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Abstract—This work introduces GRIP, a global routing tech-
nique via integer programming. GRIP optimizes wirelength
and via cost directly without going through a traditional layer
assignment phase. Candidate routes spanning all the metal layers
are generated using a linear programming pricing phase that
formally accounts for the impact of existing candidate routes
when generating new ones. To make an integer-programming-
based approach applicable for today’s large-scale global routing
instances, the original problem is decomposed into smaller
subproblems corresponding to rectangular subregions on the chip
together with their net assignments. Route fragments of nets that
fall in adjacent subproblems are connected in a flexible manner.
In case of overflow, GRIP applies a second-phase optimization
that explicitly minimizes overflow. By using integer programming
in an effective manner, GRIP obtains high-quality solutions.
Specifically, for the ISPD 2007 and 2008 benchmarks, GRIP
obtains an average improvement in wirelength and via cost of
9.23% and 5.24%, respectively, when compared to the best result
in the open literature.

Index Terms—Global Routing, Integer Programming.

I. I NTRODUCTION

Design of Integrated Circuits in nanometer regime is subject
to obstacles such as manufacturability, variability, yield-loss
and timing failures. The increase in the size of modern designs
and the shrinking geometries of devices continue to escalate
these challenges. The severity of many of these design issues
is impacted by the routing of the interconnects. Global routing
(GR) is the primary step of routing during which the net
regions are planned, so it has increasingly gained significance
in recent years. Higher quality GR solutions can potentially
alleviate the severity of nanometer design issues.

The release of large-sized ISPD 2007 and 2008 benchmarks
[2], [3] resulted in remarkable progress in GR procedures.
Specifically, among the two categories of concurrent and
sequential procedures, the latter became very popular recently
to handle large-sized problem instances [8], [31], [23], [22],
[26], [9]. However, an inherent downside of the sequential
procedures is their high dependence on properties such as
the ordering of the nets or the definition of empirical cost
functions. Alternatively, some of the concurrent techniques
that are “optimization-centric” such as those based on integer
programming have typically been able to generate good solu-
tions for moderate-sized problem instances. [7], [32], [4], [25],
[6], [29], [17]. Procedures based on a hybrid combination of
sequential and concurrent approaches are also proposed [10]
to explore the solution quality and runtime tradeoff.

An extended abstract of this paper was published by the 2009 Design
Automation Conference (DAC’09) [30].
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In this work, we propose GRIP, a GR procedure that
heavily relies on integer programming techniques. Not only
is GRIP able to generate solutions for large-sized instances,
but the solutions found by GRIP demonstrate a considerable
improvement in quality compared to the best solutions in the
open literature. In addition, GRIP has minimal dependency on
the nature of the benchmark instances and robustly generates
the best solution in each case.

To effectively use integer programming, GRIP decomposes
the large-sized problem into smaller-sized subproblems. Each
subproblem corresponds to a rectangular subregion on the chip
together with its net assignments. The smaller-sized subprob-
lems are solved individually, and later the route fragments of
the same net in adjacent subproblems are connected. A final
phase can be run to reduce overflow. The above steps are based
on solving an integer program (IP) that aims to select one route
for each net from a set of promising candidate routes.

This work makes the following contributions:

• An integer program for the GR problem that minimizes
the cost of the routed nets as its objective. The cost is
the sum of wirelength and via costs of 3-D routes, thus
avoiding a layer assignment phase.

• Generation of a promising set of candidate routes for each
net using a linear-programming-based pricing procedure.
Pricing is an iterative procedure that effectively considers
the impact of currently-generated routes when generating
new ones via a measure that correlates with congestion.

• A decomposition procedure to make integer programming
applicable to large-scale instances. The routing problem
is divided into a set of balanced subproblems in terms
of the complexity required to solve them. Consequently
the runtime of our procedure depends on the number of
subproblems, some of which can be processed in parallel.

• A novel method called “floating terminals” for retaining
connection flexibility when solving each subproblem.

• An integer-programming based technique for reconnect-
ing route fragments from the decomposed subproblems.

• A final “clean-up” integer programming-based procedure
for routing a set of designated nets to minimize overflow.

In simulation results, GRIP achieves an average 9.23% and
5.24% improvement in total cost (i.e., wirelength and via
cost) for the ISPD 2007 [2] and ISPD 2008 [3] benchmarks
respectively. These results are compared to the best solution
reported for each case from four state-of-the-art academic
global routers. The significant improvement is possible due to
a combination of the concurrent nature of IP, effective pricing
for candidate route generation, directly working with the 3-D
model of the problem, effective decomposition into subprob-
lems, and effective recombination of the solution fragments.
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Fig. 1. The construction of grid graph for Global Routing problem.

The remainder of the paper is divided into eight sections.
In Section II, we discuss preliminaries of the GR problem. In
Section III, we discuss our IP model, and we give a procedure
to approximately solve the IP in Section IV. Section V
discusses problem decomposition and integration of solutions
of subproblems. In Section VI, we give an IP to minimize
overflow and describe a procedure that uses this IP. A brief
comparison to other modern optimization-based approaches
for global routing is given in Section VII. Computational
results are reported in Section VIII, followed by conclusions.

II. PRELIMINARIES

Global routing is a critical step of the design flow during
which the routing path of each net is planned considering the
placement information. This planning later guides the detailed
routing stage that assigns wire segments to routing tracks.

A. Global Routing Formulation

The GR problem can be conceptualized on a grid-graph
G = (V,E) as depicted in Figure 1. After placement, a chip
is partitioned into rectangular regions called global bins. Each
bin is a vertexv ∈ V in grid-graph. The boundary between two
adjacent global bins is modeled as an edgee ∈ E. With each
edgee ∈ E is associated a capacityue reflecting the maximum
available routing resource between two adjacent bins. Also
given as problem input to GR is a set of (multi-terminal) nets
N . Each netTi is defined by a set of vertices (terminals) in
V (Ti ⊂ V ). At the level of GR, we assume the terminals for
the nets are located at the center of each global bin. The goal
of the GR problem is to find a set of Steiner trees connecting
the terminals of each netTi,∀i ∈ N .

When evaluating a routing solution, two metrics are typ-
ically used—wirelength and overflow. The wirelength is the
sum of the lengths of the Steiner trees that route the nets
N . Overflow is defined as the total amount by which routing
demand exceeds capacity on the edges. Typically, overflow
should also be minimized (zero is desirable), since it directly
corresponds to the routability of a design. Global routing is
often repeatedly used in the physical design flow, so runtime
is an important practical consideration for a GR algorithm.

B. Multi-Layer Global Routing

In modern design, a chip usually contains multi-layer rout-
ing resources. For example, the ISPD’07 benchmarks have
six routing layers—three horizontal layers and three vertical
layers [2]. Adjacent layers are connected by vias. In the grid
graph, vias are modeled as edges with unlimited capacity. By
associating higher wirelength costs to these edges, the usage
of vias can be reduced.

To handle the multi-layer GR problem, a two-step approach
is usually adopted. The first step is to project all 3-D edges
to 2-D edges, aggregating their capacities, and to solve a 2-
D GR problem. Next, a procedure called layer assignment is
employed to take the solution to the 2-D assignment problem
and assign routes to the layers. Vias are used to connect these
segments for the final 3-D solution. Minimizing the via cost
(or via count) is considered during the layer assignment phase.

The above two-step approach is adopted by the majority
of recent academic GR procedures [8], [23], [10], [26], [31].
However, neglecting the via cost when solving the 2-D routing
problem may lead to significant degradation in solution quality.
Even minor details in the strategies can significantly impact
the solution quality [20]. Recently [31] proposes via-aware
Steiner tree generation and “3-bend routing”, in conjunction
with layer assignment to more effectively consider the via cost
throughout the GR problem. However, via cost is not directly
considered, thereby the solution space is not fully explored.

Ideally, layer assignment could be avoided by solving the
3-D GR problem directly. Among the recent routing methods,
FGR [28] is the only one that is based on 3-D maze routing,
and as a result demonstrates better solutions in the reported
benchmarks but with higher execution runtime.

III. A N INTEGERPROGRAM FORGLOBAL ROUTING

In a mathematical description of the GR problem, we
are given a grid-graphG = (V,E) describing the network
topology, a set of (multi-terminal) nets given byN =
{T1, T2, . . . , TN}, (with Ti ⊂ V ), and edge capacitiesue and
edge costsce ∀e ∈ E. Denote byT (Ti) the collection ofall
Steiner trees (routes) connecting the terminals inTi, and let
the parameterate = 1 if Steiner treet contains edgee ∈ E,
ate = 0 otherwise. Define the binary decision variablexit

that is equal to1 if and only if net Ti is routed with route
t ∈ T (Ti). An integer program for the GR problem can be
written as

min
x,s

N∑

i=1

∑

t∈T (Ti)

citxit +
N∑

i=1

Msi (ILP-GR)

∑

t∈T (Ti)

xit + si = 1 ∀i = 1, . . . , N, (1)

N∑

i=1

∑

t∈T (Ti)

atexit ≤ ue ∀e ∈ E, (2)

xit ∈ {0, 1} ∀i = 1, . . . , N, ∀t ∈ T (Ti),
si ≥ 0 ∀i = 1, . . . , N.

The parametercit is the cost of routet for net Ti which is
computed as the total length of the 3-D route,cit =

∑
e3t ce,

where the notatione 3 t denotes that edgee ∈ E is contained
in routet ∈ T (Ti). The equations (1) in the model enforce the
routing of each net. The decision variablesi will be positive
if net Ti cannot be routed, and the objective function trades
off the total routing length with the number of nets that are
routed. The equations (2) in the model ensure that the given
edge capacities are not exceeded.
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Typically M is chosen sufficiently large to ensure that all
nets are routed. Specifically,M is chosen larger than the
maximum wirelength that a route could have in an optimal
solution—for example, the total number of grid edges. When
M is chosen in this way, the formulation explicitly maximizes
the number of routed nets, in addition to minimizing wire-
length. Other choices ofM are possible if wirelength is more
important than routing all of the given nets. The formulation
(ILP-GR) has a number of appealing properties.

1) The exact properties of the route, such as topology and
metal layer can be incorporated into its costcit. The for-
mulation can thus directly handle the 3-D Global Rout-
ing problem, avoiding the traditional layer-assignment
phase which can be a source of sub-optimality.

2) The cost of a route can correspond to any other metric
such as the area-capacitance of the route over multiple
metal layers.

3) The formulation does not require that the nets bea
priori broken into two-terminal segments. Breaking nets
before doing routing can be a significant source of sub-
optimality in the resulting final routing [28]. We note
that the final version of GRIP has some “net-breaking”
to define subproblems for scalability. (See Section V).

4) The slack variablessi and the corresponding objective
penalty factorM push the optimization to generate ano-
overflowrouting solution. The model is quite flexible, as
with minor modifications, the integer program can be set
to minimize the total overflow. (See Section VI).

A significant disadvantage of the formulation (ILP-GR) is its
size. First, for a given netTi, the number of decision variables
for this net is equal to|T (Ti)|—the number of possible Steiner
trees connecting the terminals inTi. Second, the number of
nets N and edgesE may also be very large. Nevertheless,
we use (ILP-GR) as the basis of GRIP. In the subsequent
discussion, we outline the manner in which we deal with the
issues posed by the large formulation size.

IV. SOLUTION PROCEDURE VIA PRICE-AND-BRANCH

GRIP’s procedure to obtain an approximate solution to
the above large-scale integer program (IP) consists of two
phases, as shown in Figure 2. First, apricing procedure is
used to generate a set of candidate routes. Second,branch-
and-boundis applied to solve (ILP-GR) using only the set of
generated candidate routes. This two-phase heuristic procedure
is commonly known as price-and-branch [5], [19].

A. Overview of Candidate Route Generation

To generate a set of candidate routes for each net, GRIP
solves a linear-programming (LP) relaxation of (ILP-GR), a
relaxation obtained by replacing the binary requirements on
the variablesxit ∈ {0, 1} with the weaker constraints 0≤
xit ≤ 1. The linear program is solved by acolumn-generation
(CG) procedure [13], [14] during which a subset of all possible
routes (GRIP’s candidate routes) are identified.

In column generation, we start by replacingT (Ti) (the
set of all possible routes of net i) in the relaxed version of
(ILP-GR) by the setS(Ti) ⊂ T (Ti), initially containing only

one candidate route per net. We then expandT (Si) over the
iterations of CG, while guaranteeing the added routes decrease
the objective expression.

To describe the CG procedure, we need to first consider the
dual (LPD-GR) of linear programming relaxation of (ILP-GR):

max
λ≤M,π≤0

∑

i∈N

λi +
∑

e∈E

πeue (LPD-GR)

s.t. λi +
∑
e3t

πe ≤ cit ∀i = 1, . . . , N, ∀t ∈ T (Ti). (3)

In a column generation procedure, only a small subset of
all possible routes is explicitly included in the LP relaxation
of (ILP-GR). Let S(Ti) ⊂ T (Ti) be the set of routes
considered for netTi. The restricted master problem for (ILP-
GR) considering onlyS(Ti) is

min
x≥0,s≥0

N∑

i=1

∑

t∈S(Ti)

citxit +
N∑

i=1

Msi (RMLP-GR)

{ ∑
t∈S(Ti)

xit + si = 1 ∀i = 1, . . . , N∑N
i=1

∑
t∈S(Ti)

atexit ≤ ue ∀e ∈ E.

Solving (RMLP-GR) yields a (primal) solution(x̂, ŝ) as well
as valuesλ̂ ≤ M and π̂ ≤ 0 for the dual variables in
(LPD-GR). By linear programming duality, if the values(λ̂, π̂)
satisfy all the dual constraints (3), then(x̂, ŝ) is an optimal
solution to the LP relaxation of (ILP-GR). If not, then the
violated dual constraint suggests that adding the associated
column (as a new route variable) to (RMLP-GR) may reduce
its objective value. The process can then repeat to further
identify routes which can reduce the objective value. Solving
the LP relaxation via column generation guarantees obtaining
the optimal solution to the linear program, as if all the routes
were explicitly considered.

To determine if the dual values(λ̂, π̂) (generated using
S(Ti)) are feasible in (LPD-GR) (which includesT (Ti)), we
must determine if there exists at least one routet ∈ T (Ti) with
λ̂i +

∑
e3t π̂e > cit. This is itself an optimization problem,

known as thepricing problem, and the pricing problem can
be decomposed into independent problems for each individual
net i = 1, . . . , N .

Specifically, the pricing problem for netTi is

min
t
{cit −

∑
e3t

π̂e | t ∈ T (Ti)}. (PP(Ti))

If the optimal solution of (PP(Ti)) is sufficiently small (< λ̂i),
then the values(λ̂, π̂) are not dual feasible. Specifically, lett∗

be an optimal solution to (PP(Ti)). If

cit∗ −
∑
e3t

π̂e < λ̂i, (4)

then t∗ identifies a violated constraint (3) in (LPD-GR). The
current solution to (RMLP-GR) can thus be improved by
updating T (Si) to include t∗ as a new column (candidate
route).

Next we describe the steps of the iterative CG procedure:
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step 1: solve (RMLP−GR) using candidate routes
to get dual values for (LPD−GR)

Approximately solve (ILP−GR) only using the candidate routes

Price

Branch

step 0: set initial candidate routes using package Flute

step 2: solve the pricing problem for each net

step 3:
have new route?

Fig. 2. Overview of Price-and-Branch for GR.

0. For eachi = 1, . . . , N , initialize S(Ti) with exactly one
route. (For netTi GRIP uses the route generated by the
package Flute [11].)

1. Solve (RMLP-GR), yielding a primal solution(x̂, ŝ) and
dual values(λ̂, π̂).

2. For eachi=1,. . . , N , use the dual solution(λ̂, π̂) to set up
the pricing problem (PP(Ti)). Solve (PP(Ti)) to obtain a
route t∗. If cit∗ −

∑
e3t π̂e < λ̂i, thenS(Ti) = S(Ti) ∪

{t∗}
3. If an improving route for some netTi was found in step 2,

return to step 1 to further identify new routes. Otherwise,
stop—the solution(x̂, ŝ) is an optimal solution to the LP
relaxation of (ILP-GR).

Figure 2 illustrates these steps. First, one initial route for
each netTi is generated by Flute. When using Flute we
randomly select one of attainable routes from the generated
Steiner points for each net. These routes are very close to
minimum Steiner trees for the nets. The total of their wire-
length is likely to give a lower bound on the total wirelength
in an optimal solution to the GR problem. On the other hand,
these routes are initially 2-D routes that only use the lowest
horizontal and vertical layers and would result in significant
overflow if all used in combination.

After step 1, in a primal solution (̂x, ŝ) with dual values
(λ̂, π̂), netsTi ∈ N that are not able to be routed completely
with existing Steiner trees in the setS(Ti) will have ŝi > 0
and (by the complementary slackness condition of linear
programming)λ̂i = M . Also by linear programming duality
theory, the dual variablêπe is the rate of change of the
optimal objective value of (RMLP-GR) per unit change in
ue, the capacity of edgee. It gives a (local) measure of how
much the objective function (wirelength) would improve if one
more unit of capacity was available for edgee. We use this
information to systematically identify new columns which can
reduce the objective value (routes that pass the condition in
step 2) as we explain in the Section IV-B.

By observing the condition (4), the CG procedure will
naturally seek to find routes for netsTi with large λ̂i, routing
them with edges that havêπe as close to zero as possible.
Ideally the routes would use edges withπ̂e = 0, which implies
(again by complementary slackness) that the edge is not being
used to capacity. In this way, one can imagine that the CG

procedure helps to iteratively disperse the initial nets from
lower layers to upper layers and from congested areas to less
congested ones. As a result, it is unnecessary to utilize layer
assignment to manipulate the initial 2-D routes.

To summarize, the strengths of the pricing procedure are
the following:

• When generating new candidate routes at each iteration
of the CG procedure, the impact of candidate routes
of previous iterations are effectively taken into account.
This is done by resolving (RMLP-GR), incorporating
the impact of all existing routes to get a new fractional
solution, and new dual values.

• Within each iteration, solving the pricing procedure effec-
tively identifies new candidate routes since the objective
of (RMLP-GR) is always improved. Moreover, based on
the dual values, a measure that correlates with the current
congestion is also incorporated in selecting the nets to
price. (see Section IV-C).

The computational experience with the CG procedure in
GRIP was that the objective value of (RMLP-GR) was quickly
improved in the first iterations, but the rate of improvement
decreased significantly in the later iterations. This “tailing
off” phenomenon is very common to the CG procedure [14].
The improving routes at later iterations of the algorithm
almost always come from nets outside highly congested areas.
Further, the wirelengths of the improving routes are almost
identical to trees currently available for routing. In these
cases, adding the routes to (RMLP-GR) makes little or no
improvement to the objective value. A significant portion of
the runtime of the CG procedure can be spent on iterations that
improve the objective value of (RMLP-GR) only marginally.
Thus, in order to speed solution time, GRIP typically stops the
procedure once the solution value has tailed off. Specifically,
if the objective value of (RMLP-GR) has made little or no
improvement (less than 10 wirelength units) in the last 20
iterations, the CG procedure is terminated.

Next, we discuss the details of step 2 of the CG procedure.

B. Solving the Pricing Problem for One Net

In the pricing phase (step 2) of the CG procedure, GRIP
solves (PP(Ti)) for each net. We rewrite the objective expres-
sion of (PP(Ti)) ascit −

∑
e3T (Ti)

π̂e =
∑

e3T (Ti)
(ce − π̂e),

wherece is the cost associated with edgee (e.g.,ce = 1 when
considering wirelength and via count).

To minimize the above objective for netTi, GRIP considers
a weighted graph with edge weightŝwe = ce−π̂e. Minimizing
the objective of (PP(Ti)) requires finding the smallest-weight
Steiner trees on this weighted graph. Finding a minimum-
weight Steiner tree is in general NP-Hard [16], so GRIP adopts
a (heuristic) approach for finding columns that reduce the
objective value of (RMLP-GR) based on local search.

Within the pricing problem, condition (4) should be evalu-
ated in step 3 of the CG procedure. Given a dual solution
(λ̂, π̂), the reduced costof route t of net Ti is c̄it =
cit −

∑
e3t π̂e − λ̂i. The pricing problem can be viewed as

a procedure for identifying a Steiner treet for net Ti whose
reduced cost̄cit < 0. By the complementary slackness
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Fig. 3. Improving routes via shortest path algorithm on a weighted grid-graph

condition of linear programming, for any optimal solution
(x̂, ŝ) to (RMLP-GR) and corresponding dual values(λ̂, π̂),
the reduced cost̄cit = 0 if x̂it > 0.

GRIP’s local improvement procedure for solving (PP(Ti))
uses this fact as well as the following simple observation.
Given a routet ∈ S(Ti), let V (t) be the set of vertices of the
terminals and Steiner points int. If the variablex̂it > 0, and if
there exists a pathP ′ that connects two vertices(u, v) ∈ V (t)
such that the weight ofP ′ (with respect to weightŝw) is less
than the weight of the pathP from u to v using edges int,
the reduced cost of treet′ = t ∪ P ′ \ P is negative. Thus,
adding the variable corresponding to routet′ to (RMLP-GR)
may reduce its objective value. Figure 3 shows inserting such
a u-v path into a base Steiner tree.

To approximately solve (PP(Ti)) for a netTi, GRIP starts
with the treet ∈ S(Ti) with largest value of̂xit. Using edge
weightsŵe = ce− π̂e, a single-source shortest path problem is
solved for someu-v paths, where(u, v) ∈ V (ti). If the new
u-v path has smaller length than the existing path, a route
with negative reduced cost has been identified. To identify
sources and sinks for the shortest path problems, the selected
routet is decomposed into a set of two-terminal segmentsrjt

by breaking it at the Steiner points oft. The segments are
considered in descending order of their weight

∑
e3rjt

ŵe.
When considering segmentrjt, the remaining segments oft
are considered as a “base Steiner tree”, and an alternative route
of the segmentrjt must be found to connect to this base.
Zeroing the weights for all tree edges which are not on the
segment (̂we = 0 ∀e 3 t \ rjt) and running Dijkstra’s single-
source shortest path algorithm connects the the segmentrjt to
the base net in a minimum cost fashion [27].

Dijkstra’s algorithm [15] generates an entire tree of shortest
path weights, thus possibly identifyingmany routes for one
net that would reduce the objective value of (RMLP-GR). At
each iteration of column generation, GRIP identifies a subset
of these routes by uniformly sampling from all identified nets,
and adds them as new columns. Specifically, at most 40 routes
per net per CG iteration will be added for the nets inside the
congested area, and at most 16 routes per net per CG iteration
are added for nets outside the congested area. (See Section
IV-C for how we define congested area.)

Figure 4 demonstrates how new routes are constructed by
rerouting a two-terminalu-v segment. In the figure, the cost
and capacity of each edge is 1, and there are two initial
routesta andtb for netsTa andTb, respectively. After solving
(RMLP-GR), GRIP sets the edge weights tôwe = ce − π̂e.
These edge values are shown in 4(a). Note that the two edges
with overflow have large negative dual values (π̂e << 0),
resulting in large positive edge weights. Based on these edge
weights, the cost of routesta and tb are 205.

Assume that netTa is selected for pricing first. As shown
in Figure 4(a), treeta can be decomposed into three segments,
each including a terminal. The total edge weight is maximum
in the segment that includes the two edges with large weights,
so GRIP starts by rerouting this segment, using the remaining
ones for the base Steiner tree. To reroute the segment, it is
removed fromta, and the edge weights of the remaining edges
on the base Steiner tree are set to zero, as shown in Figure
4(b). Thus, GRIP considers the base tree as a backbone when
reconnectingua andva using Dijkstra’s algorithm.

After reconnecting, an improved routet′a, avoiding the
highly-weighted edges, is identified with cost 10. In a similar
fashion, GRIP considers netTb, and reroutes the segmentub-
vb as shown in Figure 4(c). The new segmentt′b for net Tb

has a new cost of 9 units. The reduced costs for these routes
are c̄at′a = 10 − λa and c̄bt′b = 9 − λb, respectively. If these
reduced costs are smaller than zero, (indicating the identified
routes to violate the constraint (3) in (LPD-GR)), then these
routes are added to (RMLP-GR) as new candidate routes.

An interesting feature of this pricing algorithm is that the
new routes can use different Steiner points than the original
ones. In this example,ta and tb are generated independently
at the same major iteration of column generation, with costs
coming from the same dual variables. GRIP will add both
of these generated columns to the master LP (RMLP-GR),
and later let IP decide how to utilize these routes in the most
effective manner possible.

C. Selecting Nets to Price

For large instances of (ILP-GR), the CG procedure can be
significantly accelerated by only solving the pricing problem
(PP(Ti)) for a subset of all the nets. To select the netsTi ∈ N
for which (PP(Ti)) is solved, GRIP takes advantage of infor-
mation provided by the solution of (RMLP-GR). Specifically,
if ŝi > 0, then netTi is not completely routed using the
existing routes inS(Ti), so it is necessary to find routes for
net Ti using the pricing procedure. GRIP first prices all the
nets in descending order of̂si (> 0).
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To decide whether or not to price the remaining nets with
ŝi = 0, GRIP considers measures of congestion in the current
LP solution to (RMLP-GR). In the first measure, congested
edges are the edgese that have the most negative value of
π̂e. The intuition is that the dual valuêπe gives a (local)
measure of how much the objective function (wirelength)
would improve if one more unit of capacity was available
for edgee. In this sense, the edge weights have a positive
correlation with congestion.

The second measure identifies a congested edge by letting
ri ∈ arg maxt∈S(Ti) x̂ti be a route for netTi with the largest
solution value in (RMLP-GR). The valueηe =

∑N
i=1 arie is

the number of units of capacity on edgee that would be used
if the routesri were used for each netTi ∈ N . If (ηe − ue)
is large, thene is highly congested.

GRIP defines a bounding box (of 3x3 units of grid edges)
around an identified-congested edgee. All nets that contain
a terminal inside the bounding box are repriced. GRIP first
reprices nets that are identified by the first congestion measure,
followed by repricing nets found by the second measure.

D. Branch and Bound

Once the CG procedure for the solution of the LP relaxation
of (ILP-GR) is complete, either because no improving routes
were found in the pricing phase, or because tailing off was
detected, a promising candidate subset of routesS(Ti) ⊂
T (Ti) has been identified for each netTi. Using only these
route variables, the integer program (ILP-GR) is formulated
and solved by a black-box commercial integer programming
package. The solution returned by the solver is a feasible
solution to the problem.

The proposed approach, based on the direct solution of
(ILP-GR), has significant promise to improve the solution
quality of existing GRs. For example, using this approach, we
solved the small 2D IBM01 circuit of the ISPD1998 suite [1]
and were able to improve the wirelength by approximately 5%
compared to the best solution found by FGR [28], without any
overflows. However, the runtime to achieve this high-quality
solution for such a relatively-small instance was prohibitively
long—a few hours. Thus, in the following section, we discuss
mechanisms for decomposing the full global routing (ILP-GR)
problem into smaller instances and procedures for combining
the solutions in order to generate high-quality solutions to
large-scale GR instances. The decomposition procedure con-
siderably accelerates the overall runtime.

V. DECOMPOSITION FORSCALABILITY

Many existing global routing algorithms define reasonably-
sized subproblems and create a full solution from the solutions
to these subproblems. For example, to achieve a good runtime,
BoxRouter [10] starts by solving an IP over a small rectangular
box on the chip and progressively increases the size of the
box to generate new IPs, fixing the solution to the previous
IP. However, this solution fixing when increasing the box size
may lead to a degradation in solution quality. The work [32]
proposes a hierarchical IP approach that first solves a small IP
to plan the routing of the longest nets. However, the impact
of the shorter nets is neglected.

: floating terminals

auxiliary 
node

(a)

(b)

(c)

: floating terminals: floating terminals

auxiliary 
node

(a)

(b)

(c)

Fig. 5. Modifying grid-graph of a subregion to handle floating terminals.

As demonstrated in Section IV, the price-and-branch pro-
cedure has potential to find high-quality solutions, but needs
to be accelerated. In this section, we discuss ideas for de-
composing the integer program (ILP-GR) into smaller ones
that correspond to non-overlapping rectangular areas on the
chip, together with their net assignments. For example, if all
the terminals of a net fall within a rectangle, then the net is
assigned to that subproblem and is bound to be routed inside
the rectangle. We first discuss how GRIP’s IP-based procedure
is applicable to solve one subproblem. We then discuss the
procedures to define subproblems and integrate their solutions.

A. Solving One Subproblem

A subproblem is characterized by a rectangle on the chip
referred to as a subregion, together with a set of nets that must
be routed within that subregion. For some nets, all terminals
will lie within the subregion, but for longer nets, additional
(or all) of their terminals might be outside the subregion.
Nets whose terminals do not all fall within the subregion are
referred to as inter-region nets. Inter-region nets are partially
routed by each subproblem, and subsequently their segments
in different subregions are connected.

To be applicable in a decomposition-based procedure, GRIP
must handle the case when a subproblem includes both within-
region and inter-region nets. GRIP’s procedure works as
follows. Each subproblem defines a new grid-graphG′(V ′, E′)
and set of netsN ′ ⊂ N . The setN ′ is composed of two
types of nets: the within-region nets that have all terminals
inside the subregion(Ti ⊆ V ′), and the inter-region nets that
have at least one terminal outside the subregion(Ti 6⊆ V ′).
Figure 5(a) shows the latter type of these nets. The net in the
figure belongs to three different subregions. The neighboring
boundaries of these subregions are shown in bold. The routing
problem for the bottom-left subregion views this net to have
one fixed and two “floating” terminals. Each floating terminal
represents a portion of a subregion boundary through which
the net will connect to another subregion.

To route inter-region nets in a subproblem, GRIP represents
each floating terminal using an auxiliary node that is added to
the set of nodesV ′ in the grid-graph. Edges connecting the
nodes that are on the subregion boundary to their correspond-
ing auxiliary node are added to the setE′. The added edges
have infinite capacity and zero cost in the definition of the
integer program (ILP-GR). Figure 5(b) illustrates the addition
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Fig. 6. Defining subproblems using initial Flute-based net planning (left),
Improving net assignment to the subregions via detouring (right).

of auxiliary nodes and edges. After applying this simple
construction, the integer program (ILP-GR) is well-defined,
and can be solved by the procedure outlined in Section IV.

The example of Figure 5(b) is for 2-D routing, but in the
general 3-D case, each boundary of a subregion is a plane
and the graphG′ extends to the third dimension, as shown
in Figure 5(c). The nodes on this vertical boundary plane are
connected to their corresponding auxiliary node.

B. Forming the Subproblems

The challenge of decomposing the problem into subprob-
lems is best understood by means of our initial computational
experience. Our first decomposition approach was to define a
uniform grid of subregions consisting of the same area. Net
assignment to the subregions was based on their routing by
Flute. This natural but naive decomposition approach resulted
in the IPs corresponding to the congested subregions taking
significantly longer to be solved by our procedure (e.g., hours
for congested subregion and minutes for the less congested
ones). Thus, an important objective of the subproblem def-
inition is to achievebalance, resulting in “equally-difficult”
problems that take approximately the same time to solve.

GRIP’s procedure for defining subproblems begins by rout-
ing all nets using the 2-D Steiner route generated by Flute.
For each grid edgee of the 2-D problem, a utilization factor is
defined as the ratio of the number of (Flute) routes that cross
edgee to its (projected) capacityue. The utilization factor
plays an important role in defining the subregion boundaries.

Next, GRIP applies a recursive bi-partitioning strategy,
trying to balance an average edge utilization factor (AEU) for
each region. At each step, one rectangular partition is divided
into two new rectangles where the AEU is balanced between
the two. The AEU for a partition is defined as the average of
the utilization factors of the grid edges in the corresponding
rectangle. Moreover, to decide between a vertical or horizontal
partitioning, GRIP chooses the one that results in the smaller
aspect ratio of the generated rectangles. The recursive bi-
partitioning stops when any of the sides of the current partition
reaches 32 units of the routing grid, a size empirically set to
generate an IP that can be typically solved by the procedure
outlined in Section IV in an acceptable runtime. This partition
will then be taken as a subregion. Figure 6(left) shows a chip
that has been divided into subregions by the procedure.

Once the subregions are created, the net assignments sug-
gested by Flute are further improved by considering the
congestion of the subregion. Figure 6(left) illustrates this point.
The two netsT1 andT2 are routed using their Steiner routes,

both of which pass through subregionA. Net T1 does not
have any terminals inside subregionA. If A is congested, it
is better to detourT1 from A, as shown in Figure 6(right),
reserving the routing resources for nets thatmust be routed
into the subregion.

To improve the net assignments to the subregions, GRIP
relies on the fact that subproblems are solved in a congestion-
based ordering, described with more details in Section V-C.
Before solving a subproblem, GRIP detours as many nets as
possible that “pass” through the corresponding subregion (i.e.,
do not have a terminal in it). The remaining (undetoured)
nets inside the subregion are the ones assigned to it and
the corresponding subproblem is then solved. The procedure
repeats before solving the subsequent subproblem.

To detour routes out of a subregion, a shortest path algo-
rithm is used. For a net that does not have any terminals
in the current subregion, we identify the segment (using its
Flute route) that passes the subregion, and consequently the
two terminals that are connected using this segment. The two
terminals are reconnected via a new segment back to its tree
backbone using the same shortest path procedure explained
in the Section IV-B (see Figure 6). The weights on the grid
graph for the shortest path problem are set as follows. Since
the net should be detoured outside the subregion, weights of
all grid-edges inside the subregion are set to infinity. For the
remaining edges, if an edge is used to capacity by the existing
(Flute and detoured Flute) routes, the weight is set to a large
positive number (=100). The remaining edges have a weight
of 1. The detouring procedure in GRIP has the benefit that it
is dynamic, continually updating edge weights for rerouting,
every time a new subregion is processed.

This strategy of creating the subproblems may result in
congested regions getting divided, which may result in break-
ing many nets. An advantage of breaking nets in this way
is that it allows more routing resources into each subre-
gion, as the regions are typically composed of small, highly-
congested areas and less-congested areas. In addition, before
solving a subproblem, GRIP detours as many nets as possible
into unprocessed subproblems (which are less congested) to
further release routing resources. Moreover, the detrimental
effects of net breaking are mitigated by the flexible, IP-based
mechanism for attaching pseudo-terminals, described further
in Section V-C.

C. Patching the Solutions of Subproblems

Thus far, we have explained how the subregions are formed
and how the net assignments are made to define subproblems.
GRIP solves the subproblems in a rather sequential order
with limited parallel processing. After all the subproblems are
solved, a final phase connects the route segments that pass
neighboring subregions. Both of these phases are explained in
this section.

GRIP first orders the subproblems based on the total edge
overflow (TEO) inside their subregions. The TEO is total
amount of overflow that would occur in the subregion if the
assigned Steiner routes (the Flute and detoured Flute routes
described in Section V-B) were used. Subregions are sorted in
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a list in decreasing order of their TEOs and processed in that
order. Every time a subregion is processed, the floating termi-
nal(s) for a netTi are fixed at a boundary(s) of that subregion,
as shown in Figure 7. Thus, the netTi is partially routed,
and subsequent, neighboring, subproblems must respect this
partial routing by assuming the imposed boundary-terminal is
fixed. This isnot, however, the final connection for the net.
After all subregions are routed, a IP-based post-processing step
(subsequently described in this section) is applied that unfixes
pseudoterminal locations and reconnects route segments.

GRIP processes the subregions in parallel by making a
number of passes through the subregion list, ordered by TEO.
At each pass, it processes few of the unrouted subregions.
Specifically, it processes an unrouted subregion in a pass if the
subregion is not physically adjacent to any other subregions
being processed on that pass. As previously mentioned, once
the subregions in a pass are processed, their pseudoterminal
locations are temporarily fixed. GRIP iterates over the sub-
region list until all subregions are routed. We subsequently
refer to the number of passes through the subregion list as the
number of stepsof the GRIP algorithm.

After solving all the subproblems, they need to get con-
nected to each other. Specifically if an inter-region net spans
multiple subregions, its segments in different subregions
should be connected to each other. This connection is via uti-
lizing the grid edges between the boundaries of the subregions,
as shown in Figure 5(a). Note, by reserving the edges between
adjacent subregions to be used only during the connection
phase, GRIP in effect uses a non-greedy strategy to fairly
allocate the routing resources between them.

Before attempting to connect the subregions to each other,
GRIP further releases some routing resources inside each sub-
region by unrouting branches of some route fragments which
connect to the subregion boundaries. These branches will get
rerouted during the connection phase. This strategy allows
obtaining a higher quality solution when connecting route
fragments in different subregions to each other. Specifically,
for each inter-region net which spans multiple subregions,
GRIP fixes a “backbone” for each of its route fragments inside
each of its subregions. To create the backbone, GRIP removes
the branch of the route fragment that connects the boundary
terminal to the first Steiner point of that tree in the subregion.
(See Figure 7). After identifying the backbones, an inter-region
net will end up with a set of backbones that are not connected
to the boundaries and fall inside a set of adjacent subregions
which need to be connected to each other.

Once these connecting segments are removed, routing re-
sources are freed. GRIP then uses the same IP-based procedure
to connect the route segments in adjacent subproblems. GRIP
connects these segments using the formulation (ILP-GR), first
fixing all routes of within-region nets and backbones of the
inter-region nets. In the IP, the nets to be routed are two
terminal nets crossing the inter-region boundary, each terminal
being a Steiner point of the backbone in the region. By setting
the edge weightwe = 0 for all edges in the backbone, the
IP effectively connects the two sub-nets atany location on
the backbones. When connecting two neighboring subregions,
remaining (unfixed) capacity is allocated to the subproblem

it
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Fig. 7. Connecting route-segments in adjacent subproblems.

in a manner that ensures that neighboring subproblems in
all quadrants will be able to be effectively connected. It is
important to reiterate that when generating candidate routes
in the reconnection phase, the setS(Ti) is augmented, so
that routes may contain different pseudo-terminal locations
in the boundaries compared to the initial locations when the
subproblems were solved.

VI. H ANDLING OVERFLOW

After connecting the subproblem solutions, GRIP evaluates
if any net is left unrouted. In case all the nets were routed,
which we found to be the case in the majority of our tested
benchmarks, GRIP terminates. If nets were left unrouted, then
routing those nets using any of the generated candidate routes
will introduce overflow (the corresponding slack variable in
Equation (1) is 1). In this section, we discuss an IP and
specifics of price-and-branch procedure to reduce overflow
of a given solution. We then discuss how GRIP applies this
procedure to selected areas on the chip.

A. Integer Program for Overflow Reduction

GRIP uses the following IP to minimize overflow:

min
oe

∑

∀e∈E

Meoe (ILP-OV)

∑

t∈T (Ti)

xit = 1 ∀i = 1, . . . , N, (5)

N∑

i=1

∑

t∈T (Ti)

atexit ≤ ue + oe ∀e ∈ E, (6)

xit ∈ {0, 1} ∀i = 1, . . . , N, ∀t ∈ T (Ti),
oe ≥ 0 ∀e ∈ E.

Compared to (ILP-GR), the slack variablesi is removed from
the net constraint (1), but a new slack variableoe is added to
the edge capacity constraints (6). The slack variableoe will
be positive if edgee contains overflow, and the objective is to
minimize the overflow over all edges. In (ILP-OV),Me is a
constant weight that can be set to a different value for each
edge. For example, in the caseMe = 1 ∀e, the objective is to
minimize the total overflow.

GRIP setsMe by considering the overflow produced by
routing the nets which were left unrouted by the original IP-
based procedure. To route an unrouted net, GRIP selects from
the candidate routes for that net, the route that would lead to
minimum additional overflow. If edgee contains overflow in
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this complete solution, thenMe is set equal to the amount of
overflow. If it does not contain overflow,Me is set equal to 1.
Assigning higherMe will result in removing the overflow from
these edges, but may transfer the overflow to the other edges.
Consequently, the end result in terms of total units of overflow
may not differ. In our computational experience, settingMe

as described above and settingMe = 1,∀e ∈ E both result in
roughly the same amount of final overflow reduction.

B. Solution Procedure via Price-and-Branch

Similar to IP-based procedure of Section IV, GRIP utilizes
column generation to solve the LP relaxation of (ILP-OV).
The dual of the LP relaxation of (ILP-OV) is

max
∑

i∈N

λi +
∑

e∈E

πeue (LPD-OV)





λi +
∑

e3t πe ≤ 0 ∀i = 1, . . . , N, ∀t ∈ T (Ti),
−Me ≤ πe ≤ 0 ∀e ∈ E,
λi : free.

GRIP starts with a small subset of routes and solves the
restricted master problem for (ILP-OV):

min
x≥0,o≥0

∑

∀e∈E

Meoe (RMLP-OV)

{ ∑
t∈S(Ti)

xit = 1 ∀i = 1, . . . , N,∑N
i=1

∑
t∈S(Ti)

atexit ≤ ue + oe ∀e ∈ E.

At the first iteration,S(Ti) only contains one route per net—
the route used to obtain the complete solution. GRIP solves
(RMLP-OV) to obtain the dual valueŝλ and π̂. The pricing
problem is solved to identify a new routet∗ that violates
the first constraint of (LPD-OV) (i.e.̂λi +

∑
e∈E π̂et

∗
e > 0),

indicating the objective of (RMLP-OV) may be improved if
t∗ is added toS(Ti).

When solving the pricing problem to identify a negative
reduced cost route for each net, the edge weightŵe = −π̂e

is used. Note that̂πe ≤ 0, so ŵe ≥ 0, and Dijkstra’s
single-source shortest path algorithm can be used to identify
promising routes, exactly as in the procedure described in
Section IV-B. Just as in the GRIP for solving (ILP-GR), the
linear program solution process is terminated when tailing off
is detected. The resulting routes are given to a branch-and-
bound solver to find an integer solution to (ILP-OV).

C. Defining Subproblems for Overflow Reduction

After integrating the subproblem solutions, overflow was not
observed in the majority of the tested benchmarks. Only for
three benchmarks in the ISPD08 suite was overflow observed.
Further, overflow was typically confined to a very few “hot
spots”. GRIP exploits this observation to define small-sized
subregions with their net assignments on which to apply
the IP-based procedure for overflow reduction, described in
Section VI-A. The routes on the other portions of the chip
remain intact.

GRIP defines the subregions on which to reduce overflow in
a sequential order but solves the corresponding subproblems
in parallel. To define the subregions, GRIP traverses the

A

B
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: edge with max overflow
: fixed terminal

A

B

T1

: edge with max overflow
: fixed terminal

Fig. 8. Defining few subregions around the edges with overflow.

grid edges in descending order of their overflow values in
a complete solution. GRIP defines a rectangular subregion
of 40x40 grid edges centered at each overflow edge. If an
overflow edge is already included in a previously-defined
subregion, a new subregion will not be defined. Moreover, if
defining the subregion for an overflown edge results in overlap
with a previously defined subregion, the new subregion will
be shifted until the overlap is removed.

All the routes inside a subregion will be rerouted using
the IP-based procedure for overflow reduction. If a net has
terminals outside the subregion, fixed-terminal location(s) will
be defined on the subregion boundary, based on its route
generated from the previous steps. The fixed terminal locations
are honored when solving the subproblem. Figure 8 illustrates
this point. This process also ensures that the segments of
rerouted nets in congested subregions will remain connected.

Please note that our overflow reduction procedure is par-
ticularly calibrated as a post-processing step when a global
routing solution of low wirelength and overflow has already
been generated. At this stage, we can define much larger
subregions which we found necessary to effectively reduce
overflow when solving (ILP-OV).

GRIP does not include any additional steps, such as post-
processing, besides the ones mentioned thus far.

VII. C OMPARISON TOOPTIMIZATION -BASED METHODS

A number of other authors have proposed optimization-
based methods for global routing, and the purpose of this
section is to attempt to place our work in context of these
previous contributions.

An early description of applying a pricing procedure to
solve the global routing problem is given by [18]. This work is
perhaps the most similar to the GRIP algorithm, in that it relies
on column generation, on defining subregions, and on pasting
partial solutions together. In their work, there is no mention
of solving the IP, only its LP relaxation, and computational
results are not reported.

The works [4] and [29] both focus on developing fast
algorithms for approximately solving the (full) LP relaxation
of the global routing problem. In these approaches, the ac-
tual, primal, integer-valued, routing solution is done by a
randomized rounding procedure. This is quite different from
GRIP. GRIP is based on a price-and-branch approach for
approximately solving the integer program. So both procedures
of solving the LP relaxation (pricing), and obtaining an integer
solution (branching) are different.
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TABLE I
ISPD 2007, ISPD 2008 BENCHMARKS

Benchmark # Nets Grid # Layers V.cap H.cap

adaptec1 176715 324x324 6 70 70
adaptec2 207972 424x424 6 80 80
adaptec3 368494 774x779 6 62 62
adaptec4 401060 774x779 6 62 62
adaptec5 548073 465x468 6 110 110
newblue1 270713 399x399 6 62 62
newblue2 373790 557x463 6 110 110

newblue4 636195 455x458 6 84 84
newblue5 1257555 637x640 6 88 88
newblue6 1286452 463x464 6 132 132
newblue7 2635625 488x490 8 212 212
bigblue1 282974 227x227 6 110 110
bigblue2 576816 468x471 6 52 52
bigblue3 1122340 555x557 8 148 148
bigblue4 2228903 403x405 8 202 202

The paper [25] is a similar approach to that of [4] and [29],
but designs an algorithm that can specifically accounts for the
effects of wire spacing during yield optimization.

The work [19] is a full branch-and-price procedure that
mathematically shares many commonalities with GRIP. How-
ever, the work [19] is designed specifically for the switchbox
routing problem, and the instance sizes are small enough so
that region-based decomposition, done in GRIP, is not needed.

Similar to (ILP-GR), the paper [6] also suggests IP formula-
tions for the global routing problem. To solve the formulations
in [6], column generation is not employed, but rather a set of
possible routes for each net is iteratively constructed during
a congestion estimation phase. Generating routesduring the
LP solution process, as done in GRIP, has the significant
advantage of exploiting the dual information to suggest good
routes. The work [6] additionally considers a number of
different objectives besides wirelength or overflow. The paper
[32] builds on the work of [6], by describing different “heirar-
chical” approaches, where the routing problems are solved
either “top-down” or “bottom-up.” Computational results are
given for chips with up to around 25,000 cells and nets.

BoxRouter [10] uses IP formulations as a fundamental
component of their algorithm. These IP formulations arenot
Steiner-tree packing formulations like (ILP-GR). A fundamen-
tal idea behind BoxRouter is that ofprogressive IP, where the
IP formulation is solved first for a subregion, and portions
of this solution are fixed before proceeding to other regions.
This is quite a different approach than GRIP’s area-based
decomposition and patching.

VIII. S IMULATION RESULTS

GRIP was implemented using C++. For solving individual
LPs and IPs, MOSEK 5.0 [24] and CPLEX 6.5 [12] were used,
respectively. In our simulations we set parameterM equal to
20,000 in formulation (ILP-GR) since we empirically knew
that the wirelength of an individual route is smaller than this
number. We report results on the ISPD 2007 [2] and 2008
benchmarks [3]. Table I reports the total number of routed
nets and the grid size for each benchmark. Column 4 shows
the number of metal layers. The last two columns report the
projected edge capacities for vertical and horizontal layers.

Table II reports on the performance of GRIP on the bench-
mark instances1. For each benchmark, the total overflow is

1Benchmark solutions can be downloaded at http://wiscad.ece.wisc.edu/gr/

given in the column TOV, and the total wirelength (WL) is
broken down into both edge and via costs. GRIP is com-
pared to four recent academic global routers: FGR 1.1 [28],
FastRoute 4.0 [31], NTHU-Route 2.0 [8], and BoxRouter 2.0
[10]. For each router, we report the percentage improvement
in wirelength found by GRIP, as well as the total overflow.

Considering wirelength, GRIP consistently generates the
best result for each benchmark, typically significantly improv-
ing the best known result. The improvement is larger in ISPD
2007 benchmarks since the via cost is 3 for these benchmarks,
and therefore the benefits of avoiding layer assignment and
directly generating 3-D routes are more significant. If the same
GRIP solutions for the ISPD 2007 benchmarks (for via cost
of 3) are evaluated assuming via cost is 1, still a wirelength
improvement of on average 5.25% is obtained.

GRIP generates solutions with no overflow for the ma-
jority of the benchmarks, so the overflow reduction proce-
dure of Section VI need not be applied. For four ISPD
2008 benchmarks,newblue3 , newblue4 , newblue7 , and
bigblue4 , the overflow found by GRIP (before applying the
overflow step) is reported in column 10. The corresponding
overflow and wirelength numbers after applying the overflow
reduction procedures is reported in the last two columns of
Table II, as well as the number of subproblems solved for over-
flow reduction. GRIP generates the best known overflow for
the newblue4 andnewblue7 , and quite comparable over-
flow for bigblue4 , while maintaining the wirelength im-
provement. Fornewblue3 which is an artificially-generated
benchmark, GRIP ends up obtaining significant wirelength
improvement but the total overflow still remains higher than
other methods even after the OV step os applied. For the three
benchmarks (newblue4 , newblue7 , and bigblue3 ) the
average degradation in wirelength compared to GRIP without
its overflow step is about 0.11%.

As described in Section IV-B, when generating candidate
routes, at most 40 routes per net, per iteration of column
generation are selected. The total number of routes generated
for a net may be higher than this number. Takenewblue7
as an example. For the first (most congested) subproblem,
60 iterations of column generation were required. In this
subproblem, there was one net for which 2292 candidate routes
were generated (about 38.2 per iteration). This net was long,
spanned significantly over the congested subproblem, and had
many terminals. For the same subproblem, there were some
two-terminal nets for which only 2 candidate routes were
generated. On average, 24.67 candidate routes per net were
generated for the first subproblem innewblue7 .

GRIP was run on a heterogenous grid of CPUs of 2GB
memory, shared by many users, and controlled by the Condor
grid computing toolkit [21]. Condor is a resource management
software that allows for the creation of shared computational
grids from the idle cycles of workstations. Table III reports
the run time information, not including the overflow step.
The number of subproblems created by the decomposition
procedure for each benchmark is given in the second column.

As described in Section V-C, GRIP uses a congestion-based
ordering to process and solve the subproblems in parallel.
Column 5 in Table III gives the number of passes through
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TABLE II
RESULTS FORISPD 2007AND ISPD 2008BENCHMARKS. THE WIRELENGTH (WL) IS SCALED TO105 .

Benchmark FGR1.1 FastRoute4.0 NTHU-Route2.0 BoxRouter2.0 GRIP (without OV step) GRIP (with OV step)
TOV WL(%) TOV WL(%) TOV WL(%) TOV WL(%) TOV WL Edge Via TOV WL # sp

adaptec1 (07) 0 8.42% 0 10.99% 0 8.79% 0 11.99 0 81.0 36.5 44.5 – – –
adaptec2 (07) 0 8.33% 0 10.01% 0 9.33% 0 12.60 0 82.4 33.7 48.7 – – –
adaptec3 (07) 0 7.14% 0 9.39% 0 7.69% 0 10.61 0 185.4 97.5 87.9 – – –
adaptec4 (07) 0 3.94% 0 7.84% 0 7.36% 0 7.57% 0 172.3 91.5 80.8 – – –
adaptec5 (07) 0 8.11% 0 11.73% 0 8.18% 0 11.65 0 238.9 104.8 134.1 – – –
newblue1 (07) 526 10.99% 0 8.51% 0 7.76% 400 9.73% 0 83.9 24.9 59.0 – – –
newblue2 (07) 0 6.18% 0 10.49% 0 9.83% 0 9.83% 0 121.4 48.0 73.4 – – –
newblue3 (07) 39908 10.14% 31634 14.28% 31454 6.50% 38958 9.48% 52518 156.1 76.2 79.9 45960 157.6 38
Avg. WL Impr. 7.91% 10.40% 8.18% 10.43

newblue4 (08) 262 4.00% 144 7.12% 138 4.65% 200 3.92% 196 124.2 83.2 41.0 136 124.4 2
newblue5 (08) 0 4.36% 0 5.88% 0 3.79% 0 4.35% 0 222.8 147.6 75.2 – – –
newblue6 (08) 0 5.44% 0 6.64% 0 3.61% 0 5.15% 0 170.5 102.4 68.1 – – –
newblue7 (08) 1458 4.12% 62 5.91% 68 4.97% 208 6.36% 110 335.5 189.5 146.0 54 335.8 1
bigblue1 (08) 0 6.33% 0 7.24% 0 4.02% 0 5.76% 0 53.7 37.2 16.5 – – –
bigblue2 (08) 0 5.94% 0 10.03% 0 5.07% 0 4.89% 0 86.0 48.3 37.7 – – –
bigblue3 (08) 0 4.40% 0 3.44% 0 3.43% 0 3.91% 0 126.2 78.7 47.5 – – –
bigblue4 (08) 414 4.72% 152 8.67% 162 4.48% 472 4.69% 232 220.5 121.9 98.6 180 220.7 1
Avg. WL Impr. 4.91% 6.87% 4.25% 4.88%

TABLE III
RUNTIME INFORMATION (WITHOUT OVERFLOW STEP).

Benchmark #Subp. Runtime #Steps #Parallel Subp.
Wall Total CPU Ave. Max.

adaptec1 (07) 100 388 2101 12 8.3 18
adaptec2 (07) 169 455 2704 16 10.6 23
adaptec3 (07) 576 478 6319 32 18.0 38
adaptec4 (07) 570 509 5221 30 19.0 51
adaptec5 (07) 225 584 3175 16 14.1 30
newblue1 (07) 144 483 2306 18 8.0 15
newblue2 (07) 238 467 4192 23 10.4 18
newblue3 (07) 1170 1430 14590 61 19.2 39

newblue4 (08) 174 529 2944 20 8.5 19
newblue5 (08) 311 821 4593 31 9.5 21
newblue6 (08) 140 448 2219 15 8.9 16
newblue7 (08) 325 985 4788 36 9.0 18
bigblue1 (08) 49 339 956 12 3.9 7
bigblue2 (08) 172 690 3411 21 8.0 20
bigblue3 (08) 208 731 2690 28 7.3 16
bigblue4 (08) 215 726 3096 27 7.6 21

the subproblem list before all subproblems were processed.
The average and maximum number of subproblems processed
independently on a pass are reported in columns 6 and 7. The
wall clock times are given in columns 3. The runtime unit is
minutes. These wall clock times are computed for the case
when the computational grid was shared with other users. The
actual wall clock time for solving the instances was larger, as
jobs submit to the Condor-controlled shared grid often wait in
the job queue while higher-priority jobs are run.

Compared to other routers, even IP-centric routers (specif-
ically BoxRouter which is the fastest one), our walltime is
significantlyhigher, so we skip any explicit runtime compar-
ison. To reiterate, the focus of this work is to demonstrate
the significant improvementin route quality that is possible
with an intelligently-engineered IP-based scheme. Reducing
the computational time, via additional parallelization of the
algorithm, will be a focus of subsequent work.

Table III also reports the total CPU runtimes, computed as
the summation of the runtimes spent by the CPUs to solve
the subproblems in column 4. From the table, we can see
that GRIP’s significant improvement in solution quality comes
at a considerable CPU time expense. However, comparing
the total runtime to the wall clock time, it can be seen
that even the small level of parallelism in GRIP can yield
significant improvement, and reduce computational time to
nearly acceptable levels. Continuing work is aimed at further
exploiting parallelism to obtain similar high-quality solutions
in even shorter wall clock times.

The Condor resource management policy ensured that each
CPU ran at most one job at each time, so the CPUs were
solely dedicated to solving the subproblems when utilized
by us. Moreover, the CPUs in our computational grid were
not vastly significantly different from each other in terms of
speed or memory. Therefore, we expect that the total CPU
runtimes listed in Table III provide a fair approximation of the
sequential runtime if all the computations ran on one CPU.

For the benchmarks with overflow, an additional 30 minutes
of walltime was used for solving the problem (RMLP-OV) to
generate candidate routes, and a 5 hour limit was used for solv-
ing the IP using branch-and-bound. In the overflow case, the
IP solver took significantly longer than when solving similar
IPs whose primary objective was wirelengh. The runtime can
potentially be improved by tuning the commercial solver, using
a newer version of the CPLEX tool, or by developing a custom
solver which we leave to future work. For each benchmark,
the number of subregions defined around the congested areas
for overflow reduction is listed in the last column in Table II.
These subregions were all processed in parallel.

IX. CONCLUSIONS

GRIP is a new tool for global routing via integer program-
ming (IP). It is based on solving an IP formulation by column
generation followed by branch and bound to select candidate
routes for each net. The method uses the information from the
dual values of the relaxation of the integer program to create
a dynamically-updated metric that correlates with congestion
and suggests promising routes for each net. GRIP directly
solves the 3D model of the routing problem. To achieve
reasonable runtime for large instances, GRIP uses methods
to decompose the problem into subproblems of manageable
size and reconnects the subproblem solutions using IP. In case
of overflow, it applies an overflow reduction procedure.

GRIP is the only IP-based procedure that achieves signifi-
cantly lower wirelength and comparable overflow compared to
the best solutions reported in the open literature. In future, we
plan to develop techniques that can utilize the IP procedure and
yet achieve a much higher degree of parallelism to improve
the runtimes. We also plan to streamline the candidate route
generation phase to consider constraints imposed on layer
usage and route topology and to extend the formulation to
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consider other objectives. We plan to explore means to utilize
our framework in order to obtain quick estimate of congestion.
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