seethe best solutions reported in the open literature. In future, we
that even the small level of parallelism in GRIP can yielg@lan to develop techniques that can utilize the IP procedure and
significant improvement, and reduce computational time t@t achieve a much higher degree of parallelism to improve
nearly acceptable levels. Continuing work is aimed at furth#ére runtimes. We also plan to streamline the candidate route
exploiting parallelism to obtain similar high-quality solutiongyeneration phase to consider constraints imposed on layer
in even shorter wall clock times. usage and route topology and to extend the formulation to

IX. CONCLUSIONS
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consider other objectives. We plan to explore means to utilig®] MOSEK ApS, Copenhagen, Denmarkthe MOSEK C APl manual,

our framework in order to obtain quick estimate of congestiop,
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